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Abstract

We prove the existence of a limit distribution of the normalized well-distribution mea-
sure W (EN )/

√
N (as N → ∞) for random binary sequences EN , by this means solving a

problem posed by Alon, Kohayakawa, Mauduit, Moreira and Rödl.

1 Introduction and statement of results

Let EN = (en)1≤n≤N ∈ {−1, 1}N be a finite binary sequence. For M ∈ N, a ∈ Z and b ∈ N

set
U(EN ,M, a, b) =

∑{
ea+jb : 1 ≤ j ≤ M, 1 ≤ a+ jb ≤ N for all j

}
.

In other words, U(EN ,M, a, b) is the discrepancy of EN along an arithmetic progression in
{1, . . . , N}. The well-distribution measure W (EN ) is then defined as

W (EN ) := max {|U(EN ,M, a, b)| , where 1 ≤ a+ b and a+Mb ≤ N} .

The main result of the present paper is the following Theorem 1, which solves a problem
posed by Alon, Kohayakawa, Mauduit, Moreira, and Rödl [2].

Theorem 1. Let EN denote random elements from {−1, 1}N , equipped with the uniform
probability measure. There exists a limit distribution FW (t) of

(
W (EN )√

N

)

N≥1

. (1)

The function FW (t) is continuous and satisfies

lim
t→∞

t(1− FW (t))

e−t2/2
=

8√
2π

. (2)
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It should be emphasized that the limit distribution of (1) is not the normal distribution. How-
ever, as a consequence of Theorem 1 and the Radon-Nikodỳm theorem, the limit distribution
FW (t) has a density with respect to the Lebesgue measure. The tail estimate (2) in Theorem
1 should be compared to the corresponding asymptotic result for the tail probabilities 1−Φ(t)
of a standard normal random variable, for which

lim
t→∞

t(1− Φ(t))

e−t2/2
=

1√
2π

.

The measure WN was introduced by Mauduit and Sárközy [11], together with two other
measures of pseudorandomness. Again, let EN = (en)1≤n≤N ∈ {−1, 1}N be a finite binary
sequence. For k ∈ N, M ∈ N, X ∈ {−1, 1}k and D = (d1, . . . , dk) ∈ N

k with 0 ≤ d1 < · · · <
dk < N , we define

T (EN ,M,X) = # {n : n ≤ M, n+ k ≤ N, (en+1, . . . , en+k) = X} ,
V (EN ,M,D) =

∑

{en+d1 . . . en+dk : 1 ≤ n ≤ M, n+ dk ≤ N} .

This means that T (EN ,M,X) counts the number of occurrences of the pattern X in a certain
part of EN , and V (EN ,M,D) quantifies the correlation among k segments of EN , which are
relatively positioned according to D.

The normality measure N (EN ) is defined as

N (EN ) = max
k

max
X

max
M

∣
∣
∣
∣
T (EN ,M,X) − M

2k

∣
∣
∣
∣
,

where the maxima are taken over all k ≤ log2 N, X ∈ {−1, 1}k , 0 < M ≤ N + 1− k.
The correlation measure of order k, which is denoted by Ck(EN ), is defined as

Ck(EN ) = max {|V (EN ,M,D)| : M,D satisfy M + dk ≤ N} .

In [7] Cassaigne, Mauduit and Sárközy studied the “typical” values of W (EN ) and Ck(EN )
for random binary sequences EN , and the minimal possible values of W (EN ) and Ck(EN ) for
special sequences EN . These investigations were extended by Alon, Kohayakawa, Mauduit,
Moreira, and Rödl, who in [1] studied in detail the possible minimal and in [2] the “typical”
values of W (EN ), N (EN ) and Ck(EN ) (see also [10] for an earlier survey paper). Among the
results in [2] are the following two theorems. Here and throughout the rest of the present
paper, EN denotes random elements of {−1, 1}N , equipped with the uniform probability
measure.

Theorem A. For any given ε > 0, there exist numbers N0 = N0(ε) and δ = δ(ε) > 0 such
that for N ≥ N0

δ
√
N < W (EN ) <

√
N

δ
(3)

and

δ
√
N < N (EN ) <

√
N

δ

with probability at least 1− ε.
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Theorem B. For any δ > 0, there exist numbers c(δ) > 0 and N0 = N0(δ) such that for any
N ≥ N0

P

(

W (EN ) < δ
√
N
)

> c(δ)

and
P

(

N (EN ) < δ
√
N
)

> c(δ).

In other words, Theorem A means that the pseudorandomness measures W (EN ) and N (EN )
are of typical asymptotic order

√
N , while Theorem B means that the lower bounds in The-

orem A are optimal. In [2] there are also theorems describing the typical asymptotic order
of Ck(EN ), which prove the existence of a limit distribution of Ck(EN )/E (Ck(EN )) in the
case when k = k(N) grows slowly in comparison with N (in this case the limit distribution is
concentrated at a point). At the end of [2], Alon et.al. formulated the following open problem:

(Problem 33) Investigate the existence of the limiting distribution of

(

W (EN )/
√
N
)

N≥1
,
(

N (EN )/
√
N
)

N≥1
and

Ck(EN )
√

N log
(
N
k

)
.

Investigate these distributions.

Subsequently they write: “It is most likely that all three sequences in Problem 33 have limiting
distributions”.

Theorem 1 proves the existence of a limit distribution of the normalized well-distribution mea-
sure of random binary sequences, by this means solving the first instance of Problem 33 above.
The case of the normality measure N (Ek) seems to be much more difficult, and I could not
obtain any satisfactory results. The case of the correlation measure Ck(EN ) is considerably
different from the cases of the well-distribution measure W (EN ) and the normality measure
N (EN ), since Ck(EN ) depends on two parameters. It is reasonable to assume that the limit-
ing distribution (provided that it exists) will depend on the choice of k = k(N). As mentioned
before, there already exist several results on the typical asymptotic order of Ck(EN ), see [2, 3].

There exist several generalizations of the aforementioned pseudorandomness measures, for
example to higher dimensions and to a continuous setting (see for example [4, 5, 9]); the
problem concerning the typical asymptotic order and the existence of limit distributions is
unsolved in many cases.

2 Auxiliary results

Lemma 1 (Hoeffding’s inequality; see e.g. [12, Lemma 2.2.7]). Let (en)1≤n≤N be independent
random variables such that en = 1 and en = −1 with probability 1/2 each, for n ≥ 1. Then

P

(∣
∣
∣
∣
∣

N∑

n=1

en

∣
∣
∣
∣
∣
> t

√
N

)

≤ 2e−t2/2.
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Lemma 2 (Donsker’s theorem; see e.g. [6, Theorem 14.1]). Let (ξn)n≥1 be a sequence of
independent and identically distributed random variables with mean zero and variance σ2.
Define

YN (s) =
1

σ
√
N

⌊Ns⌋
∑

n=1

ξn, 0 ≤ s ≤ 1.

Then
YN ⇒ Z,

where Z is the (standard) Wiener process and ⇒ denotes weak convergence in the Skorokhod
space D([0, 1]).

A direct consequence of Donsker’s theorem is the following Corollary 1:

Corollary 1. Let (en)n≥1 be a sequence of independent random variables such that en = 1
and en = −1 with probability 1/2 each, for n ≥ 1. Then for any t ∈ R

P



 max
1≤M1≤M2≤N

∣
∣
∣
∣
∣
∣

M2∑

n=M1

en

∣
∣
∣
∣
∣
∣

≤ t
√
N



→ P

(

max
0≤s1≤s2≤1

|Z(s2)− Z(s1)| ≤ t

)

as N → ∞.

The quantity max0≤s1≤s2≤1 |Z(s2)− Z(s1)| in Corollary 1 is called the range of the Wiener
process. Its density d(s) has been calculated by Feller [8] and is given by

d(s) = 8
∞∑

k=1

(−1)k−1k2φ(ks), s > 0, (4)

where φ denotes the (standard) normal density function.

0 1 2 3 4 5

0.5

1

Figure 1: The density function d(s) of the range of a standard Wiener process.

Lemma 3. Let (en)1≤n≤N be independent random variables such that en = 1 and en = −1
with probability 1/2 each, for n ≥ 1. Assume that N is of the form

N = j2m for j,m ∈ Z, 210 < j ≤ 211 and m ≥ 1.

Then, if N is sufficiently large, for any t > 2

P



 max
1≤M1≤M2≤N

∣
∣
∣
∣
∣
∣

M2∑

n=M1

en

∣
∣
∣
∣
∣
∣

> 1.38t
√
N



 ≤ 224e−t2/2.
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Lemma 4. Let (en)1≤n≤N be independent random variables such that en = 1 and en = −1
with probability 1/2 each, for n ≥ 1. Then, if N is sufficiently large, for any t > 2

P



 max
1≤M1≤M2≤N

∣
∣
∣
∣
∣
∣

M2∑

n=M1

en

∣
∣
∣
∣
∣
∣

> 1.39t
√
N



 ≤ 224e−t2/2.

For an integer B ≥ 1 we define modified well-distribution measures W (≤B) and W (>B) by
setting

W (≤B)(EN )

= max {|U(EN ,M, a, b)| : b ≤ B and 1 ≤ a+ b, a+Mb ≤ N}

and

W (>B)(EN )

= max {|U(EN ,M, a, b)| : b > B and 1 ≤ a+ b, a+Mb ≤ N} .

This means that for W (≤B) we only consider arithmetic progressions having step size at
most B, while for W (>B) we only consider arithmetic progressions of step size larger than
B. Trivially an arithmetic progression with step size larger than B, which is contained in
{1, . . . , N}, cannot contain more than ⌈N/(B + 1)⌉ elements. The idea is that the limit
distribution of W is almost the same as the limit distribution of W (≤B) for large B, while the
contribution of W (>B) is almost negligible if B is large.

Lemma 5. For any positive integer B there exists N0 = N0(B) such that for all N ≥ N0 for
any t ∈ R, t > 2,

P

(

W (>B)(EN ) > 1.4t
√

N/(B + 1)
)

≤ 228(B + 1)2e−t2/2. (5)

Lemma 6. For any integer B ≥ 1 and any t ∈ R the limit

F
(≤B)
W (t) = lim

N→∞
P

(

W (≤B)(EN )N−1/2 ≤ t
)

exists.

We have to prove Lemmas 3, 4, 5 and 6. The proofs will be given in this order below. Lemmas
3 and 4 are a maximal form of Hoeffdings large deviations inequality (Lemma 1), and will be
proved by using a classical dyadic decomposition method which is commonly used in proba-
blity theory and probabilistic number theory. Using Lemma 4 we will prove Lemma 5, which
essentially says that the probability that the discrepancy along any arithmetic progression
with “large” step size B is of order

√
N is very small. Finally using Donsker’s invariance

principle (Corollary 1) we will prove Lemma 6, which is the main ingredient in the proof of
Theorem 1 in the next section.

Proof of Lemma 3: We use a modified version of a classical dyadic decomposition technique.
By assumption N is of the form j2m for j,m ∈ Z, 210 < j ≤ 211 and m ≥ 1. We write Am+1

for the class of all sets of the form

{j12m + 1, . . . , j22
m}, where j1, j2 ∈ {0, . . . , j}, j1 < j2.
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Trivially, there exist at most 222 sets of this form.
Furthermore, for every k, 0 ≤ k ≤ m we write Ak for the class of all sets of 2k consecutive
integers which start at position j12

k for some j1 ∈ {0, . . . , j2m−k − 1}. Ak contains exactly
j2m−k sets of this form.
Then every set {k : 1 ≤ M1 ≤ k ≤ M2 ≤ N} can be written as a disjoint union of at most
one element of Am+1, and at most two elements of each of the classes Ak, 0 ≤ k ≤ m.

For any set Am+1 from Am+1 we have by Hoeffdings inequality (Lemma 1)

P





∣
∣
∣
∣
∣
∣

∑

n∈Am+1

en

∣
∣
∣
∣
∣
∣

> t
√
N



 ≤ 2e−t2/2.

Now assume that k ∈ {0, . . . ,m}, and let Ak be any set from Ak. By construction Ak contains
2k ≤ N2k−m/210 elements. By Hoeffding’s inequality for any t > 0

P





∣
∣
∣
∣
∣
∣

∑

n∈Ak

en

∣
∣
∣
∣
∣
∣

> t
√
2k



 ≤ 2e−t2/2,

which implies

P





∣
∣
∣
∣
∣
∣

∑

n∈Ak

en

∣
∣
∣
∣
∣
∣

> t
√

(m− k + 1)2k−m−10
√
N



 ≤ 2e−(m−k+1)t2/2.

If we assume t > 2, then e−t2/2 ≤ 1/4, and therefore

P





∣
∣
∣
∣
∣
∣

∑

n∈Ak

en

∣
∣
∣
∣
∣
∣

> 2−5t
√

(m− k + 1)2k−m
√
N



 ≤ 2e−t2/2

(
1

4

)m−k

.

Now observe that
m∑

k=0

√

(m− k + 1)2k−m ≤
∞∑

k=0

√

(k + 1)2−k ≤ 6,

and

2−5
m∑

k=0

√

(m− k + 1)2k−m ≤ 0.19. (6)

Letting

A =




⋃

Am+1∈Am+1







∣
∣
∣
∣
∣
∣

∑

n∈Am+1

en

∣
∣
∣
∣
∣
∣

> t
√
N









 ∪

∪




⋃

0≤k≤m

⋃

Ak∈Ak







∣
∣
∣
∣
∣
∣

∑

n∈Ak

en

∣
∣
∣
∣
∣
∣

> 2−5t
√

(m− k + 1)2k−m
√
N









 ,

this implies

P(A) ≤ 223e−t2/2 +

m∑

k=0

j2m−k2e−t2/2

(
1

4

)m−k

≤ 224e−t2/2. (7)
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As mentioned before, every set {k : 1 ≤ M1 ≤ k ≤ M2 ≤ N} can be written as a disjoint
union of one set from Am+1 and at most two sets from each of the classes Ak, 0 ≤ k ≤ m.
By (6) we have on the complement of A

max
1≤M1≤M2≤N

∣
∣
∣
∣
∣
∣

M2∑

k=M1

en

∣
∣
∣
∣
∣
∣

≤
(

1 + 2

(

2−5
m∑

k=0

√

(m− k + 1)2k−m

))
√
N

≤ 1.38
√
N,

and thus by (7) for every t ≥ 2

P



 max
1≤M1≤M2≤N

∣
∣
∣
∣
∣
∣

M2∑

k=M1

en

∣
∣
∣
∣
∣
∣

> 1.38t
√
N



 ≤ P(A) ≤ 224e−t2/2,

which proves the lemma. �

Proof of Lemma 4: Assume that N is not of the form described in Lemma 3. Write N̂ for the
smallest integer which is of this form, and which satisfies N̂ ≥ N . Then, if N is sufficiently
large, N̂/N ≤ 210 + 1/210. Thus by Lemma 3 for t > 2

P



 max
1≤M1≤M2≤N

∣
∣
∣
∣
∣
∣

M2∑

n=M1

en

∣
∣
∣
∣
∣
∣

> 1.39t
√
N





≤ P



 max
1≤M1≤M2≤N̂

∣
∣
∣
∣
∣
∣

M2∑

n=M1

en

∣
∣
∣
∣
∣
∣

> 1.39t
√
N





≤ P



 max
1≤M1≤M2≤N̂

∣
∣
∣
∣
∣
∣

M2∑

n=M1

en

∣
∣
∣
∣
∣
∣

> 1.38t
√

N̂





≤ 224e−t2/2.

which proves Lemma 4. �

Proof of Lemma 5: Let P = {a+ b, . . . , a+Mb} be an arithmetic progression in {1, . . . , N}.
We say that P is of maximal length if a < 0 and a + (M + 1)b > N . Denote the class
of all arithmetic progressions, which are contained in the definition of W (>B) (that is, all
arithmetic progressions in {1, . . . , N} with step size exceeding B) by Â, and the class of all
maximal arithmetic progressions among them by A. Then for any k ∈ {B + 1, . . . , N}, the
class A contains at most k different arithmetic progressions with step size k, and each of them
has at most ⌈N/k⌉ elements.

Let P, P̂ denote arithmetic progressions from Â. We write P̂ ⊂ P, if P̂ = P or if P̂ can be
obtained by removing a section from the beginning and/or from the end of P. Then for any
P̂ ∈ Â there exists a least one P ∈ A for which P̂ ⊂ P. Thus

W (>B)(EN ) = max
P̂∈Â







∣
∣
∣
∣
∣
∣

∑

n∈P̂

en

∣
∣
∣
∣
∣
∣
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= max
P∈A

max
P̂⊂P







∣
∣
∣
∣
∣
∣

∑

n∈P̂

en

∣
∣
∣
∣
∣
∣







= max
B<k≤N

max
P∈A,

P has step size k

max
P̂⊂P







∣
∣
∣
∣
∣
∣

∑

n∈P̂

en

∣
∣
∣
∣
∣
∣






.

To prove (5) it is obviously sufficient to consider those arithmetic progressions which contain
at least 1.4

√

N/B elements. For these arithmetic progressions we can use Lemma 3 (provided
N is sufficiently large), and obtain for any t > 2 and any P with step size k, using the estimate

⌈N/k⌉ ≤ 1.4

1.39

N

k

(which holds for sufficiently large N),

P



max
P̂⊂P







∣
∣
∣
∣
∣
∣

∑

n∈P̂

en

∣
∣
∣
∣
∣
∣






> 1.39t

√

⌈N/k⌉



 ≤ 224e−t2/2

and consequently

P



max
P̂⊂P







∣
∣
∣
∣
∣
∣

∑

n∈P̂

en

∣
∣
∣
∣
∣
∣






> 1.4t

√

N/(B + 1)



 ≤ 224e−t2k/(2(B+1)).

Thus, again for t > 2 and sufficiently large N , we have

P

(

W (>B)(EN ) > 1.4t
√

N/(B + 1)
)

≤
N∑

k=B+1

224ke−t2k/(2(B+1))

≤ 224
∞∑

l=1

4(B + 1)2l2e−t2/24−l+1

≤ 228(B + 1)2e−t2/2,

which proves the lemma. �

Proof of Lemma 6: Let B ≥ 1 be given. Denote by Q the least common multiple of all the
numbers {1, . . . , B}. Set

Qk = {1 ≤ n ≤ N : n ≡ k mod Q} , 1 ≤ k ≤ Q.

Write A for the class of those maximal arithmetic progressions in {1, . . . , Q} which have a
step size in {1, . . . , B}. By Donsker’s theorem (Lemma 2) each of the processes

Sk(s) =

√
Q√
N

∑

1≤n≤sN,
n∈Qk

en, 0 ≤ s ≤ 1, 1 ≤ k ≤ Q,
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converges weakly to a standard Wiener process Zk(s). Since the random variables en, n ≥ 1
are independent, we can assume that the Wiener processes Zk(s) are also independent, for
1 ≤ k ≤ Q. Observe that

W (≤B)(EN ) =

√
N√
Q

sup
0≤s1≤s2≤1

max
A∈A

∣
∣
∣
∣
∣

∑

k∈A
Sk(s2)− Sk(s1)

∣
∣
∣
∣
∣
.

Thus by Sk ⇒ Zk we have for t ≥ 0

lim
N→∞

P

(

W (≤B)(EN )√
N

≤ t

)

= P

(

sup
0≤s1≤s2≤1

max
A∈A

∣
∣
∣
∣
∣

∑

k∈A
(Zk(s2)− Zk(s1))

∣
∣
∣
∣
∣
≤ t
√

Q

)

, (8)

where Z1, . . . , ZQ are independent Wiener processes. Thus a limit distribution F
(≤B)
W (t) of

W (≤B)(EN )/
√
N exists, which proves the lemma. �

3 Proof of Theorem 1

The proof of Theorem 1 is split into several parts. Lemma 7 shows that the limit distribution
function of the normalized well-distribution measure for the arithmetic progressions with short
step size W (≤B) is Lipschitz-continuous. Together with the fact that the contribution of the
arithmetic progressions with large step size is small (Lemma 6), this proves the existence of a
limit distribution of the normalized well-distribution measure WN (Lemma 8 and Corollary
2). Finally, in Lemmas 9 and 10 we prove the continuity of the limit distribution and the tail
estimate (2) in Theorem 1.

Lemma 7. For every fixed t0 > 0 there exists a constant c = c(t0) such that for any B ≥ 1,
δ > 0 and t ≥ t0

F
(≤B)
W (t+ δ) − F

(≤B)
W (t) ≤ c(t0)δ.

Lemma 8. Let ε > 0 be given. Then for every t ∈ R there exists an N0 = N0(ε) such that
for N1, N2 ≥ N0

∣
∣
∣P

(

W (EN1
)N

−1/2
1 ≤ t

)

− P

(

W (EN2
)N

−1/2
2 ≤ t

)∣
∣
∣ ≤ ε.

Corollary 2. For every t ∈ R the limit

FW (t) = lim
N→∞

P

(

W (EN )N−1/2 ≤ t
)

exists.

Lemma 9. The function FW (t) (which is defined in Corollary 2) is continuous in every point
t ∈ R.

Lemma 10.

lim
t→∞

t(1− FW (t))

e−t2/2
=

8√
2π

.
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Proof of Lemma 7: Let t0 > 0 be fixed. We use the notation from the previous proof, and
formulas (4) and (8). For δ > 0 we want to estimate

F
(≤B)
W (t+ δ)− F

(≤B)
W (t),

which by (8) is bounded by

∑

A∈A
P

(

sup
0≤s1≤s2≤1

∣
∣
∣
∣
∣

∑

k∈A
(Zk(s2)− Zk(s1))

∣
∣
∣
∣
∣
∈
(

t
√

Q, (t+ δ)
√

Q
]
)

. (9)

If Z1, . . . , ZK are independent standard Wiener processes (for some K ≥ 1), then (Z1 + · · ·+
ZK)/

√
K is again a standard Wiener process. Thus the probabilities in (9) can be computed

precisely: if A contains |A| elements, then, writing Z(t) for a standard Wiener process and
d(s) for the density function in (4), we have

P

(

sup
0≤s1≤s2≤1

∣
∣
∣
∣
∣

∑

k∈A
(Zk(s2)− Zk(s1))

∣
∣
∣
∣
∣
∈
(

t
√

Q, (t+ δ)
√

Q
]
)

= P

(

sup
0≤s1≤s2≤1

|Z(s2)− Z(s1)| ∈
(

t
√
Q

√

|A|
,
(t+ δ)

√
Q

√

|A|

])

=

∫ (t+δ)
√
Q/
√

|A|

t
√
Q/

√
|A|

d(s) ds. (10)

It is easily seen that for k ≥ 1 and s ≥ 2

k2e−k2s2/2 ≤ e−ks2/2.

Thus for s ≥ 2 we have

d(s) ≤ 8√
2π

∞∑

k=1

k2e−k2s2/2 ≤ 4
∞∑

k=1

e−ks2/2 ≤ 5e−s2/2. (11)

Clearly for every k ∈ {1, . . . , B} the class A contains exactly k arithmetic progressions with
step size k, and each of them contains Q/k elements. Thus, by (9), (10) and (11), we have
for every t ≥ t0

F
(≤B)
W (t+ δ)− F

(≤B)
W (t)

≤
B∑

k=1

k

∫ (t+δ)
√
k

t
√
k

d(s)ds

≤ c(t0)δ,

where the constant c depends on t0, but not on B. �

Proof of Lemma 8: Let ε > 0 be given. Choose B = B(ε) “large”. We have

P

(

W (EN1
)N

−1/2
1 ≤ t

)

≤ P

(

W (≤B)(EN1
)N

−1/2
1 ≤ t

)

,
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and

P

(

W (EN2
)N

−1/2
2 ≤ t

)

≥ P

(

W (≤B)(EN2
)N

−1/2
2 ≤ t

)

− P

(

W (>B)(EN2
)N

−1/2
2 > t

)

.

By Lemma 6 the sequence

P

(

W (≤B)(EN )N−1/2 ≤ t
)

converges as N → ∞, and thus

P

(

W (≤B)(EN1
)N

−1/2
1 ≤ t

)

− P

(

W (≤B)(EN2
)N

−1/2
2 ≤ t

)

≤ ε/2

for sufficiently large N1, N2. By Lemma 5 for sufficiently large B and N2 = N2(B)

P

(

W (>B)(EN2
)N

−1/2
2 > t

)

≤ 228(B + 1)2e−t2B/8.
︸ ︷︷ ︸

≤ε/2 for sufficiently large B

Thus
P

(

W (EN1
)N

−1/2
1 ≤ t

)

− P

(

W (EN2
)N

−1/2
2 ≤ t

)

≤ ε

for sufficiently large B,N1, N2, which proves Lemma 8. �

Proof of Lemma 9: Obviously FW (t) = 0 for t < 0. The continuity of FW (t) at t = 0 follows
from Theorem A of Alon et.al., see (3). Now assume that t > 0 is fixed. Let δ > 0 and B ≥ 1,
and assume that δ is “small” and B is “large”. We have

FW (t+ δ) − FW (t)

= lim
N→∞

P

(

W (EN )N−1/2 ≤ t+ δ
)

− lim
N→∞

P

(

W (EN )N−1/2 ≤ t
)

≤ lim
N→∞

P

(

W (≤B)(EN )N−1/2 ≤ t+ δ
)

− lim
N→∞

P

(

W (≤B)(EN )N−1/2 ≤ t
)

+ lim sup
N→∞

P

(

W (>B)(EN )N−1/2 > t
)

= lim
N→∞

P

(

W (≤B)(EN )N−1/2 ∈ (t, t+ δ]
)

+ lim sup
N→∞

P

(

W (>B)(EN )N−1/2 > t
)

.

By Lemma 7

lim
N→∞

P

(

W (≤B)(EN )N−1/2 ∈ (t, t+ δ]
)

≤ c(t)δ,
︸ ︷︷ ︸

≤ε/2 for sufficiently small δ

and by Lemma 5 for sufficiently large B and N

lim sup
N→∞

P

(

W (>B)(EN )N−1/2 > t
)

≤ 228(B + 1)2e−t2B/8.
︸ ︷︷ ︸

≤ε/2 for sufficiently large B

11



This proves
FW (t+ δ) − FW (t) ≤ ε

for sufficiently small δ. In the same way we can show a similar bound for FW (t)−FW (t− δ).
This proves the lemma. �

Proof of Lemma 10: For any t ∈ R

1− FW (t) ≥ 1− F
(≤1)
W (t) =

∫ ∞

t
d(s) ds.

Using the standard estimate

t

1 + t2
1√
2π

e−t2/2 < 1− Φ(t) <
1

t

1√
2π

e−t2/2, t > 0,

where Φ(t) = (2π)−1/2
∫ t
−∞ φ(s) ds is the standard normal distribution function, we can easily

show

lim
t→∞

t
(

1− F
(≤1)
W (t)

)

e−t2/2
= lim

t→∞
t
∫∞
t d(s) ds

e−t2/2
=

8√
2π

,

which implies

lim
t→∞

t(1− FW (t))

e−t2/2
≥ 8√

2π
. (12)

On the other hand it is clear that

1− FW (t) ≤ 1− F
(≤1)
W (t) + lim sup

N→∞
P

(

W (>1)(EN )N−1/2 > t
)

.

By Lemma 5, for sufficiently large t,

lim sup
N→∞

P

(

W (>1)(EN )N−1/2 > t
)

≤ 230e−t2/(1.4)2 ,

and in particular

lim
t→∞

t
(
lim supN→∞ P

(
W (>1)(EN )N−1/2 ≤ t

))

e−t2/2
≤ 230 lim

t→∞
te−t2/(1.4)2

e−t2/2
= 0.

Thus

lim
t→∞

t(1− FW (t))

e−t2/2
≤ 8√

2π
,

which together with (12) proves the lemma. �
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[11] C. Mauduit and A. Sárközy. On finite pseudorandom binary sequences. I. Measure of
pseudorandomness, the Legendre symbol. Acta Arith., 82(4):365–377, 1997.

[12] A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes.
Springer Series in Statistics. Springer-Verlag, New York, 1996.

13


