On the limit distribution of consecutive elements of the van der Corput sequence

Christoph Aistleitner* Markus Hofer[†]

Abstract

Recently, Fialová and Strauch [3] calculated the asymptotic distribution function (adf) of the twodimensional sequence $(\phi_b(n), \phi_b(n+1))_{n\geq 0}$, where $(\phi_b(n))_{n\geq 0}$ denotes the van der Corput sequence in base b. In the present paper we solve the general problem asking for the limit distribution of $(\phi_b(n), \phi_b(n+1), \ldots, \phi_b(n+s-1))_{n\geq 0}$. We use the fact that the van der Corput sequence can be seen as the orbit of the origin under the ergodic von Neumann-Kakutani transformation.

1 Introduction

In the open problem collection on the web site of *Uniform distribution theory* the following problem is stated:

Let $(\phi_b(n))_{n\geq 0}$ denote the van der Corput sequence in base b. Find the distribution of the sequence $(\phi_b(n),\phi_b(n+1),\ldots,\phi_b(n+s-1))_{n\geq 0}$ in $[0,1)^s$. 1

The case s=2 has recently been solved by Fialová and Strauch [3]. They showed that every point $(\phi_b(n), \phi_b(n+1))_{n\geq 0}$ lies on the line segment

$$y = x - 1 + \frac{1}{b^k} + \frac{1}{b^{k+1}}, \quad x \in \left[1 - \frac{1}{b^k}, 1 - \frac{1}{b^{k+1}}\right]$$

for $k \geq 0$. Furthermore they could give an explicit formula for the asymptotic distribution function of $(\phi_b(n),\phi_b(n+1))_{n\geq 0}$. They also showed that the adf of $(\phi_b(n),\phi_b(n+1))_{n\geq 0}$ is a copula. In this article we solve the problem for the sequence $(\phi_b(n),\phi_b(n+1),\ldots,\phi_b(n+s-1))_{n\geq 0}$ for s>2. The van der Corput sequence $(\phi_b(n))_{n\geq 0}$ and its multi-dimensional extension, the so-called Halton sequence, given by $(\phi_{b_1}(n),\phi_{b_2}(n),\ldots,\phi_{b_s}(n))_{n\geq 0}$ with co-prime b_i , are well-studied objects in discrepancy theory, since they belong to the class of so-called low discrepancy sequences. For classical results in discrepancy theory, on low discrepancy sequences and the van der Corput sequence see e.g. [1], [2] or [8].

^{*}Graz University of Technology, Institute of Mathematics A, Steyrergasse 30, 8010 Graz, Austria. e-mail: aistleitner@math.tugraz.at.Research supported by the Austrian Research Foundation (FWF), Project S9603-N23.

[†]Graz University of Technology, Institute of Mathematics A, Steyrergasse 30, 8010 Graz, Austria. e-mail: markus.hofer@tugraz.at. Research supported by the Austrian Research Foundation (FWF), Project S9603-N23 and by the DOC [Doctoral Fellowship Programme of the Austrian Academy of Sciences].

Mathematics Subject Classification:11K31, 40A05, 37A05

Keywords: van der Corput sequence, von Neumann-Kakutani transformation, ergodic theory, low discrepancy sequences

¹Problem 1.12 in the open problem collection as of 11. December 2011 (http://www.boku.ac.at/MATH/udt/unsolvedproblems.pdf)

Recently, several authors investigated the ergodic properties of low discrepancy sequences, see e.g. [6] and [13]. In the case of van der Corput sequences this can be done using the so-called von Neumann-Kakutani transformation, which will be discussed in the second section.

The outline of this article is as follows: in the second section we define the van der Corput sequence and the von Neumann-Kakutani transformation and recall their basic properties. In the third section we state our main results on the distribution of $(\phi_b(n), \phi_b(n+1), \dots, \phi_b(n+s-1))_{n>0}$.

2 van der Corput sequence and von Neumann-Kakutani transformation

Let $b \in \mathbb{N}$ and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Then for every $n \in \mathbb{N}_0$, we can write

$$n = \sum_{i \ge 0} n_i b^i$$

where $n_i \in \{0, 1, \dots, b-1\}, i \geq 0$. The above sum is called b-adic representation of n. The n_i are uniquely determined and at most a finite number of n_i are non-zero. Furthermore, every real $x \in [0, 1)$ has a b-adic representation of the following form

$$x = \sum_{i>0} x_i b^{-i-1} \tag{1}$$

where $x_i \in \{0, 1, \dots, b-1\}, i \geq 0$. We call x a b-adic rational if $x = ab^{-c}$, where a and c are positive integers and $0 \leq a < b^c$. For all b-adic integers there are exactly two representations of the form (1), one where $x_i = 0, i \geq i_0$ and one where $x_i = b-1, i \geq i_0$ for sufficiently large $i_0 \in \mathbb{N}$. If we restrict ourselves to representations with $x_i \neq b-1$ for infinitely many i, then the coefficients x_i in (1) are uniquely determined for all $x \in [0,1)$.

For $n \in \mathbb{N}_0$ we define the so-called radical-inverse function or Monna map $\phi_b(n) \colon \mathbb{N}_0 \to [0,1)$ by

$$\phi_b(n) = \phi_b \left(\sum_{i \ge 0} n_i b^i \right) := \sum_{i \ge 0} n_i b^{-i-1}.$$

Note that $\phi_b(n)$ maps \mathbb{N}_0 to the set of *b*-adic rationals in [0,1), and therefore the image of \mathbb{N}_0 under $\phi_b(n)$ is dense in [0,1).

Definition 2.1 The van der Corput sequence in base b is defined as $(\phi_b(n))_{n\geq 0}$.

It is a classical result that the van der Corput sequence is uniformly distributed in [0,1), see e.g. [8]. Furthermore, its s-dimensional extension, the Halton sequence given by $(\phi_{b_1}(n),\ldots,\phi_{b_s}(n))_{n\geq 0}$ for coprime bases $b_i, 1\leq i\leq s$, is uniformly distributed on $[0,1)^s$. Properties of the van der Corput and the Halton sequence are very well-understood, since they are so-called low discrepancy sequences, which are central objects in Quasi-Monte Carlo integration.

A second approach to define the van der Corput sequence is by using the von Neumann-Kakutani transformation $T_b\colon [0,1)\to [0,1).$ For any integer $b\geq 2$ the inductive construction of T_b is as follows: at first [0,1) is split into b intervals $I_i^1=\left[\frac{i}{b},\frac{i+1}{b}\right)$ for $i=0,1,\ldots b-1.$ Then the transformation $T_{1,b}\colon \left[0,\frac{b-1}{b}\right)\mapsto \left[\frac{1}{b},1\right)$ is defined as translation of I_i^1 into I_{i+1}^1 for $i=0,1,\ldots,b-1.$ The next step is to divide all intervals I_i^1 into b subintervals of the form $I_i^2=\left[\frac{i}{b^2},\frac{i+1}{b^2}\right)$ for $i=0,1,\ldots b^2-1.$ Transformation $T_{2,b}\colon \left[0,\frac{b^2-1}{b^2}\right)\mapsto \left[\frac{1}{b^2},1\right)$ is given as the extension of $T_{1,b}$ which translates $I_{b^2-b+i}^2$

into $I_{b^2-b+i+1}^2$ for $i=0,1,\ldots,b-1$. Such a construction is called splitting-and-stacking-construction and is illustrated in Figure 1 for b=2. Finally we define the von Neumann-Kakutani transformation as $T_b=\lim_{n\to\infty}T_{n,b}$. A plot of the transformation T_2 is given in Figure 2. By an observation of Lambert [9], [10] (see also Hellekalek [7]) the van der Corput sequence in base b is exactly the orbit of the origin under T_b , which means that

$$(T_b^n 0)_{n \ge 0} = (\phi_b(n))_{n \ge 0}, \quad b \ge 0,$$
 (2)

where $T_b^n x$ denotes the value of x under after n iterations of T_b .

Figure 1: The first two steps of a splitting-and-stacking-construction in base b=2.

Figure 2: The von Neumann-Kakutani transformation in base b=2.

For a proof of the ergodicity and measure-preserving properties of the von Neumann-Kakutani transformation, see e.g. [4] or [5]. It follows from the ergodicity of the von Neumann-Kakutani transformation

that $(T_b^n x)_{n\geq 0}$ is uniformly distributed for almost every $x\in [0,1)$. Furthermore, it can be shown that the von Neumann-Kakutani transformation is uniquely ergodic, which implies that $(T_b^n x)_{n\geq 0}$ is uniformly distributed for every $x\in [0,1)$, see e.g. [6]. Moreover, Pagés [11] showed that the orbit of the von Neumann-Kakutani transformation starting at an arbitrary point $x\in [0,1)$ is a low discrepancy sequence. Another possible generalization of the van der Corput sequence is the so-called randomized van der Corput sequence $(T_b^n X)_{n\geq 0}$ where X is uniformly distributed on [0,1), see [12].

Recently, Fialová and Strauch solved the problem of calculating the limit distribution of the sequence $(\phi_b(n), \phi_b(n+1))_{n\geq 0}$. They also concluded that the limit distribution is a copula. We consider the multi-dimensional extension of this problem. By (2)

$$(\phi_b(n), \phi_b(n+1))_{n \ge 0} = (T_b^n 0, T_b^{n+1} 0)_{n \ge 0} = (T_b^n 0, T_b(T_b^n 0))_{n \ge 0}.$$

By the fact that $(T_b^n 0)_{n \ge 0}$ is uniformly distributed on [0,1) one can show that $(\phi_b(n), \phi_b(n+1))_{n \ge 0}$ is uniformly distributed on

$$\Gamma = \{(x, y) : y = T_b x\}.$$

Note that Γ coincides with the graph of the von Neumann-Kakutani transformation in Figure 2. In the next section we use this approach to find the limit distribution of $(\phi_b(n), \phi_b(n+1), \dots, \phi_b(n+s-1))_{n\geq 0}$ for arbitrary $s\geq 2$.

3 The limit distribution of consecutive elements of the van der Corput sequence

In the sequel we assume that b, s are fixed. Let T denote the von Neumann-Kakutani transformation in base b as described in Section 2. We define a map $\gamma(t) \colon [0,1) \to [0,1)^s$ by setting

$$\gamma(t) := \begin{pmatrix} t \\ Tt \\ T^2t \\ \vdots \\ T^{s-1}t \end{pmatrix}$$

and

$$\Gamma := \{(x_1, x_2, \dots, x_s) \in [0, 1]^s : x_i = T^{i-1}x_1, i = 2, \dots, s\} = \{\gamma(t) : t \in [0, 1)\}.$$

Figure 3: Function graphs of Tt, T^2t and T^5t . These curves appear as the two-dimensional projections of Γ for large s.

The Lebesgue measure λ_1 on [0,1) induces a measure ν on Γ by setting

$$\nu(A) = \lambda_1(\{t : \gamma(t) \in A\}), \quad A \subset \Gamma.$$

Furthermore, ν induces a measure μ on $[0,1)^s$ by embedding Γ into $[0,1)^s$. More precisely for every measurable subset $B \subseteq [0,1)^s$ we set

$$\mu(B) = \nu(B \cap \Gamma).$$

Theorem 3.1 The limit measure of $(\phi_b(n), \phi_b(n+1), \dots, \phi_b(n+s-1))_{n\geq 0}$ is μ .

Proof:

As mentioned in Section 2, we can rewrite

$$(\phi_b(n), \phi_b(n+1), \dots, \phi_b(n+s-1))_{n \ge 0} = (T^n 0, T^{n+1} 0, \dots, T^{n+s-1} 0)_{n \ge 0}$$
$$= (T^n 0, T(T^n 0), \dots, T^{s-1} (T^n 0))_{n \ge 0}.$$

Since $(T^n0)_{n\geq 0}$ is uniformly distributed on [0,1) and T is a measure-preserving transformation with respect to λ_1 , it follows immediately that $(T^i(T^n0))_{n\geq 0}$ is uniformly distributed on [0,1) for $i=1,\ldots,s-1$. Moreover, by construction $(T^n0,T(T^n0),\ldots,T^{s-1}(T^n0))_{n\geq 0}\in\Gamma$ for all $n\geq 0$. Now consider a measurable set $B\in[0,1)^s$. We define the empirical measure of the first N points of $(T^n0,\ldots,T^{s-1}(T^n0))_{n\geq 0}$ as

$$\mu_N(B) = \frac{1}{N} \# \{ 0 \le n \le N : (T^n 0, T(T^n 0), \dots, T^{s-1}(T^n 0)) \in B \}.$$

We have

$$\begin{split} \lim_{N \to \infty} \mu_N(B) &= \lim_{N \to \infty} \frac{1}{N} \# \{ 0 \le n \le N : (T^n 0, T(T^n 0), \dots, T^{s-1}(T^n 0)) \in B \} \\ &= \lim_{N \to \infty} \frac{1}{N} \# \{ 0 \le n \le N : (T^n 0, T(T^n 0), \dots, T^{s-1}(T^n 0)) \in B \cap \Gamma \} \\ &= \lim_{N \to \infty} \frac{1}{N} \# \{ 0 \le n \le N : T^n 0 \in \operatorname{Projection}_{x_1}(B \cap \Gamma) \} \\ &= \lambda_1(\operatorname{Projection}_{x_1}(B \cap \Gamma)) \\ &= \nu(B \cap \Gamma) = \mu(B) \end{split}$$

where the fourth equation holds since $(T^n0)_{n\geq 0}$ is uniformly distributed on [0,1) and since the map $t\to Tt$ is a bijection, and where Projection_{x_1}(A) denotes the projection of A onto its first coordinate. \square

Theorem 3.2 *The measure* μ *is a copula.*

Proof:

Consider sets $A_i(t)$ of the following form

$$A_i(t) = \{(x_1, x_2, \dots, x_s) : 0 \le x_i \le t \text{ and } 0 \le x_j \le 1 \text{ for } j \ne i\}.$$

We have to show that $\mu(A_i(t)) = t$ for all i = 1, ..., s and $t \in [0, 1]$. By the definition of ν and μ

$$\mu(A_i(t)) = \nu(A_i(t) \cap \Gamma)$$

= $\lambda_1(\{r \in [0, 1) : \gamma(r) \in (A_i(t) \cap \Gamma)\})$
= $\lambda_1(\{r \in [0, 1) : T^i r \le t\}) = t$,

where the last equation holds since T^i is measure-preserving with respect to λ_1 .

Remark 3.1 The set Γ is a collection of countably many line segments in $[0,1)^s$. Informally speaking Theorem 3.1 means that $(\phi_b(n), \phi_b(n+1), \dots, \phi_b(n+s-1))_{n\geq 0}$ is uniformly distributed on Γ .

Remark 3.2 By the unique ergodicity of T, the conclusions of Theorem 3.1 and Theorem 3.2 also hold for the sequence $(T^n x, T(T^n x), \dots, T^{s-1}(T^n x))_{n>0}$ for arbitrary $x \in [0, 1)$.

Remark 3.3 Another class of uniformly distributed sequences which can be seen as the orbits of certain points under an ergodic transformation are sequences of the form $(\{n\alpha\})_{n\geq 0}$, where $\{x\}$ denotes the fractional part of x and α is irrational. In this case the corresponding transformation \widehat{T} is simply the rotation $\widehat{T}: x\mapsto x+\alpha \mod 1$. It can easily be shown that the limit distribution of consecutive elements $(\{n\alpha\}, \{(n+1)\alpha\}, \ldots, \{(n+s-1)\alpha\})_{n\geq 0}$ is the uniform distribution on the curve $\widehat{\Gamma}$ which is given by

$$\widehat{\Gamma} := \{(t, \widehat{T}t, \dots, \widehat{T}^{s-1}t), t \in [0, 1)\}.$$

However, since in this case the transformation \widehat{T} has a particularly simple structure, the same result can also be easily obtained using analytic arguments.

ACKNOWLEDGEMENTS

The authors are greatly indebted to Peter Grabner for introducing them into the topic of ergodic transformations in number theory, particularly concerning properties of the von Neumann-Kakutani transformation and the relation to the b-adic integers \mathbb{Z}_b . They also want to thank David Ralston from Ben Gurion University for interesting discussions on this topic during his visit in Graz in November 2011.

References

- [1] J. Dick and F. Pillichshammer. *Digital nets and sequences. Discrepancy and quasi-Monte Carlo integration*. Cambridge University Press, 2010.
- [2] M. Drmota and R.F. Tichy. Sequences, Discrepancies and Applications. Springer Verlag, New York, 1997.
- [3] J. Fialová and O. Strauch. On two-dimensional sequences composed by one-dimensional uniformly distributed sequences. *Uniform Distribution Theory*, 6(1):101–125, 2011.
- [4] N.A. Friedman. Introduction to Ergodic Theory. Van Nostrand Reinhold, New York, 1970.
- [5] N.A. Friedman. Replication and Stacking in Ergodic Theory. *The American Mathematical Monthly*, 99(1):31–41, 1992.
- [6] P. Grabner, P. Hellekalek, and P. Liardet. The dynamical point of view of low-discrepancy sequences. *Uniform Distribution Theory: to appear*, 2012.
- [7] P. Hellekalek. Regularities in the distribution of special sequences. *Journal of Number Theory*, 18:41 55, 1984.
- [8] L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. John Wiley & Sons, New York, 1974.
- [9] J.P. Lambert. Some developments in Optimal and Quasi-Monte Carlo Quadrature, and a New Outlook on a Classical Chebyshev Problem. Ph.D. Dissertation, The Claremont Graduate School, 1982.
- [10] J.P. Lambert. Quasi-Monte Carlo, low discrepancy sequences, and ergodic transformations. *Journal of Computational and Applied Mathematics*, 12:419 423, 1985.
- [11] G. Pagés. Van der Corput sequences, Kakutani transforms and one-dimensional numerical integration. *Journal of Computational and Applied Mathematics*, 44:21 39, 1992.
- [12] X. Wang and F.J. Hickernell. Randomized Halton sequences. *Mathematical and Computer Modelling*, 32:887–889, 2000.
- [13] G. Ökten. Generalized von Neumann-Kakutani transformation and random-start scrambled Halton sequences. *Journal of Complexity*, 25:318–331, 2009.