On the limit distribution of consecutive elements of the van
der Corput sequence

Christoph Aistleitner Markus Hofef

Abstract

Recently, Fialova and Strauch [3] calculated the asympthiitribution function (adf) of the two-
dimensional sequencgp,(n), ¢»(n + 1))n>0, Where (¢y(n))n>0 denotes the van der Corput se-
guence in basg. In the present paper we solve the general problem askintédmit distribution of
(dp(n), Pp(n+1),...,0p(n + s — 1))n>0. We use the fact that the van der Corput sequence can be
seen as the orbit of the origin under the ergodic von Neunkakutani transformation.

1 Introduction

In the open problem collection on the web sitelisfiform distribution theorthe following problem is
stated:

Let (¢5(n))n>0 denote the van der Corput sequence in bdagénd the distribution of the
sequencép,(n), gp(n +1),...,¢p(n+ 5 —1)),>0 in [0,1)%.2

The cases = 2 has recently been solved by Fialova and Strauch [3]. Thewstidhat every point
(pp(n), pp(n + 1)),>0 lies on the line segment

1 1 1 1
for £ > 0. Furthermore they could give an explicit formula for the rmgyotic distribution function of
(pp(n), dp(n + 1))n>0. They also showed that the adf@f,(n), #»(n + 1)),>0 is @ copula.

In this article we solve the problem for the seque@gn), gp(n+1),...,¢p(n+s—1))n>0 fors > 2.

The van der Corput sequentg, (n)),»>o and its multi-dimensional extension, the so-called Halien
quence, given by, (n), ¢p, (1), - . ., b, (n))n>0 With co-primeb;, are well-studied objects in discrep-
ancy theory, since they belong to the class of so-called iserépancy sequences. For classical results in
discrepancy theory, on low discrepancy sequences and thaeevaCorput sequence see e.g. [1], [2] or [8].
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Recently, several authors investigated the ergodic ptiegesf low discrepancy sequences, see e.g. [6]
and [13]. In the case of van der Corput sequences this can e uking the so-called von Neumann-
Kakutani transformation, which will be discussed in thessetsection.

The outline of this article is as follows: in the second sattive define the van der Corput sequence and
the von Neumann-Kakutani transformation and recall thagidproperties. In the third section we state
our main results on the distribution by (), dp(n + 1),...,dp(n+ 5 — 1))n>0.

2 van der Corput sequence and von Neumann-Kakutani transfor
mation

Letb € NandNy = NU {0}. Then for eveny € N, we can write

n= Znibi

i>0

wheren; € {0,1,...,b — 1},i > 0. The above sum is calledadic representation of. Then, are
uniquely determined and at most a finite numbenpére non-zero. Furthermore, every reat [0, 1)
has ab-adic representation of the following form

T = Z xb ! (1)

i>0

wherex; € {0,1,...,b—1},4 > 0. We callz ab-adic rational ifx = ab~¢, wherea andc are positive
integers and) < a < b°. For all b-adic integers there are exactly two representations ofahe (1),
one wherer; = 0,7 > ig and one where; = b — 1,7 > iq for sufficiently largeiy € N. If we restrict
ourselves to representations with # b — 1 for infinitely manysi, then the coefficients; in (1) are
uniquely determined for alt € [0, 1).

Forn € Ny we define the so-called radical-inverse function or Monna han): No — [0, 1) by

op(n) = Py Znibi = Znib_i_l,

i>0 i>0

Note thatp, (n) mapsN, to the set ob-adic rationals irj0, 1), and therefore the image B, underg, (n)
is dense irf0, 1).

Definition 2.1 The van der Corput sequence in base defined ag¢,(n))n>0-

It is a classical result that the van der Corput sequenceiferamly distributed in[0,1), see e.g. [8].
Furthermore, its-dimensional extension, the Halton sequence givefgy(n), . . ., ¢p, (n))n>0 for co-
prime base$;,1 < i < s, is uniformly distributed orf0, 1)*. Properties of the van der Corput and the
Halton sequence are very well-understood, since they acalied low discrepancy sequences, which are
central objects in Quasi-Monte Carlo integration.

A second approach to define the van der Corput sequence isrigythe von Neumann-Kakutani trans-
formationT;: [0,1) — [0,1). For any integeb > 2 the inductive construction df; is as follows:

at first [0, 1) is split into b intervalsI} = [, &) for i = 0,1,...b — 1. Then the transformation
Tip: [0,%51) — [3,1) is defined as translation df into I}, for i = 0,1,...,b — 1. The next
step is to divide all intervalg! into b subintervals of the formi? = [, 45t) fori = 0,1,...6% — 1.

TransformationZy  : [0, ’)21)—;1) — [#,1) is given as the extension df, ; which translates?,



into I, _,,,., fori = 0,1,...,b— 1. Such a construction is called splitting-and-stackingstouction
and is illustrated in Figure 1 fdr = 2. Finally we define the von Neumann-Kakutani transformasisn
Ty = lim, o Ty p- A plot of the transformatiofT’ is given in Figure 2. By an observation of Lam-
bert [9], [10] (see also Hellekalek [7]) the van der Corpujsence in basé is exactly the orbit of the

origin underT, which means that
(T3'0)n>0 = (¢6(n))n>0, b =0, @)

whereT;"z denotes the value af under aftem iterations ofT3.

Figure 2: The von Neumann-Kakutani transformation in base2.

For a proof of the ergodicity and measure-preserving ptaseof the von Neumann-Kakutani transfor-
mation, see e.g. [4] or [5]. It follows from the ergodicity thfe von Neumann-Kakutani transformation



that (T}'x), >0 is uniformly distributed for almost every € [0, 1). Furthermore, it can be shown that the
von Neumann-Kakutani transformation is uniquely ergodicich implies that(T}'z),,>¢ is uniformly
distributed for everyx € [0,1), see e.g. [6]. Moreover, Pagés [11] showed that the orbihefvon
Neumann-Kakutani transformation starting at an arbitpiptz € [0, 1) is a low discrepancy sequence.
Another possible generalization of the van der Corput secgiés the so-called randomized van der Cor-
put sequencél}’ X ), >o whereX is uniformly distributed on0, 1), see [12].

Recently, Fialova and Strauch solved the problem of caliigiahe limit distribution of the sequence
(¢p(n), dp(n+1)),>0. They also concluded that the limit distribution is a copMi@ consider the multi-
dimensional extension of this problem. By (2)

(¢5(n), op(n+1))nz0 = (T30, T 10) >0 = (T30, Ty(T3'0)) n0-

By the fact tha{7;'0),>0 is uniformly distributed orf0, 1) one can show theip,(n), ¢p(n + 1)),>0 iS
uniformly distributed on

I'=A{(z,y) 1y = Tox}.
Note thatl" coincides with the graph of the von Neumann-Kakutani trammsétion in Figure 2. In the
next section we use this approach to find the limit distrinutf (¢ (1), dp(n+1), ..., dp(n+s—1))n>0
for arbitrarys > 2.

3 The limit distribution of consecutive elements of the van dr Cor-
put sequence

In the sequel we assume that are fixed. Letl" denote the von Neumann-Kakutani transformation in

baseb as described in Section 2. We define amé: [0,1) — [0, 1)° by setting

t
Tt

W) =| T

T

and

Figure 3: Function graphs daft, 7% andT°t. These curves appear as the two-dimensional projections
of I for larges.



The Lebesgue measuke on [0, 1) induces a measureonT" by setting
v(A) = ({t: () € A}), AcCT.

Furthermorey induces a measure on [0, 1)* by embedding” into [0,1)°. More precisely for every
measurable subsé&t C [0, 1)° we set
w(B)=v(BNT).

Theorem 3.1 The limit measure ofp,(n), gp(n + 1),...,¢p(n + 5 —1))p>0 IS .

Proof:
As mentioned in Section 2, we can rewrite

(¢b(n)a ¢b(n + 1)) R ¢b(n +s— 1))7120 = (Tnoa Tn+107 ceey Tn+s_10)n20
= (T™0,T(T™0),...,T* 1 (T™0))n>o0-

Since (T70),>0 is uniformly distributed orf0,1) and7" is a measure-preserving transformation with
respect to\;, it follows immediately that(7(70)),>¢ is uniformly distributed on[0, 1) for i =
1,...,s — 1. Moreover, by constructio@™0, T (T"0), ..., T*~Y(T"0)),>0 € T forall n > 0.

Now consider a measurable sBt< [0,1)%. We define the empirical measure of the firétpoints of
(T"0,...,T5"Y(T"0)),>0 as

un(B) = %#{0 <n < N:(T"0,T(T™0),...,T*"T"0)) € B}.
We have

1 ,
lim pn(B) = lim <#{0 <n < N:(T"0,T(T"0),... ,T5~HT™0)) € B}

N —o00

1
lim —#{0<n< N:(T"0,T(T"0),...,T*"Y(T"0)) € BNT}
N—oco N

= lim l#{0 <n<N:T"0 € Projection (BNI)}
N—oco N !

= A1 ( Projection (B NT))

= v(BNT) = u(B)

where the fourth equation holds sin¢€™0),,>o is uniformly distributed on0, 1) and since the map
t — Tt is a bijection, and where Projectipr{A) denotes the projection of onto its first coordinate.]

Theorem 3.2 The measurg is a copula.

Proof:
Consider setsl;(¢) of the following form

Ai(t) = {(ml,xg,...,ms) 0 < a; gtandO < T < 1f0rj 752}
We have to show that(4,(¢)) = tforalli =1,...,sandt € [0, 1]. By the definition ofv andy
p(Ai(t)) = v(As(t) NT)
=M{re0,1):~(r) e (Ai(t)NT)})
=M{ref0,1): Tr <t}) =t

where the last equation holds sirfEéis measure-preserving with respectito O



Remark 3.1 The sefl" is a collection of countably many line segments$Qnl)*. Informally speaking
Theorem 3.1 means th&p, (n), dp(n + 1), ..., ds(n + s — 1))n>0 is uniformly distributed of'.

Remark 3.2 By the unique ergodicity df, the conclusions of Theorem 3.1 and Theorem 3.2 also hold
for the sequenc€l™z, T(T"z), ..., T*~(T"z)),>o for arbitrary = € [0, 1).

Remark 3.3 Another class of uniformly distributed sequences whichbmagseen as the orbits of certain
points under an ergodic transformation are sequences ofdha ({na}),>0, where{z} denotes the

fractional part ofz and « is irrational. In this case the corresponding transfornuatil’ is simply the
rotation7': x — x+a mod 1. It can easily be shown that the limit distribution of constee elements
{na},{(n+Da},...,{(n+s—1)a}),>ois the uniform distribution on the curdéwhich is given by

T o={(t,Tt,...,T*7"),t € [0,1)}.

However, since in this case the transformatibhas a particularly simple structure, the same result can
also be easily obtained using analytic arguments.
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