On the limit distribution of the well-distribution
measure of random binary sequences
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Abstract

We prove the existence of a limit distribution of the normalized well-distribution mea-
sure W(Ex)/VN (as N — 00) for random binary sequences Ey, by this means solving a
problem posed by Alon, Kohayakawa, Mauduit, Moreira and Rodl.

1 Introduction and statement of results

Let En = (en)1<n<n € {—1, 1}V be a finite binary sequence. For M € N, a € Z and b € N
set
U(En,M,a,b) :Z{€a+jbi 1<ji<M,1<a+jb<N for allj}.

In other words, U(EyN, M, a,b) is the discrepancy of Ey along an arithmetic progression in
{1,..., N}. The well-distribution measure W (Ey) is then defined as

W(EN) := max {|U(En, M,a,b)|, where 1 <a+band a+ Mb< N}.

The main result of the present paper is the following Theorem 1, which solves a problem
posed by Alon, Kohayakawa, Mauduit, Moreira, and Rodl [2].

Theorem 1. Let Ey denote random elements from {—1,1}Y, equipped with the uniform
probability measure. There exists a limit distribution Fyy (t) of

SN ®

The function Fyy (t) is continuous and satisfies

. t(1 = Fw (1)) 8
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It should be emphasized that the limit distribution of (1) is not the normal distribution. How-
ever, as a consequence of Theorem 1 and the Radon-Nikodym theorem, the limit distribution
Fyy (t) has a density with respect to the Lebesgue measure. The tail estimate (2) in Theorem
1 should be compared to the corresponding asymptotic result for the tail probabilities 1 —®(¢)
of a standard normal random variable, for which

t(1— ®(t)) 1

lim =

t—o0 e*t2/2 \/27-(-'
The measure Wy was introduced by Mauduit and Sarkézy [11], together with two other
measures of pseudorandomness. Again, let Ex = (en)1<n<n € {—1,1}" be a finite binary

sequence. For k € N, M €N, X € {-1,1}* and D = (dy,...,d) e NF with 0 < dy < --- <
dr, < N, we define

T(En,M,X) = #{n: n<M, n+k<N, (ent1,---,€n+k) = X},
V(En,M,D) = > {entdq,---€nta,: 1<n< M, ntd, <N}

This means that T'(Ey, M, X) counts the number of occurrences of the pattern X in a certain
part of En, and V(Ex, M, D) quantifies the correlation among k segments of Ey, which are
relatively positioned according to D.

The normality measure N'(Ey) is defined as

M
N(En) = maxmaxmax |T(En, M, X) — —/,
kX M 2%

where the maxima are taken over all k <logy N, X € {~1,1}*, 0< M < N +1— k.
The correlation measure of order k, which is denoted by Cy(En), is defined as

Cr(En) = max {|V(EnN,M,D)|: M,D satisty M +di, < N}.

In [7] Cassaigne, Mauduit and Sarkozy studied the “typical” values of W(Ey) and Cy(En)
for random binary sequences Ey, and the minimal possible values of W (Ey) and Cy(Ey) for
special sequences FEn. These investigations were extended by Alon, Kohayakawa, Mauduit,
Moreira, and Rddl, who in [1] studied in detail the possible minimal and in [2] the “typical”
values of W(Ey), N(En) and Cx(EN) (see also [10] for an earlier survey paper). Among the
results in [2] are the following two theorems. Here and throughout the rest of the present
paper, Exn denotes random elements of {—1, 1}N , equipped with the uniform probability
measure.

Theorem A. For any given € > 0, there exist numbers Ny = Ny(e) and § = 6(g) > 0 such
that for N > Ny
VN < W(Ey) < (3)

and

VN < N(Ex) <

yERRE

with probability at least 1 — €.



Theorem B. For any § > 0, there exist numbers c(§) > 0 and Ny = No(6) such that for any
N > Ny
P (W(Ey) < wﬁ) > ¢(6)

and

P (N (Ey) < VN) > c(d).

In other words, Theorem A means that the pseudorandomness measures W (Ey) and N (Ey)
are of typical asymptotic order v/N, while Theorem B means that the lower bounds in The-
orem A are optimal. In [2] there are also theorems describing the typical asymptotic order
of Cx(EN), which prove the existence of a limit distribution of Cy(ExN)/E (Cx(EyN)) in the
case when k = k(N) grows slowly in comparison with N (in this case the limit distribution is
concentrated at a point). At the end of 2], Alon et.al. formulated the following open problem:

(Problem 33) Investigate the existence of the limiting distribution of

(WENVE), . (NEOVE), a2

e ! Nlog (§)

Investigate these distributions.

Subsequently they write: “It is most likely that all three sequences in Problem 33 have limiting
distributions”.

Theorem 1 proves the existence of a limit distribution of the normalized well-distribution mea-
sure of random binary sequences, by this means solving the first instance of Problem 33 above.
The case of the normality measure N (E}) seems to be much more difficult, and I could not
obtain any satisfactory results. The case of the correlation measure Cy(FEy) is considerably
different from the cases of the well-distribution measure W (Ey) and the normality measure
N (EN), since Ci(EnN) depends on two parameters. It is reasonable to assume that the limit-
ing distribution (provided that it exists) will depend on the choice of k = k(). As mentioned
before, there already exist several results on the typical asymptotic order of Cy(En), see [2, 3].

There exist several generalizations of the aforementioned pseudorandomness measures, for
example to higher dimensions and to a continuous setting (see for example [4, 5, 9]); the
problem concerning the typical asymptotic order and the existence of limit distributions is
unsolved in many cases.

2 Auxiliary results

Lemma 1 (Hoeffding’s inequality; see e.g. [12, Lemma 2.2.7]). Let (en)1<n<n be independent
random variables such that e, = 1 and e, = —1 with probability 1/2 each, for n > 1. Then

N
P < Zen
n=1

> tx/ﬁ) < 267{/2/2.



Lemma 2 (Donsker’s theorem; see e.g. [6, Theorem 14.1]). Let (&,)n>1 be a sequence of

independent and identically distributed random variables with mean zero and variance o?.

Define
[Ns]

&  0<s<L

n=1

1

YN(S) = O-\/N

Then
YN = Z,

where Z is the (standard) Wiener process and = denotes weak convergence in the Skorokhod
space D([0,1]).

A direct consequence of Donsker’s theorem is the following Corollary 1:

Corollary 1. Let (e,)n>1 be a sequence of independent random variables such that e, = 1
and e, = —1 with probability 1/2 each, for n > 1. Then for any t € R

Mo
P <tVN| =P Z(s9) — Z(s1)| < t
x| 2 1| < (e, 17600 - 2601 <)
n=Imii

as N — oo.

The quantity maxo<s,<s,<1|Z(s2) — Z(s1)| in Corollary 1 is called the range of the Wiener
process. Its density d(s) has been calculated by Feller [8] and is given by

d(s) = 8§:(—1)k*1k2¢(k3), 5> 0, (4)
k=1

where ¢ denotes the (standard) normal density function.
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Figure 1: The density function d(s) of the range of a standard Wiener process.

Lemma 3. Let (ey)1<n<n be independent random variables such that e, =1 and e, = —1
with probability 1/2 each, for n > 1. Assume that N is of the form

N=32"  forjmeZ, 2'9 <j <2 and m>1.
Then, if N is sufficiently large, for any t > 2
Mo

P max 3 en| > 138tVN | <22/

1<Mi<M2<N
n=M;



Lemma 4. Let (ey)1<n<n be independent random variables such that e, =1 and e, = —1
with probability 1/2 each, for n > 1. Then, if N is sufficiently large, for any t > 2

Mo

P max > en| > L39tVN < 9%e—1/2,

1<SMi<M2<N
n=M;

For an integer B > 1 we define modified well-distribution measures W (=B and W>5) by
setting

WEB)(Ey)
= max{|U(En,M,a,b)|: b<Band1<a-+b, a+ Mb< N}

and

W(>B)(EN)
= max{|U(Eny,M,a,b)|: b>Band1<a+b, a+Mb<N}.

This means that for W(=B) we only consider arithmetic progressions having step size at
most B, while for W(>5) we only consider arithmetic progressions of step size larger than
B. Trivially an arithmetic progression with step size larger than B, which is contained in
{1,..., N}, cannot contain more than [N/(B + 1)| elements. The idea is that the limit
distribution of W is almost the same as the limit distribution of W(=B) for large B, while the
contribution of W(>5) is almost negligible if B is large.

Lemma 5. For any positive integer B there exists Ng = No(B) such that for all N > Ny for
anyt € Rt > 2,

P (W<>B>(EN) > 1.4¢\/N/(B + 1)) < 2%(B +1)% /2. (5)

Lemma 6. For any integer B > 1 and any t € R the limit
FEP @) = lim P (W<SB) (Exy)N"V2 < t)
N—oo

exists.

We have to prove Lemmas 3, 4, 5 and 6. The proofs will be given in this order below. Lemmas
3 and 4 are a maximal form of Hoeffdings large deviations inequality (Lemma 1), and will be
proved by using a classical dyadic decomposition method which is commonly used in proba-
blity theory and probabilistic number theory. Using Lemma 4 we will prove Lemma 5, which
essentially says that the probability that the discrepancy along any arithmetic progression
with “large” step size B is of order v/N is very small. Finally using Donsker’s invariance
principle (Corollary 1) we will prove Lemma 6, which is the main ingredient in the proof of
Theorem 1 in the next section.

Proof of Lemma 3: We use a modified version of a classical dyadic decomposition technique.
By assumption N is of the form j2™ for j,m € Z,2'% < j <2 and m > 1. We write Ay, 1
for the class of all sets of the form

{j12m +1,... ,j22m}, where 71,72 € {0, R ,j}, 71 < Ja.



Trivially, there exist at most 222 sets of this form.

Furthermore, for every k, 0 < k < m we write Ay, for the class of all sets of 2¥ consecutive
integers which start at position j;2% for some j; € {0,...,j2" % —1}. A} contains exactly
§2™F sets of this form.

Then every set {k: 1 < M; <k < My < N} can be written as a disjoint union of at most

one element of A,,.1, and at most two elements of each of the classes Ay, 0 < k < m.

For any set A,,+1 from A,,;1 we have by Hoeffdings inequality (Lemma 1)

P Z en| >tV N §2e_t2/2.

n€Ami11

Now assume that k& € {0,...,m}, and let Ay be any set from Ag. By construction Ay contains
2k < N2k=m /210 clements. By Hoeffding’s inequality for any ¢ > 0

Pl en| >tV2k < 2e /2

neAyg

which implies

P Z en| > t\/(m —k+ 1)2k7m710\/ﬁ < 267(m7k+1)t2/2.

If we assume ¢ > 2, then e /2 < 1/4, and therefore

1 m—k
Pl) en|> 2_5t\/(m — k+1)2k-myN | <278/ (Z) :

neAy

Now observe that

i\/(m—kﬂ)?’“*m < i\/(k+1)2*’f < 6,
k=0

k=0
and

270 Zm: \/(m — k4 1)2k=m < 0.19. (6)
k=0

Letting

A = U Zen>t\/ﬁ U

Am+1 EAnL+1 nEAm+1

ul U U > en| > 2*5t\/(m—k+1)2k*m\/ﬁ :

0<k<m ApeA neAy

this implies

m 1 m—k
P(A4) < 923,—12/2 | Zj2mfk267t2/2 (Z) < 924 ,—1%/2 (7)
k=0



As mentioned before, every set {k : 1 < M; < k < My < N} can be written as a disjoint
union of one set from A,,+1 and at most two sets from each of the classes Ag, 0 < k < m.
By (6) we have on the complement of A

Mo m
< =5 \/ _ k—m
. Z en| < <1+2<2 Z (m—k+1)2 >>\/N
k=M k=0
< 1.38VN,
and thus by (7) for every ¢ > 2
Mo
2
P max > en| > 138tVN | <P(A) <2/
1<Mi<Mz<N
k=M
which proves the lemma. O

Proof of Lemma 4: Assume that N is not of the form described in Lemma 3. Write N for the
smallest integer which is of this form, and which satisfies N > N. Then, if N is sufficiently
large, N/N < 20 4+ 1/2'0 Thus by Lemma 3 for ¢ > 2

Mo

P max E en| > 1.39tV N
1<Mi1<M3<N By’
Vi1

IN
|

Mo
max Z en| > 1.39tV N

ISMi<Ma<N | “hr,

Mo
< P max | Y en| > 138V N
1<M;<M3<N n=DM

< QMet/2)
which proves Lemma 4. O

Proof of Lemma 5: Let P ={a+0b,...,a+ Mb} be an arithmetic progression in {1,...,N}.
We say that P is of maximal length if a < 0 and a + (M + 1)b > N. Denote the class
of all arithmetic progressions, which are contained in the definition of W(>5) (that is, all
arithmetic progressions in {1,..., N} with step size exceeding B) by A, and the class of all
mazximal arithmetic progressions among them by A. Then for any k € {B + 1,..., N}, the
class A contains at most k different arithmetic progressions with step size k, and each of them
has at most [N/k| elements.

Let P,P denote arithmetic progressions from A. We write P C P, if P = P or if P can be

obtained by removing a section from the beginning and/or from the end of P. Then for any
P € A there exists a least one P € A for which P C P. Thus

WCEB(EN) = max en
(Ex) PcA %

7



PeA pcp !
P
= max max max Z €En
B<k<N PeA, Pcp "
P has step size k nePpP

To prove (5) it is obviously sufficient to consider those arithmetic progressions which contain
at least 1.4,/ N/B elements. For these arithmetic progressions we can use Lemma 3 (provided
N is sufficiently large), and obtain for any ¢ > 2 and any P with step size k, using the estimate

14 N
Nkl < —— 2%
IN/EL < 1357

(which holds for sufficiently large N),

PcP

P | max Z en| ¢ > 139/ [N/k] | < 924~ 1°/2
nep

and consequently

PCP

P | maxq |Y en| p > 14t/ N/(B+1) | < 22 CR/ B+,
nep

Thus, again for ¢ > 2 and sufficiently large N, we have

N
P (W(>B)(EN) > 1.4t /N/(B i 1)) < Z 224ke_t2k/(2(3+1))
k=B+1
< 2N 4B+ 1) 2
=1
< 228(B+1)267t2/2’

which proves the lemma. O

Proof of Lemma 6: Let B > 1 be given. Denote by @ the least common multiple of all the
numbers {1,...,B}. Set

Qr={1<n<N:n=k modQ}, 1<k<Q.

Write A for the class of those mazimal arithmetic progressions in {1,...,Q} which have a
step size in {1,..., B}. By Donsker’s theorem (Lemma 2) each of the processes
Si(s) Ve Y oen, 0<s<1,  1<k<Q,
\/N 1<n<sN,
neQy



converges weakly to a standard Wiener process Zi(s). Since the random variables e, n > 1
are independent, we can assume that the Wiener processes Zi(s) are also independent, for
1 <k < Q. Observe that

vN
WEB)(Ey) = max
\/ O<sl<32<1 AEA

> Sk(s2) = Sk(s1)| -

keA

Thus by S; = Zj we have for ¢t > 0

WED (Ey)
i - V<
v < N

= ]P’( sup  max Z(Zk(sg) Z(s1))

O<sl <82<1 AG'A

<M) ®)

keA
where Z1,...,Zg are independent Wiener processes. Thus a limit distribution F‘EVSB) (t) of
W(EB)(En)/V/N exists, which proves the lemma. O

3 Proof of Theorem 1

The proof of Theorem 1 is split into several parts. Lemma 7 shows that the limit distribution
function of the normalized well-distribution measure for the arithmetic progressions with short
step size W(B) is Lipschitz-continuous. Together with the fact that the contribution of the
arithmetic progressions with large step size is small (Lemma 6), this proves the existence of a
limit distribution of the normalized well-distribution measure Wy (Lemma 8 and Corollary
2). Finally, in Lemmas 9 and 10 we prove the continuity of the limit distribution and the tail
estimate (2) in Theorem 1.

Lemma 7. For every fized ty > 0 there exists a constant ¢ = ¢(ty) such that for any B > 1,
1) >0 and t 2 to

<B <B

FEP(t +6) - FEP (1) < c(to)s.

Lemma 8. Let ¢ > 0 be given. Then for every t € R there exists an Ng = Ny(e) such that
Jor N1, N3 > Ny

(P (WENINT Y2 <t) =P (W(BN)N; ' < t)(
Corollary 2. For every t € R the limit

Fy(t) = lim P (W(EN)N*1/2 < t)

N—oo

exists.

Lemma 9. The function Fy (t) (which is defined in Corollary 2) is continuous in every point
teR.

Lemma 10.
t(1— Fw(t)) 8

lim =

t—o00 e_t2/2 o \/27'('.




Proof of Lemma 7: Let ty > 0 be fixed. We use the notation from the previous proof, and
formulas (4) and (8). For 6 > 0 we want to estimate

FP(t+06) - FSP @),
which by (8) is bounded by

ZIP’( sup

AcA 0<s1<s2<1

Z (Zy(s2) — Zk(s1))

keA

e (tVa.(t+9) f]) 9)

If Zi,..., Zk are independent standard Wiener processes (for some K > 1), then (Z; +---+
Zx)/VK is again a standard Wiener process. Thus the probabilities in (9) can be computed
precisely: if A contains |A| elements, then, writing Z(¢) for a standard Wiener process and
d(s) for the density function in (4), we have

> (Zi(s2) = Zr(s1))

IP’( sup (t\/_ t+5\/_}>

0<s1<s52<1 kEA

ol e g Wa (t+5VT

B P(OSslsrs)Qg’Z( ) = Zlel] € <\/|A V4] >
(t+)VQ/\/IA]

= / d(s) ds. (10)
tvQ/\/1Al

It is easily seen that for kK > 1 and s > 2

er—k252/2 < e—ks2/2

Thus for s > 2 we have

d( ) \/—ZkQ — k252 /2 < 42 —ks? /2 < Fe~$ /2 (11)
k=1

Clearly for every k € {1,..., B} the class A contains exactly k arithmetic progressions with
step size k, and each of them contains Q/k elements. Thus, by (9), (10) and (11), we have
for every t > tg

FsP it +6) - FiP )

B (t+6)Vk
< Sk /t d(s)ds

=1 JtVE
< c(to)d,
where the constant ¢ depends on ty, but not on B. ]

Proof of Lemma 8: Let € > 0 be given. Choose B = B(e) “large”. We have

P (W(ENI)N 12 < ) <P (W<SB>(EN1)N;1/2 < t) ,

10



and
P (W(ENQ)N;Uz < t)
> P (W(SB> (En,)Ny Y2 < t) _p (W(>B> (En,)N; Y% > t) .

By Lemma 6 the sequence
P (W(SB>(EN)N—1/2 < t)

converges as N — oo, and thus
P (W<SB>(EN1)N;1/2 < t) P (W<SB>(EN2)N;1/2 < t) <e/2
for sufficiently large N7, No. By Lemma 5 for sufficiently large B and Ny = Na(B)

P (W(>B)(EN2)N;1/2 > t) < 228(B + 1)2€—t23/8.

<e/2 for sufficiently large B

Thus
P (W(EM)N;W < t) _p (W(EN2)N;1/2 < t) <e

for sufficiently large B, N1, No, which proves Lemma 8. U

Proof of Lemma 9: Obviously Fyy(t) = 0 for ¢ < 0. The continuity of Fyy(t) at ¢ = 0 follows
from Theorem A of Alon et.al., see (3). Now assume that ¢ > 0 is fixed. Let 6 > 0 and B > 1,
and assume that ¢ is “small” and B is “large”. We have

Fyw(t+0) — Fw(t)
= lim P (W(EN)J\FU2 <t 5) — lim P (W(EN)J\FU2 < t>
N—oo

N—oo

< lim P (VV(SB>(EN)N—1/2 <t+ 5)

- N—-oo

— lim P (W(SB> (Ex)N~/2 < t)

N—oo

+limsup P (W(>B)(EN)N71/2 > t)

N—oo

— lim P (VV(SB>(EN)N—1/2 € (tt+ 5])

N—oo

+limsup P (W(>B)(EN)N71/2 > t) .

N—oo

By Lemma 7

lim P (W<SB> (EN)N~Y2 € (t,t + 5]) < c(t)s,
N—o00 ——
<e/2 for sufficiently small §

and by Lemma 5 for sufficiently large B and N

timsupP (WP (B )N > 1) < 25(B 4+ 1% PP,

N—oo

<e/2 for sufficiently large B

11



This proves
Fy(t+90)— Fw(t)<e

for sufficiently small §. In the same way we can show a similar bound for Fyy (t) — Fyy (t — 6).
This proves the lemma. U

Proof of Lemma 10: For any t € R

1—Fw(t)>1-FSV () = /oo d(s) ds.

Using the standard estimate

t L g L1
— ¢ <1-0(t) < -—e /2 t>0,
1+t22r Q t /21

where ®(t) = (2r)~ /2 ffoo ¢(s) ds is the standard normal distribution function, we can easily
show

<1
y t(l—Fv(v‘ )(t)) o L) ds 8
ti{& e*t2/2 - ti{& e*t2/2 - \/271-’

which implies
t(1 — Fw(t 8
i 1= F(0) 8
t—00 et /2 \ 21
On the other hand it is clear that

1— Fy(t) <1- F$Y(t) + limsup P (W(>1>(EN)J\7—1/2 > t) .

N—oo

By Lemma 5, for sufficiently large t,

timsup P (WD (Bx)NT2 > 1) < 29012/,

N—oo

and in particular

t (i P(WCW(ENN"Y2 <y te—t2/(1.4)
lim ( M SUP N 00 ( . ( N) — )) S 230 lim 672 =0.
t—o0 e_t /2 t—o0 g_t /2
Thus L F g
t(1l — t
o (L= Frlt) _ 8
t—o0 et /2 \ 271
which together with (12) proves the lemma. O
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