On the limit distribution of the well-distribution measure of random binary sequences

Christoph Aistleitner*

Abstract

We prove the existence of a limit distribution of the normalized well-distribution measure $W\left(E_{N}\right) / \sqrt{N}($ as $N \rightarrow \infty)$ for random binary sequences E_{N}, by this means solving a problem posed by Alon, Kohayakawa, Mauduit, Moreira and Rödl.

1 Introduction and statement of results

Let $E_{N}=\left(e_{n}\right)_{1 \leq n \leq N} \in\{-1,1\}^{N}$ be a finite binary sequence. For $M \in \mathbb{N}, a \in \mathbb{Z}$ and $b \in \mathbb{N}$ set

$$
U\left(E_{N}, M, a, b\right)=\sum\left\{e_{a+j b}: 1 \leq j \leq M, 1 \leq a+j b \leq N \text { for all } j\right\} .
$$

In other words, $U\left(E_{N}, M, a, b\right)$ is the discrepancy of E_{N} along an arithmetic progression in $\{1, \ldots, N\}$. The well-distribution measure $W\left(E_{N}\right)$ is then defined as

$$
W\left(E_{N}\right):=\max \left\{\left|U\left(E_{N}, M, a, b\right)\right|, \text { where } 1 \leq a+b \text { and } a+M b \leq N\right\} .
$$

The main result of the present paper is the following Theorem 1, which solves a problem posed by Alon, Kohayakawa, Mauduit, Moreira, and Rödl [2].

Theorem 1. Let E_{N} denote random elements from $\{-1,1\}^{N}$, equipped with the uniform probability measure. There exists a limit distribution $F_{W}(t)$ of

$$
\begin{equation*}
\left(\frac{W\left(E_{N}\right)}{\sqrt{N}}\right)_{N \geq 1} . \tag{1}
\end{equation*}
$$

The function $F_{W}(t)$ is continuous and satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{t\left(1-F_{W}(t)\right)}{e^{-t^{2} / 2}}=\frac{8}{\sqrt{2 \pi}} . \tag{2}
\end{equation*}
$$

[^0]It should be emphasized that the limit distribution of (1) is not the normal distribution. However, as a consequence of Theorem 1 and the Radon-Nikodỳm theorem, the limit distribution $F_{W}(t)$ has a density with respect to the Lebesgue measure. The tail estimate (2) in Theorem 1 should be compared to the corresponding asymptotic result for the tail probabilities $1-\Phi(t)$ of a standard normal random variable, for which

$$
\lim _{t \rightarrow \infty} \frac{t(1-\Phi(t))}{e^{-t^{2} / 2}}=\frac{1}{\sqrt{2 \pi}}
$$

The measure W_{N} was introduced by Mauduit and Sárközy [11], together with two other measures of pseudorandomness. Again, let $E_{N}=\left(e_{n}\right)_{1 \leq n \leq N} \in\{-1,1\}^{N}$ be a finite binary sequence. For $k \in \mathbb{N}, M \in \mathbb{N}, X \in\{-1,1\}^{k}$ and $D=\left(d_{1}, \ldots, d_{k}\right) \in \mathbb{N}^{k}$ with $0 \leq d_{1}<\cdots<$ $d_{k}<N$, we define

$$
\begin{aligned}
T\left(E_{N}, M, X\right) & =\#\left\{n: n \leq M, n+k \leq N,\left(e_{n+1}, \ldots, e_{n+k}\right)=X\right\}, \\
V\left(E_{N}, M, D\right) & =\sum\left\{e_{n+d_{1}} \ldots e_{n+d_{k}}: 1 \leq n \leq M, n+d_{k} \leq N\right\}
\end{aligned}
$$

This means that $T\left(E_{N}, M, X\right)$ counts the number of occurrences of the pattern X in a certain part of E_{N}, and $V\left(E_{N}, M, D\right)$ quantifies the correlation among k segments of E_{N}, which are relatively positioned according to D.

The normality measure $\mathcal{N}\left(E_{N}\right)$ is defined as

$$
\mathcal{N}\left(E_{N}\right)=\max _{k} \max _{X} \max _{M}\left|T\left(E_{N}, M, X\right)-\frac{M}{2^{k}}\right|,
$$

where the maxima are taken over all $k \leq \log _{2} N, X \in\{-1,1\}^{k}, 0<M \leq N+1-k$. The correlation measure of order k, which is denoted by $C_{k}\left(E_{N}\right)$, is defined as

$$
C_{k}\left(E_{N}\right)=\max \left\{\left|V\left(E_{N}, M, D\right)\right|: M, D \text { satisfy } M+d_{k} \leq N\right\} .
$$

In [7] Cassaigne, Mauduit and Sárközy studied the "typical" values of $W\left(E_{N}\right)$ and $C_{k}\left(E_{N}\right)$ for random binary sequences E_{N}, and the minimal possible values of $W\left(E_{N}\right)$ and $C_{k}\left(E_{N}\right)$ for special sequences E_{N}. These investigations were extended by Alon, Kohayakawa, Mauduit, Moreira, and Rödl, who in [1] studied in detail the possible minimal and in [2] the "typical" values of $W\left(E_{N}\right), \mathcal{N}\left(E_{N}\right)$ and $C_{k}\left(E_{N}\right)$ (see also [10] for an earlier survey paper). Among the results in [2] are the following two theorems. Here and throughout the rest of the present paper, E_{N} denotes random elements of $\{-1,1\}^{N}$, equipped with the uniform probability measure.

Theorem A. For any given $\varepsilon>0$, there exist numbers $N_{0}=N_{0}(\varepsilon)$ and $\delta=\delta(\varepsilon)>0$ such that for $N \geq N_{0}$

$$
\begin{equation*}
\delta \sqrt{N}<W\left(E_{N}\right)<\frac{\sqrt{N}}{\delta} \tag{3}
\end{equation*}
$$

and

$$
\delta \sqrt{N}<\mathcal{N}\left(E_{N}\right)<\frac{\sqrt{N}}{\delta}
$$

with probability at least $1-\varepsilon$.

Theorem B. For any $\delta>0$, there exist numbers $c(\delta)>0$ and $N_{0}=N_{0}(\delta)$ such that for any $N \geq N_{0}$

$$
\mathbb{P}\left(W\left(E_{N}\right)<\delta \sqrt{N}\right)>c(\delta)
$$

and

$$
\mathbb{P}\left(\mathcal{N}\left(E_{N}\right)<\delta \sqrt{N}\right)>c(\delta) .
$$

In other words, Theorem A means that the pseudorandomness measures $W\left(E_{N}\right)$ and $\mathcal{N}\left(E_{N}\right)$ are of typical asymptotic order \sqrt{N}, while Theorem B means that the lower bounds in Theorem A are optimal. In [2] there are also theorems describing the typical asymptotic order of $C_{k}\left(E_{N}\right)$, which prove the existence of a limit distribution of $C_{k}\left(E_{N}\right) / \mathbb{E}\left(C_{k}\left(E_{N}\right)\right)$ in the case when $k=k(N)$ grows slowly in comparison with N (in this case the limit distribution is concentrated at a point). At the end of [2], Alon et.al. formulated the following open problem:
(Problem 33) Investigate the existence of the limiting distribution of

$$
\left(W\left(E_{N}\right) / \sqrt{N}\right)_{N \geq 1}, \quad\left(\mathcal{N}\left(E_{N}\right) / \sqrt{N}\right)_{N \geq 1} \quad \text { and } \quad \frac{C_{k}\left(E_{N}\right)}{\sqrt{N \log \binom{N}{k}}} .
$$

Investigate these distributions.

Subsequently they write: "It is most likely that all three sequences in Problem 33 have limiting distributions".

Theorem 1 proves the existence of a limit distribution of the normalized well-distribution measure of random binary sequences, by this means solving the first instance of Problem 33 above. The case of the normality measure $\mathcal{N}\left(E_{k}\right)$ seems to be much more difficult, and I could not obtain any satisfactory results. The case of the correlation measure $C_{k}\left(E_{N}\right)$ is considerably different from the cases of the well-distribution measure $W\left(E_{N}\right)$ and the normality measure $\mathcal{N}\left(E_{N}\right)$, since $C_{k}\left(E_{N}\right)$ depends on two parameters. It is reasonable to assume that the limiting distribution (provided that it exists) will depend on the choice of $k=k(N)$. As mentioned before, there already exist several results on the typical asymptotic order of $C_{k}\left(E_{N}\right)$, see $[2,3]$.

There exist several generalizations of the aforementioned pseudorandomness measures, for example to higher dimensions and to a continuous setting (see for example [4, 5, 9]); the problem concerning the typical asymptotic order and the existence of limit distributions is unsolved in many cases.

2 Auxiliary results

Lemma 1 (Hoeffding's inequality; see e.g. [12, Lemma 2.2.7]). Let $\left(e_{n}\right)_{1 \leq n \leq N}$ be independent random variables such that $e_{n}=1$ and $e_{n}=-1$ with probability $1 / 2$ each, for $n \geq 1$. Then

$$
\mathbb{P}\left(\left|\sum_{n=1}^{N} e_{n}\right|>t \sqrt{N}\right) \leq 2 e^{-t^{2} / 2} .
$$

Lemma 2 (Donsker's theorem; see e.g. [6, Theorem 14.1]). Let $\left(\xi_{n}\right)_{n \geq 1}$ be a sequence of independent and identically distributed random variables with mean zero and variance σ^{2}. Define

$$
Y_{N}(s)=\frac{1}{\sigma \sqrt{N}} \sum_{n=1}^{\lfloor N s\rfloor} \xi_{n}, \quad 0 \leq s \leq 1
$$

Then

$$
Y_{N} \Rightarrow Z
$$

where Z is the (standard) Wiener process and \Rightarrow denotes weak convergence in the Skorokhod space $D([0,1])$.
A direct consequence of Donsker's theorem is the following Corollary 1:
Corollary 1. Let $\left(e_{n}\right)_{n \geq 1}$ be a sequence of independent random variables such that $e_{n}=1$ and $e_{n}=-1$ with probability $1 / 2$ each, for $n \geq 1$. Then for any $t \in \mathbb{R}$

$$
\mathbb{P}\left(\max _{1 \leq M_{1} \leq M_{2} \leq N}\left|\sum_{n=M_{1}}^{M_{2}} e_{n}\right| \leq t \sqrt{N}\right) \rightarrow \mathbb{P}\left(\max _{0 \leq s_{1} \leq s_{2} \leq 1}\left|Z\left(s_{2}\right)-Z\left(s_{1}\right)\right| \leq t\right)
$$

as $N \rightarrow \infty$.
The quantity $\max _{0 \leq s_{1} \leq s_{2} \leq 1}\left|Z\left(s_{2}\right)-Z\left(s_{1}\right)\right|$ in Corollary 1 is called the range of the Wiener process. Its density $d(s)$ has been calculated by Feller [8] and is given by

$$
\begin{equation*}
d(s)=8 \sum_{k=1}^{\infty}(-1)^{k-1} k^{2} \phi(k s), \quad s>0 \tag{4}
\end{equation*}
$$

where ϕ denotes the (standard) normal density function.

Figure 1: The density function $d(s)$ of the range of a standard Wiener process.

Lemma 3. Let $\left(e_{n}\right)_{1 \leq n \leq N}$ be independent random variables such that $e_{n}=1$ and $e_{n}=-1$ with probability $1 / 2$ each, for $n \geq 1$. Assume that N is of the form

$$
N=j 2^{m} \quad \text { for } j, m \in \mathbb{Z}, 2^{10}<j \leq 2^{11} \text { and } m \geq 1
$$

Then, if N is sufficiently large, for any $t>2$

$$
\mathbb{P}\left(\max _{1 \leq M_{1} \leq M_{2} \leq N}\left|\sum_{n=M_{1}}^{M_{2}} e_{n}\right|>1.38 t \sqrt{N}\right) \leq 2^{24} e^{-t^{2} / 2}
$$

Lemma 4. Let $\left(e_{n}\right)_{1 \leq n \leq N}$ be independent random variables such that $e_{n}=1$ and $e_{n}=-1$ with probability $1 / 2$ each, for $n \geq 1$. Then, if N is sufficiently large, for any $t>2$

$$
\mathbb{P}\left(\max _{1 \leq M_{1} \leq M_{2} \leq N}\left|\sum_{n=M_{1}}^{M_{2}} e_{n}\right|>1.39 t \sqrt{N}\right) \leq 2^{24} e^{-t^{2} / 2} .
$$

For an integer $B \geq 1$ we define modified well-distribution measures $W^{(\leq B)}$ and $W^{(>B)}$ by setting

$$
\begin{aligned}
& W^{(\leq B)}\left(E_{N}\right) \\
= & \max \left\{\left|U\left(E_{N}, M, a, b\right)\right|: b \leq B \text { and } 1 \leq a+b, a+M b \leq N\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& W^{(>B)}\left(E_{N}\right) \\
= & \max \left\{\left|U\left(E_{N}, M, a, b\right)\right|: b>B \text { and } 1 \leq a+b, a+M b \leq N\right\} .
\end{aligned}
$$

This means that for $W^{(\leq B)}$ we only consider arithmetic progressions having step size at most B, while for $W^{(>B)}$ we only consider arithmetic progressions of step size larger than B. Trivially an arithmetic progression with step size larger than B, which is contained in $\{1, \ldots, N\}$, cannot contain more than $\lceil N /(B+1)\rceil$ elements. The idea is that the limit distribution of W is almost the same as the limit distribution of $W^{(\leq B)}$ for large B, while the contribution of $W^{(>B)}$ is almost negligible if B is large.

Lemma 5. For any positive integer B there exists $N_{0}=N_{0}(B)$ such that for all $N \geq N_{0}$ for any $t \in \mathbb{R}, t>2$,

$$
\begin{equation*}
\mathbb{P}\left(W^{(>B)}\left(E_{N}\right)>1.4 t \sqrt{N /(B+1)}\right) \leq 2^{28}(B+1)^{2} e^{-t^{2} / 2} . \tag{5}
\end{equation*}
$$

Lemma 6. For any integer $B \geq 1$ and any $t \in \mathbb{R}$ the limit

$$
F_{W}^{(\leq B)}(t)=\lim _{N \rightarrow \infty} \mathbb{P}\left(W^{(\leq B)}\left(E_{N}\right) N^{-1 / 2} \leq t\right)
$$

exists.
We have to prove Lemmas 3, 4, 5 and 6 . The proofs will be given in this order below. Lemmas 3 and 4 are a maximal form of Hoeffdings large deviations inequality (Lemma 1), and will be proved by using a classical dyadic decomposition method which is commonly used in probablity theory and probabilistic number theory. Using Lemma 4 we will prove Lemma 5, which essentially says that the probability that the discrepancy along any arithmetic progression with "large" step size B is of order \sqrt{N} is very small. Finally using Donsker's invariance principle (Corollary 1) we will prove Lemma 6, which is the main ingredient in the proof of Theorem 1 in the next section.

Proof of Lemma 3: We use a modified version of a classical dyadic decomposition technique. By assumption N is of the form $j 2^{m}$ for $j, m \in \mathbb{Z}, 2^{10}<j \leq 2^{11}$ and $m \geq 1$. We write \mathcal{A}_{m+1} for the class of all sets of the form

$$
\left\{j_{1} 2^{m}+1, \ldots, j_{2} 2^{m}\right\}, \quad \text { where } \quad j_{1}, j_{2} \in\{0, \ldots, j\}, j_{1}<j_{2} .
$$

Trivially, there exist at most 2^{22} sets of this form.
Furthermore, for every $k, 0 \leq k \leq m$ we write \mathcal{A}_{k} for the class of all sets of 2^{k} consecutive integers which start at position $j_{1} 2^{k}$ for some $j_{1} \in\left\{0, \ldots, j 2^{m-k}-1\right\}$. \mathcal{A}_{k} contains exactly $j 2^{m-k}$ sets of this form.
Then every set $\left\{k: 1 \leq M_{1} \leq k \leq M_{2} \leq N\right\}$ can be written as a disjoint union of at most one element of \mathcal{A}_{m+1}, and at most two elements of each of the classes $\mathcal{A}_{k}, 0 \leq k \leq m$.

For any set A_{m+1} from \mathcal{A}_{m+1} we have by Hoeffdings inequality (Lemma 1)

$$
\mathbb{P}\left(\left|\sum_{n \in A_{m+1}} e_{n}\right|>t \sqrt{N}\right) \leq 2 e^{-t^{2} / 2}
$$

Now assume that $k \in\{0, \ldots, m\}$, and let A_{k} be any set from \mathcal{A}_{k}. By construction A_{k} contains $2^{k} \leq N 2^{k-m} / 2^{10}$ elements. By Hoeffding's inequality for any $t>0$

$$
\mathbb{P}\left(\left|\sum_{n \in A_{k}} e_{n}\right|>t \sqrt{2^{k}}\right) \leq 2 e^{-t^{2} / 2}
$$

which implies

$$
\mathbb{P}\left(\left|\sum_{n \in A_{k}} e_{n}\right|>t \sqrt{(m-k+1) 2^{k-m-10}} \sqrt{N}\right) \leq 2 e^{-(m-k+1) t^{2} / 2}
$$

If we assume $t>2$, then $e^{-t^{2} / 2} \leq 1 / 4$, and therefore

$$
\mathbb{P}\left(\left|\sum_{n \in A_{k}} e_{n}\right|>2^{-5} t \sqrt{(m-k+1) 2^{k-m}} \sqrt{N}\right) \leq 2 e^{-t^{2} / 2}\left(\frac{1}{4}\right)^{m-k}
$$

Now observe that

$$
\sum_{k=0}^{m} \sqrt{(m-k+1) 2^{k-m}} \leq \sum_{k=0}^{\infty} \sqrt{(k+1) 2^{-k}} \leq 6
$$

and

$$
\begin{equation*}
2^{-5} \sum_{k=0}^{m} \sqrt{(m-k+1) 2^{k-m}} \leq 0.19 \tag{6}
\end{equation*}
$$

Letting

$$
\begin{aligned}
A= & \left(\bigcup_{A_{m+1} \in \mathcal{A}_{m+1}}\left\{\left|\sum_{n \in A_{m+1}} e_{n}\right|>t \sqrt{N}\right\}\right) \cup \\
& \cup\left(\bigcup_{0 \leq k \leq m} \bigcup_{A_{k} \in \mathcal{A}_{k}}\left\{\left|\sum_{n \in A_{k}} e_{n}\right|>2^{-5} t \sqrt{(m-k+1) 2^{k-m}} \sqrt{N}\right\}\right)
\end{aligned}
$$

this implies

$$
\begin{equation*}
\mathbb{P}(A) \leq 2^{23} e^{-t^{2} / 2}+\sum_{k=0}^{m} j 2^{m-k} 2 e^{-t^{2} / 2}\left(\frac{1}{4}\right)^{m-k} \leq 2^{24} e^{-t^{2} / 2} \tag{7}
\end{equation*}
$$

As mentioned before, every set $\left\{k: 1 \leq M_{1} \leq k \leq M_{2} \leq N\right\}$ can be written as a disjoint union of one set from \mathcal{A}_{m+1} and at most two sets from each of the classes $\mathcal{A}_{k}, 0 \leq k \leq m$. By (6) we have on the complement of A

$$
\begin{aligned}
\max _{1 \leq M_{1} \leq M_{2} \leq N}\left|\sum_{k=M_{1}}^{M_{2}} e_{n}\right| & \leq\left(1+2\left(2^{-5} \sum_{k=0}^{m} \sqrt{(m-k+1) 2^{k-m}}\right)\right) \sqrt{N} \\
& \leq 1.38 \sqrt{N},
\end{aligned}
$$

and thus by (7) for every $t \geq 2$

$$
\mathbb{P}\left(\max _{1 \leq M_{1} \leq M_{2} \leq N}\left|\sum_{k=M_{1}}^{M_{2}} e_{n}\right|>1.38 t \sqrt{N}\right) \leq \mathbb{P}(A) \leq 2^{24} e^{-t^{2} / 2},
$$

which proves the lemma.
Proof of Lemma 4: Assume that N is not of the form described in Lemma 3. Write \hat{N} for the smallest integer which is of this form, and which satisfies $\hat{N} \geq N$. Then, if N is sufficiently large, $\hat{N} / N \leq 2^{10}+1 / 2^{10}$. Thus by Lemma 3 for $t>2$

$$
\begin{aligned}
& \mathbb{P}\left(\max _{1 \leq M_{1} \leq M_{2} \leq N}\left|\sum_{n=M_{1}}^{M_{2}} e_{n}\right|>1.39 t \sqrt{N}\right) \\
\leq & \mathbb{P}\left(\max _{1 \leq M_{1} \leq M_{2} \leq \hat{N}}\left|\sum_{n=M_{1}}^{M_{2}} e_{n}\right|>1.39 t \sqrt{N}\right) \\
\leq & \mathbb{P}\left(\max _{1 \leq M_{1} \leq M_{2} \leq \hat{N}}\left|\sum_{n=M_{1}}^{M_{2}} e_{n}\right|>1.38 t \sqrt{\hat{N}}\right) \\
\leq & 2^{24} e^{-t^{2} / 2 .}
\end{aligned}
$$

which proves Lemma 4.
Proof of Lemma 5: Let $\mathcal{P}=\{a+b, \ldots, a+M b\}$ be an arithmetic progression in $\{1, \ldots, N\}$. We say that \mathcal{P} is of maximal length if $a<0$ and $a+(M+1) b>N$. Denote the class of all arithmetic progressions, which are contained in the definition of $W^{(>B)}$ (that is, all arithmetic progressions in $\{1, \ldots, N\}$ with step size exceeding B) by $\hat{\mathcal{A}}$, and the class of all maximal arithmetic progressions among them by \mathcal{A}. Then for any $k \in\{B+1, \ldots, N\}$, the class \mathcal{A} contains at most k different arithmetic progressions with step size k, and each of them has at most $\lceil N / k\rceil$ elements.

Let $\mathcal{P}, \hat{\mathcal{P}}$ denote arithmetic progressions from $\hat{\mathcal{A}}$. We write $\hat{\mathcal{P}} \subset \mathcal{P}$, if $\hat{\mathcal{P}}=\mathcal{P}$ or if $\hat{\mathcal{P}}$ can be obtained by removing a section from the beginning and/or from the end of \mathcal{P}. Then for any $\hat{\mathcal{P}} \in \hat{\mathcal{A}}$ there exists a least one $\mathcal{P} \in \mathcal{A}$ for which $\hat{\mathcal{P}} \subset \mathcal{P}$. Thus

$$
W^{(>B)}\left(E_{N}\right)=\max _{\hat{\mathcal{P}} \in \mathcal{A}}\left\{\left|\sum_{n \in \hat{\mathcal{P}}} e_{n}\right|\right\}
$$

$$
\begin{aligned}
& =\max _{\mathcal{P} \in \mathcal{A}} \max _{\hat{\mathcal{P}} \subset \mathcal{P}}\left\{\left|\sum_{n \in \hat{\mathcal{P}}} e_{n}\right|\right\} \\
& =\max _{B<k \leq N} \max _{\substack{\mathcal{P} \in \mathcal{A}, \mathcal{P} \text { has step size } k}} \max _{\hat{\mathcal{P}} \subset \mathcal{P}}\left\{\left|\sum_{n \in \hat{\mathcal{P}}} e_{n}\right|\right\} .
\end{aligned}
$$

To prove (5) it is obviously sufficient to consider those arithmetic progressions which contain at least $1.4 \sqrt{N / B}$ elements. For these arithmetic progressions we can use Lemma 3 (provided N is sufficiently large), and obtain for any $t>2$ and any \mathcal{P} with step size k, using the estimate

$$
\lceil N / k\rceil \leq \frac{1.4}{1.39} \frac{N}{k}
$$

(which holds for sufficiently large N),

$$
\mathbb{P}\left(\max _{\hat{\mathcal{P}} \subset \mathcal{P}}\left\{\left|\sum_{n \in \hat{\mathcal{P}}} e_{n}\right|\right\}>1.39 t \sqrt{\lceil N / k\rceil}\right) \leq 2^{24} e^{-t^{2} / 2}
$$

and consequently

$$
\mathbb{P}\left(\max _{\hat{\mathcal{P}} \subset \mathcal{P}}\left\{\left|\sum_{n \in \hat{\mathcal{P}}} e_{n}\right|\right\}>1.4 t \sqrt{N /(B+1)}\right) \leq 2^{24} e^{-t^{2} k /(2(B+1))} .
$$

Thus, again for $t>2$ and sufficiently large N, we have

$$
\begin{aligned}
\mathbb{P}\left(W^{(>B)}\left(E_{N}\right)>1.4 t \sqrt{N /(B+1)}\right) & \leq \sum_{k=B+1}^{N} 2^{24} k e^{-t^{2} k /(2(B+1))} \\
& \leq 2^{24} \sum_{l=1}^{\infty} 4(B+1)^{2} l^{2} e^{-t^{2} / 2} 4^{-l+1} \\
& \leq 2^{28}(B+1)^{2} e^{-t^{2} / 2}
\end{aligned}
$$

which proves the lemma.
Proof of Lemma 6: Let $B \geq 1$ be given. Denote by Q the least common multiple of all the numbers $\{1, \ldots, B\}$. Set

$$
\mathcal{Q}_{k}=\{1 \leq n \leq N: n \equiv k \quad \bmod Q\}, \quad 1 \leq k \leq Q
$$

Write \mathcal{A} for the class of those maximal arithmetic progressions in $\{1, \ldots, Q\}$ which have a step size in $\{1, \ldots, B\}$. By Donsker's theorem (Lemma 2) each of the processes

$$
S_{k}(s)=\frac{\sqrt{Q}}{\sqrt{N}} \sum_{\substack{1 \leq n \leq s N, n \in \mathcal{Q}_{k}}} e_{n}, \quad 0 \leq s \leq 1, \quad 1 \leq k \leq Q
$$

converges weakly to a standard Wiener process $Z_{k}(s)$. Since the random variables $e_{n}, n \geq 1$ are independent, we can assume that the Wiener processes $Z_{k}(s)$ are also independent, for $1 \leq k \leq Q$. Observe that

$$
W^{(\leq B)}\left(E_{N}\right)=\frac{\sqrt{N}}{\sqrt{Q}} \sup _{0 \leq s_{1} \leq s_{2} \leq 1} \max _{A \in \mathcal{A}}\left|\sum_{k \in A} S_{k}\left(s_{2}\right)-S_{k}\left(s_{1}\right)\right| .
$$

Thus by $S_{k} \Rightarrow Z_{k}$ we have for $t \geq 0$

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \mathbb{P}\left(\frac{W^{(\leq B)}\left(E_{N}\right)}{\sqrt{N}} \leq t\right) \\
= & \mathbb{P}\left(\sup _{0 \leq s_{1} \leq s_{2} \leq 1} \max _{A \in \mathcal{A}}\left|\sum_{k \in A}\left(Z_{k}\left(s_{2}\right)-Z_{k}\left(s_{1}\right)\right)\right| \leq t \sqrt{Q}\right), \tag{8}
\end{align*}
$$

where Z_{1}, \ldots, Z_{Q} are independent Wiener processes. Thus a limit distribution $F_{W}^{(\leq B)}(t)$ of $W^{(\leq B)}\left(E_{N}\right) / \sqrt{N}$ exists, which proves the lemma.

3 Proof of Theorem 1

The proof of Theorem 1 is split into several parts. Lemma 7 shows that the limit distribution function of the normalized well-distribution measure for the arithmetic progressions with short step size $W^{(\leq B)}$ is Lipschitz-continuous. Together with the fact that the contribution of the arithmetic progressions with large step size is small (Lemma 6), this proves the existence of a limit distribution of the normalized well-distribution measure W_{N} (Lemma 8 and Corollary 2). Finally, in Lemmas 9 and 10 we prove the continuity of the limit distribution and the tail estimate (2) in Theorem 1.

Lemma 7. For every fixed $t_{0}>0$ there exists a constant $c=c\left(t_{0}\right)$ such that for any $B \geq 1$, $\delta>0$ and $t \geq t_{0}$

$$
F_{W}^{(\leq B)}(t+\delta)-F_{W}^{(\leq B)}(t) \leq c\left(t_{0}\right) \delta .
$$

Lemma 8. Let $\varepsilon>0$ be given. Then for every $t \in \mathbb{R}$ there exists an $N_{0}=N_{0}(\varepsilon)$ such that for $N_{1}, N_{2} \geq N_{0}$

$$
\left|\mathbb{P}\left(W\left(E_{N_{1}}\right) N_{1}^{-1 / 2} \leq t\right)-\mathbb{P}\left(W\left(E_{N_{2}}\right) N_{2}^{-1 / 2} \leq t\right)\right| \leq \varepsilon .
$$

Corollary 2. For every $t \in \mathbb{R}$ the limit

$$
F_{W}(t)=\lim _{N \rightarrow \infty} \mathbb{P}\left(W\left(E_{N}\right) N^{-1 / 2} \leq t\right)
$$

exists.
Lemma 9. The function $F_{W}(t)$ (which is defined in Corollary 2) is continuous in every point $t \in \mathbb{R}$.

Lemma 10.

$$
\lim _{t \rightarrow \infty} \frac{t\left(1-F_{W}(t)\right)}{e^{-t^{2} / 2}}=\frac{8}{\sqrt{2 \pi}}
$$

Proof of Lemma 7: Let $t_{0}>0$ be fixed. We use the notation from the previous proof, and formulas (4) and (8). For $\delta>0$ we want to estimate

$$
F_{W}^{(\leq B)}(t+\delta)-F_{W}^{(\leq B)}(t),
$$

which by (8) is bounded by

$$
\begin{equation*}
\sum_{A \in \mathcal{A}} \mathbb{P}\left(\sup _{0 \leq s_{1} \leq s_{2} \leq 1}\left|\sum_{k \in A}\left(Z_{k}\left(s_{2}\right)-Z_{k}\left(s_{1}\right)\right)\right| \in(t \sqrt{Q},(t+\delta) \sqrt{Q}]\right) . \tag{9}
\end{equation*}
$$

If Z_{1}, \ldots, Z_{K} are independent standard Wiener processes (for some $K \geq 1$), then ($Z_{1}+\cdots+$ $\left.Z_{K}\right) / \sqrt{K}$ is again a standard Wiener process. Thus the probabilities in (9) can be computed precisely: if A contains $|A|$ elements, then, writing $Z(t)$ for a standard Wiener process and $d(s)$ for the density function in (4), we have

$$
\begin{align*}
& \mathbb{P}\left(\sup _{0 \leq s_{1} \leq s_{2} \leq 1}\left|\sum_{k \in A}\left(Z_{k}\left(s_{2}\right)-Z_{k}\left(s_{1}\right)\right)\right| \in(t \sqrt{Q},(t+\delta) \sqrt{Q}]\right) \\
= & \mathbb{P}\left(\sup _{0 \leq s_{1} \leq s_{2} \leq 1}\left|Z\left(s_{2}\right)-Z\left(s_{1}\right)\right| \in\left(\frac{t \sqrt{Q}}{\sqrt{|A|}}, \frac{(t+\delta) \sqrt{Q}}{\sqrt{|A|}}\right]\right) \\
= & \int_{t \sqrt{Q} / \sqrt{|A|}}^{(t+\delta) \sqrt{Q} / \sqrt{|A|}} d(s) d s . \tag{10}
\end{align*}
$$

It is easily seen that for $k \geq 1$ and $s \geq 2$

$$
k^{2} e^{-k^{2} s^{2} / 2} \leq e^{-k s^{2} / 2}
$$

Thus for $s \geq 2$ we have

$$
\begin{equation*}
d(s) \leq \frac{8}{\sqrt{2 \pi}} \sum_{k=1}^{\infty} k^{2} e^{-k^{2} s^{2} / 2} \leq 4 \sum_{k=1}^{\infty} e^{-k s^{2} / 2} \leq 5 e^{-s^{2} / 2} . \tag{11}
\end{equation*}
$$

Clearly for every $k \in\{1, \ldots, B\}$ the class \mathcal{A} contains exactly k arithmetic progressions with step size k, and each of them contains Q / k elements. Thus, by (9), (10) and (11), we have for every $t \geq t_{0}$

$$
\begin{aligned}
& F_{W}^{(\leq B)}(t+\delta)-F_{W}^{(\leq B)}(t) \\
\leq & \sum_{k=1}^{B} k \int_{t \sqrt{k}}^{(t+\delta) \sqrt{k}} d(s) d s \\
\leq & c\left(t_{0}\right) \delta,
\end{aligned}
$$

where the constant c depends on t_{0}, but not on B.
Proof of Lemma 8: Let $\varepsilon>0$ be given. Choose $B=B(\varepsilon)$ "large". We have

$$
\mathbb{P}\left(W\left(E_{N_{1}}\right) N_{1}^{-1 / 2} \leq t\right) \leq \mathbb{P}\left(W^{(\leq B)}\left(E_{N_{1}}\right) N_{1}^{-1 / 2} \leq t\right),
$$

and

$$
\begin{aligned}
& \mathbb{P}\left(W\left(E_{N_{2}}\right) N_{2}^{-1 / 2} \leq t\right) \\
\geq & \mathbb{P}\left(W^{(\leq B)}\left(E_{N_{2}}\right) N_{2}^{-1 / 2} \leq t\right)-\mathbb{P}\left(W^{(>B)}\left(E_{N_{2}}\right) N_{2}^{-1 / 2}>t\right) .
\end{aligned}
$$

By Lemma 6 the sequence

$$
\mathbb{P}\left(W^{(\leq B)}\left(E_{N}\right) N^{-1 / 2} \leq t\right)
$$

converges as $N \rightarrow \infty$, and thus

$$
\mathbb{P}\left(W^{(\leq B)}\left(E_{N_{1}}\right) N_{1}^{-1 / 2} \leq t\right)-\mathbb{P}\left(W^{(\leq B)}\left(E_{N_{2}}\right) N_{2}^{-1 / 2} \leq t\right) \leq \varepsilon / 2
$$

for sufficiently large N_{1}, N_{2}. By Lemma 5 for sufficiently large B and $N_{2}=N_{2}(B)$

$$
\mathbb{P}\left(W^{(>B)}\left(E_{N_{2}}\right) N_{2}^{-1 / 2}>t\right) \leq \underbrace{2^{28}(B+1)^{2} e^{-t^{2} B / 8}}_{\leq \varepsilon / 2 \text { for sufficiently large } B}
$$

Thus

$$
\mathbb{P}\left(W\left(E_{N_{1}}\right) N_{1}^{-1 / 2} \leq t\right)-\mathbb{P}\left(W\left(E_{N_{2}}\right) N_{2}^{-1 / 2} \leq t\right) \leq \varepsilon
$$

for sufficiently large B, N_{1}, N_{2}, which proves Lemma 8 .
Proof of Lemma 9: Obviously $F_{W}(t)=0$ for $t<0$. The continuity of $F_{W}(t)$ at $t=0$ follows from Theorem A of Alon et.al., see (3). Now assume that $t>0$ is fixed. Let $\delta>0$ and $B \geq 1$, and assume that δ is "small" and B is "large". We have

$$
\begin{aligned}
& F_{W}(t+\delta)-F_{W}(t) \\
= & \lim _{N \rightarrow \infty} \mathbb{P}\left(W\left(E_{N}\right) N^{-1 / 2} \leq t+\delta\right)-\lim _{N \rightarrow \infty} \mathbb{P}\left(W\left(E_{N}\right) N^{-1 / 2} \leq t\right) \\
\leq & \lim _{N \rightarrow \infty} \mathbb{P}\left(W^{(\leq B)}\left(E_{N}\right) N^{-1 / 2} \leq t+\delta\right) \\
& \quad-\lim _{N \rightarrow \infty} \mathbb{P}\left(W^{(\leq B)}\left(E_{N}\right) N^{-1 / 2} \leq t\right) \\
& +\limsup _{N \rightarrow \infty} \mathbb{P}\left(W^{(>B)}\left(E_{N}\right) N^{-1 / 2}>t\right) \\
= & \lim _{N \rightarrow \infty} \mathbb{P}\left(W^{(\leq B)}\left(E_{N}\right) N^{-1 / 2} \in(t, t+\delta]\right) \\
& +\limsup _{N \rightarrow \infty} \mathbb{P}\left(W^{(>B)}\left(E_{N}\right) N^{-1 / 2}>t\right) .
\end{aligned}
$$

By Lemma 7

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(W^{(\leq B)}\left(E_{N}\right) N^{-1 / 2} \in(t, t+\delta]\right) \leq \underbrace{c(t) \delta,}_{\leq \varepsilon / 2 \text { for sufficiently small } \delta}
$$

and by Lemma 5 for sufficiently large B and N

$$
\limsup _{N \rightarrow \infty} \mathbb{P}\left(W^{(>B)}\left(E_{N}\right) N^{-1 / 2}>t\right) \leq \underbrace{2^{28}(B+1)^{2} e^{-t^{2} B / 8}}_{\leq \varepsilon / 2 \text { for sufficiently large } B}
$$

This proves

$$
F_{W}(t+\delta)-F_{W}(t) \leq \varepsilon
$$

for sufficiently small δ. In the same way we can show a similar bound for $F_{W}(t)-F_{W}(t-\delta)$. This proves the lemma.

Proof of Lemma 10: For any $t \in \mathbb{R}$

$$
1-F_{W}(t) \geq 1-F_{W}^{(\leq 1)}(t)=\int_{t}^{\infty} d(s) d s
$$

Using the standard estimate

$$
\frac{t}{1+t^{2}} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}<1-\Phi(t)<\frac{1}{t} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}, \quad t>0
$$

where $\Phi(t)=(2 \pi)^{-1 / 2} \int_{-\infty}^{t} \phi(s) d s$ is the standard normal distribution function, we can easily show

$$
\lim _{t \rightarrow \infty} \frac{t\left(1-F_{W}^{(\leq 1)}(t)\right)}{e^{-t^{2} / 2}}=\lim _{t \rightarrow \infty} \frac{t \int_{t}^{\infty} d(s) d s}{e^{-t^{2} / 2}}=\frac{8}{\sqrt{2 \pi}}
$$

which implies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{t\left(1-F_{W}(t)\right)}{e^{-t^{2} / 2}} \geq \frac{8}{\sqrt{2 \pi}} \tag{12}
\end{equation*}
$$

On the other hand it is clear that

$$
1-F_{W}(t) \leq 1-F_{W}^{(\leq 1)}(t)+\limsup _{N \rightarrow \infty} \mathbb{P}\left(W^{(>1)}\left(E_{N}\right) N^{-1 / 2}>t\right)
$$

By Lemma 5, for sufficiently large t,

$$
\limsup _{N \rightarrow \infty} \mathbb{P}\left(W^{(>1)}\left(E_{N}\right) N^{-1 / 2}>t\right) \leq 2^{30} e^{-t^{2} /(1.4)^{2}}
$$

and in particular

$$
\lim _{t \rightarrow \infty} \frac{t\left(\lim \sup _{N \rightarrow \infty} \mathbb{P}\left(W^{(>1)}\left(E_{N}\right) N^{-1 / 2} \leq t\right)\right)}{e^{-t^{2} / 2}} \leq 2^{30} \lim _{t \rightarrow \infty} \frac{t e^{-t^{2} /(1.4)^{2}}}{e^{-t^{2} / 2}}=0
$$

Thus

$$
\lim _{t \rightarrow \infty} \frac{t\left(1-F_{W}(t)\right)}{e^{-t^{2} / 2}} \leq \frac{8}{\sqrt{2 \pi}}
$$

which together with (12) proves the lemma.

References

[1] N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl. Measures of pseudorandomness for finite sequences: minimal values. Combin. Probab. Comput., 15(1-2):129, 2006.
[2] N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl. Measures of pseudorandomness for finite sequences: typical values. Proc. Lond. Math. Soc. (3), 95(3):778812, 2007.
[3] N. Alon, S. Litsyn, and A. Shpunt. Typical peak sidelobe level of binary sequences. IEEE Trans. Inform. Theory, 56(1):545-554, 2010.
[4] I. Berkes, W. Philipp, and R. F. Tichy. Empirical processes in probabilistic number theory: the LIL for the discrepancy of $\left(n_{k} \omega\right) \bmod$ 1. Illinois J. Math., 50(1-4):107-145, 2006.
[5] I. Berkes, W. Philipp, and R. F. Tichy. Pseudorandom numbers and entropy conditions. J. Complexity, 23(4-6):516-527, 2007.
[6] P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley \& Sons Inc., New York, second edition, 1999.
[7] J. Cassaigne, C. Mauduit, and A. Sárközy. On finite pseudorandom binary sequences. VII. The measures of pseudorandomness. Acta Arith., 103(2):97-118, 2002.
[8] W. Feller. The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statistics, 22:427-432, 1951.
[9] P. Hubert, C. Mauduit, and A. Sárközy. On pseudorandom binary lattices. Acta Arith., 125(1):51-62, 2006.
[10] Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl. Measures of pseudorandomness for finite sequences: minimum and typical values. In Proceedings of WORDS'03, volume 27 of TUCS Gen. Publ., pages 159-169. Turku Cent. Comput. Sci., Turku, 2003.
[11] C. Mauduit and A. Sárközy. On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith., 82(4):365-377, 1997.
[12] A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, 1996.

[^0]: *Graz University of Technology, Institute of Mathematics A, Steyrergasse 30, 8010 Graz, Austria. e-mail: aistleitner@math.tugraz.at. Research supported by the Austrian Research Foundation (FWF), Project S9603-N23.

 MSC 2010: Primary Classification: 68R15, Secondary Classification: 11K45, 60C05, 60F05
 keywords: random sequence, pseudorandom sequence, well-distribution measure, normality measure, discrepancy, limit distribution

