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Abstract

In a paper published in this journal, Alon, Kohayakawa, Mauduit, Moreira, and Rödl
proved that the minimal possible value of the normality measure of an N -element binary
sequence satisfies(

1

2
+ o(1)

)
log2N ≤ min

EN∈{0,1}N
N (EN ) ≤ 3N1/3(logN)2/3

for sufficiently large N , and conjectured that the lower bound can be improved to some
power of N . In this note it is observed that a construction of Levin of a normal number
having small discrepancy gives a construction of a binary sequence EN with N (EN ) =
O
(
(logN)2

)
, thus disproving the conjecture above.

Let a finite binary sequence EN = (e1, . . . , eN ) ∈ {0, 1}N be given. For k ≥ 1, M ≥ 1 and
X ∈ {0, 1}k, we set

T (EN ,M,X) = # {n : 0 ≤ n < M, and (en+1, . . . , en+k) = X} ,

which means that T (EN ,M,X) counts the number of occurrences of the pattern X among
the first M + k − 1 elements of EN . The normality measure N (EN ) is defined as

N (EN ) = max
1≤k≤log2N

max
X∈{0,1}k

max
1≤M≤N+1−k

∣∣∣∣T (EN ,M,X)− M

2k

∣∣∣∣ . (1)

The normality measure was introduced in 1997 by Mauduit and Sárközy [8], together with
several other measures of pseudorandomness for finite binary sequences1. In two papers, Alon,
Kohayakawa, Mauduit, Moreira and Rödl [2, 3] studied the minimal and the typical values of
the normality measure (and other measures of pseudorandomness). Concerning the typical
value of N , they proved that for any ε > 0 there exist δ1, δ2 > 0 such that for EN uniformly
distributed in {0, 1}N

δ1
√
N ≤ N (EN ) ≤ δ2

√
N
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1Strictly speaking, Mauduit and Sárközy defined their pseudorandomness measures for sequences over the
alphabet {−1, 1} (instead of {0, 1}, as in the present paper). It is more convenient for our purpose to study
sequences defined over the alphabet {0, 1} (since they can be related to the binary representation of real
numbers), and the definitions have been modified accordingly.
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holds with probability at least 1 − ε for sufficiently large N , and conjectured that a limit
distribution of N (EN )/

√
N exists; the latter was recently confirmed [1]. Concerning the

minimal value of N , Alon et al. proved that(
1

2
+ o(1)

)
log2N ≤ min

EN∈{0,1}N
N (EN ) ≤ 3N1/3(logN)2/3 (2)

for sufficiently large N . The lower bound in (2) is based on a relatively simple combinatorial
argument. The proof of the upper bound in (2) is rather elaborate; however, it is entirely
constructive, using an explicit algebraic construction based on finite fields. Concerning a
possible improvement of (2), Alon et al. write in [2]

“We suspect that the logarithmic lower bound in [equation (2)] is far from the
truth.”

and formulate the open problem

“Is there an absolute constant α > 0 for which we have minEN
N (EN ) > Nα for

all large enough N?”

In [3] they write

“The authors believe that the answer to [the open problem above] is positive.”

The purpose of this note is to draw attention to a result of Levin [7] concerning the existence
of a normal number with small discrepancy. This result implies the following upper bound on
the minimal value of N , closing the gap between upper and lower bounds up to a logarithmic
factor, and disproving the conjecture of Alon et al. stated above.

Theorem 1. There exists a constant c such that

min
EN∈{0,1}N

N (EN ) ≤ c(logN)2

for sufficiently large N .

Normal numbers were introduced by Borel in 1909. Let z ∈ [0, 1) be a real number, and
denote its binary expansion by z = 0.z1z2z3 . . . . Then z is called a normal number (in base 2,
which is the only base that we are interested in in the present paper) if for any k ≥ 1 and any
block of digits X ∈ {0, 1}k the relative asymptotic frequency of the number of appearances
of X in the binary expansion of z is 2−k. Using the terminology from the beginning of this
note and writing ZN = (z1, . . . , zN ) for the sequence of the first N digits of z, this can be
expressed as

lim
N→∞

T (ZN , N + 1− k,X)

N
= 2−k,

where k is the length of X. Borel proved that almost all numbers (in the sense of Lebesgue
measure) are normal. There exist many constructions of normal numbers, the first of them
being obtained by concatenating the digital representations of the positive integers (Cham-
pernowne, 1933), primes (Copeland and Erdős, 1946) and values of polynomials (Davenport
and Erdős, 1952). Deciding whether a given real number is normal or not is a very difficult
problem, and it is unknown whether constants such as

√
2, e and π are normal or not.
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In an informal way, normal numbers are often considered as numbers showing “random”
behavior (which is justified by the aforementioned theorem of Borel). In fact, different vari-
ants of the normality property were considered as tests for pseudorandomness of (infinite)
sequences of digits, for example in the monograph of Knuth [5] on The Art of Computer
Programming, and the normality measure of Mauduit and Sárközy is a quantitative version
of such a pseudorandomness test for the case of a finite sequence of digits. For a discussion of
the connection between normal numbers, pseudorandomness of (finite) sequences, and pseu-
dorandom number generators, see the book of Knuth and the papers of Mauduit and Sárközy
On finite pseudorandom binary sequences I-VII, as well as [4, 9].

To proceed further, we need some notation. A sequence of real numbers (yn)n≥1 from the unit
interval is called uniformly distributed modulo one (u.d. mod 1) if for all intervals [a, b) ⊂ [0, 1)
the limit relation

lim
N→∞

1

N

N∑
n=1

1[a,b)(yn) = b− a

holds. The quality of the uniform distribution of a sequence is measured in terms of the
discrepancy DN , which for N ≥ 1 is defined as

DN (y1, . . . , yN ) = sup
0≤a<b≤1

∣∣∣∣∣ 1

N

N∑
n=1

1[a,b)(yn)− (b− a)

∣∣∣∣∣ .
A sequence is u.d. mod 1 if and only if its discrepancy tends to zero as N →∞.

By an observation of Wall [11], a number z is normal (in base 2) if and only if the sequence(
〈2n−1z〉

)
n≥1, where 〈·〉 denotes the fractional part, is u.d. mod 1. Korobov [6] posed the

problem of finding a function ψ(N) with maximal decay for which there exists a number z
such that

DN

(
z, 〈2z〉, . . . , 〈2N−1z〉

)
≤ ψ(N), N ≥ 1.

The best result concerning this question is currently due to Levin [7], who proved (construc-
tively, by giving an explicit example) the existence of a z for which

DN

(
z, 〈2z〉, . . . , 〈2N−1z〉

)
= O

(
(logN)2

N

)
as N →∞. (3)

This result should be compared with a lower bound of Schmidt [10], stating that for any
sequence (yn)n≥1

DN (y1, . . . , yN ) ≥ cabs
logN

N

for infinitely many N . Thus Korobov’s problem is solved, up to a logarithmic factor.

In view of Levin’s result (3), Theorem 1 is a direct consequence of the following lemma.

Lemma 1. Let z ∈ [0, 1) be a real number, whose binary expansion is given by z = 0.z1z2z3 . . . ,
and assume that there exists a nondecreasing function Φ(N) such that

DN

(
z, 〈2z〉, . . . , 〈2N−1z〉

)
≤ Φ(N)

N
, N ≥ 1. (4)
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Then for each N ≥ 1 the binary sequence ZN = (z1, . . . , zN ) satisfies

N (ZN ) ≤ Φ(N).

Proof: We may suppose that z is not a dyadic rational. For any k, any binary sequence X
of length k, and any M ≤ N + 1− k, it is immediately seen that T (ZN ,M,X) is the number
of indices 0 ≤ n ≤M − 1 for which 〈2nz〉 falls in a certain interval of length 2−k. Hence∣∣∣∣T (ZN ,M,X)− M

2k

∣∣∣∣ ≤MDM

(
z, 〈2z〉, . . . , 〈2M−1z〉

)
≤ Φ(M) ≤ Φ(N),

so N (ZN ) ≤ Φ(N), as claimed. By the remark before the statement of the lemma, this also
proves Theorem 1.
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