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Abstract

We consider the problem of estimatifigf (U, ..., U)], where(U?, ..., U%) denotes a random
vector with uniformly distributed marginals. In general, Latin hypercubeing (LHS) is a powerful
tool for solving this kind of high-dimensional numerical integration prahlén the case of dependent
components of the random vect@ ', ..., U%) one can achieve more accurate results by using Latin
hypercube sampling with dependence (LHSD). We state a central limitsimefor thed-dimensional
LHSD estimator, by this means generalising a result of Packham andi@curthermore we give
conditions on the functioif and the distribution ofU*, . . ., U¢) under which a reduction of variance
can be achieved. Finally we compare the effectiveness of Monte QadlaldSD estimators numeri-
cally in exotic basket option pricing problems.

1 Introduction

In this article we consider the problem of reducing the var@aof a Monte Carlo (MC) estimator for
special functionals of a random vector with dependent carapts. Several different techniques can be
used for this kind of problem, with different advantages shdrtcomings (for a detailed comparison, see
[Glasserman, 2004, Section 4]). A well-known techniquiedatn hypercube samplini-HS), which is a
multi-dimensional version of thstratified samplingnethod and has been introduced by [McKay et al.,
1979]. Although this method is well applicable to many diffiet types of problems, it cannot deal with
dependence structures among the components of randonrscetheerefore, we considématin hyper-
cube sampling with dependengedSD), which was introduced by [Stein, 1987] and providasance
reduction for many problems, especially in financial matagos.

Consider the problem of estimatifigjf (U?, ..., U?)] for a Borel-measurable arn@-integrable function
f:00,1]¢ — R, where(U!,... U?) is arandom vector with uniformly distributed marginals @ogula
C.Let(U},...,U%), 1 < i < n, denote an i.i.d. sample from this distribution. The stadddonte
Carlo estimator, which is given by/n >0 | f(U},...,U¢), is strongly consistent, and by the central
limit theorem for sums of independent random variables tsgeidution of the scaled estimator converges
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to a normal distribution, ie:

% Z[f(U}, L UD —EIFUY, . UD B N0, 02,0),

whereo?,, = Var(f(U,...,U%). In particular this means that the standard deviation og#tenator
converges to zero with rate-.

The aim of this paper is to establish a similar result for ti¢SD estimator, under some additional
conditions on the copul& and the functionf. This has already been done in the bivariate case by
[Packham and Schmidt, 2010] by using a result of [Fermartiah,e2004]. Packham and Schmidt [2010,
Proposition 5.9] also showed that under more restrictivelit@ons on the copula functiofi, the variance

of the bivariate LHSD estimator does not exceed the variahtiee standard Monte Carlo estimator.

An important application of Monte Carlo integration tedunés lies in the field of financial mathematics.
Many problems in finance result in the numerical computatibhigh-dimensional integrals, for which
MC methods provide an efficient solution. Two examples ageptficing of Asian and discrete lookback
options on several possibly correlated assets. We willsitigate these special derivatives in numerical
examples in the last section.

This paper is organised as follows: in the second sectiomteduce the main ideas of LHSD and recall
some important results. Our main results are presentecithiid section, where we state a central limit
theorem and show under which conditions a reduction of magacompared to the standard Monte Carlo
method, is possible. The last section is dedicated to a cosgpeof the effectiveness of LHSD and MC
in numerical examples.

2 Preliminaries

In this section, we recall the concept of stratified sampéing its extensions to Latin hypercube sampling
and Latin hypercube sampling with dependence. We alsoattasistency result, which was proved by
[Packham and Schmidt, 2010].

2.1 Stratified sampling and LHS

Suppose that we want to estim@tef (U)), whereU is an uniformly distributed random variable on the
interval [0, 1] (from now on denoted b¥/ ([0, 1])), and wheref : [0,1] — R is a Borel-measurable and
integrable function. By the simple fact that

E(f(U)) = ZE(f(U)\U € A)P(U € 4)),

where the intervals,, ..., 4,, (the so-calledstrata) form a partition of|0, 1], we get an estimator for
E(f(U)) by sampling conditionally on the eventflJ/ € A;},i = 1,...,n. Choosing strata of the form
A; = [=L) L) we can simply transform independent samgles. .., U™ from U ([0, 1]) by setting

n ’'n

-1 U
V,»::Z + =, 1=1,...,n,
n n

which impliesV; € A;,i = 1,...,n. The resulting estimator fdE(f(U)) given by L 3" | f(V;) is
consistent, and by the central limit theorem for sums of jreahelent random variables the limit variance
is smaller than the limit variance of a standard Monte Caskingator. For a more detailed analysis of
stratified sampling techniques, see [Glasserman, 2004ip8eic3.1].



This approach can be extended to the multivariate casefereift ways. If we require that there has to be
exactly one sample in every stratum, we need to didsamples, which is not feasible for a high number
of dimensiongl. One way to avoid this problem is Latin hypercube samplirgsuine we want to estimate
E(f(U',...,U%), wheref : [0,1]? — R is a Borel-measurable and integrable function. For fixede
generaten independent samples denoted (@Y, ...,U¢),i = 1,...,n, where theU/,j = 1,...,d
are uniformly distributed off0, 1]. Additionally, we generaté independent permutations 6f, ..., n},
denoted byry, ..., 74, drawn from a discrete uniform distribution on the set ofalésible permutations.
Denote byr! the value to whichi is mapped by thg-th permutation. Then thgth component of a Latin
hypercube sample is given by

-1 Uij

V7= + -4, j=1,...,di=1,...,n.
n n

By fixing a dimensionj, the componentﬁvlj, ..., VJ) form a stratified sample with strata of equal
length. It can be shown that the resulting estimatorBE¢y (U)) is consistent, and by assuming that
f(UY, ..., U%) has afinite second moment it follows that the variance of tH& estimator

1 n
EZf(‘/L177‘/7d)
i=1

is smaller than the variance of the standard MC estimatoxjiged the number of sample points is suf-
ficiently large, see [Stein, 1987]. If is bounded a central limit theorem for the LHS estimator can b
shown, see [Owen, 1992]. Berry-Esseen-type bounds aréadsa, see [Loh, 1996]. A detailed discus-
sion of LHS is given in [Glasserman, 2004, Section 4.4].

This technique is not suitable for dealing with random vexteith dependent components since the ran-
dom variabled’?, j = 1,...,d, are independent. One way to extend the LHS method to ranéctors
with dependent components is to apply LHS to independenpooents and then introduce dependen-
cies through a transformation of the LHS points. Such a phaeeis tedious in general, and we will not
pursue this approach any further.

2.2 Latin hypercube sampling with dependence

In this subsection, we introduce Latin hypercube sampliitfp Wependence. The main difference to
the LHS method is that instead of random permutationee use rank statistics, which are defined as
follows:

Definition 2.1 (Rank statistics) Let X1, ..., X,, be i.i.d. random variables with a continuous distribu-
tion function. Denote the ordered random variables¥y < --- < X, P-a.s. We call the index of;;
within X ;) < --- < X, thei-th rank statistic, given by

Tin :ri,n(Xla”'aXn) = Zl{Xk§X7} (1)
k=1

Consider a random vectdr = (U',...,U%), where every componefit’ is uniformly distributed on
[0, 1] and the dependence structurdbis modeled by a copula. Let (UL, ...,UDi=1,.. .,n denote
a sequence of independent sampleddf, ..., U9), and letr; ,, be thei-th rank statistic of U7, . . ., U?)
fori=1,...,nandj =1,...,d. Then a LHSD is given by

! 1

_ J
‘/1,]7’7/: Z7n’l’l, +%’ izl""?”avjzly"'?d? (2)




whereng,n are random variables i, 1]. It is clear that(Vf;n, ..., V7, ) forms a stratified sampling in
every dimensiory, where every stratum has equal length.

Packham and Schmidt [2010] consider different choicesflfgno obtain special properties. For example,
by choosing ally/,, uniformly distributed o0, 1] and independent df’/, the distribution of thel//,,
within their strata is uniform. This choice has the disadaga of necessitating the generation2af
random variables instead of only An effective choice in terms of computation timeyjs, = 1/2, which

means that every’gn is located exactly in the centre of its stratum. In the remieirof this section, we
briefly recall a result of [Packham and Schmidt, 2010] conicey the consistency of the LHSD estimator
for E(f(U)), which is defined by

1 n
=1

The usual law of large numbers for sums of independent randwoiables does not apply in this case
for two reasons: firstly in each dimension the samples fdilddndependent because of the application
of the rank statistic, and secondly, increasing the samgi#es: by one changes every term of the sum
instead of just adding one. Nevertheless, it can be showrtttbdollowing consistency result holds, see
[Packham and Schmidt, 2010, Proposition 4.1]:

Proposition 2.1 Let f : [0,1] — R be bounded and continuous C-a.e. . Then the LHSD estin(@}&
strongly consistent, ie :

i,n

1 n s
ng(m}n,...,Vd)ME(f(Ul,...,Ud)), asn — oo.
i=1

3 Central limit theorem and variance reduction

In this section we investigate the speed of convergenceeof HED estimator and discuss situations in
which the use of LHSD results in a reduction of variance. Hais already been done for the bivariate
case by [Packham and Schmidt, 2010]. They have also gudssdugher-dimensional version of the
main theorem, but no rigorous proof was given. Because ofatiethat most problems in finance for
which Monte Carlo techniques are suitable are high-dinteradiintegration problems, it is reasonable to
investigate the speed of convergence and the (asympteatiicg vf the variance also in the multivariate
case.

In the sequel, le€’,, denote the empirical distribution of the LHSD sample givgn b

_ 1 «
1 dy .__
Cru’y.osuf) o= —~ D v, <ut, VA, <ut)s
1=1

which is a distribution function. Furthermore, we defitig as

1 n
Calu!, s u?) = =3 Limwh<u . maUD <) )
=1
where
, 1 <&
i (u) = Ezl{UijSu}’ u € 0,1],
=1
are the one-dimensional empirical distribution functitased orUf, ...,Ujforj =1,...,d. To for-

mulate a central limit theorem we will need some regularityditions on the integranfland the copula
C.



Definition 3.1 (Hardy-Krause bounded variation) A functionf : [0,1]¢ — R is of bounded variation
(in the sense of Hardy-Krause)lf( f) < oo with

d
Vi => > VE(fi.. k).

k=11<i1<...<ixr<d

Here, the functional’(*) ( f) denotes the variation in the sense of Vitalifofestricted to thek - dimen-
sional faceF' ™ (i, ... ix) = {(u1,...,uq) € [0,1]¢ : u; = 1forj # iy,...,ix}. The variation of a
function f in the sense of Vitali is defined by

V® (friy, ..., i) = sup Z |A(f5 )],

JEP(i1,..., i)

where the supremum is extended over all partiti®s;, . .. ,i;) of F(*)(iy, ..., ;) into subintervals/
andA(f; J) denotes the alternating sum of the valueg att the vertices off. For more information on
this topic, see [Owen, 2005].

Definition 3.2 A functionf : [0,1]¢ — R is right continuous if for any sequenéel, u2, ... ud), ey
withwu? | w/,j=1,...,d,

lim f(ul,u?,...  ud) = fu'u?, ... u?).

n—roo

The next statement concerning the convergence of randouesegs will be used to prove Proposition
3.1 and Theorem 3.2. For more details see eg [Jacod andPR@3, Theorem 18.8].

Lemma 3.1 Let(X,,),>1 and(Y;,),>1 be sequences &-valued random variables, with, 2, X and
X, — V,,| 5 0. Thenv,, 2 X.

The following proposition of [Tsukahara, 2005] is a genizedlon of earlier results of [Stute, 1984] and
[Fermanian et al., 2004]. It is the essential ingredientroofs of our main theorems.

Proposition 3.1 Assume that’ is differentiable with continuous partial derivativésC (ul, ..., u?) =
%&;"“d)for]’ =1,...,d. Then

where
1 n
1 d
Cn(u yeees U ) = ﬁ Z 1{U,1§Fﬁ_(u1),,U,‘fSFg_(ud)}’
k=1
denotes the empirical copula function af~ denote the generalised quantile functiongffor j =

1,...,d, defined by _ _
F)7(u) = inf{z € R|F}(z) > u}.

Furthermore,G¢ is a centred Gaussian random field given by

d
Go(u',...,u?) = Be(u',...,u?) =Y " 0;C(u',...,u)Be(1,..., 1,47, 1,...,1), (5)
j=1



Bc is a d-dimensional pinned Brownian sheet[6n1]? with covariance function

E[Bc(u',...,u?) Bo@@,...,a%)] = C((u!, ..., ud) A@, ..., 7)) - C(ul, ..., u)C@,...,a%),

where(u!, ..., u) A (@!,...,7¢) denotes the componentwise minimum. ©
We can formulate a similar result for the sequeage
Proposition 3.2 Under the conditions of Proposition 3.1,

\/E(Cn(ul, ud) - ol ,ud)) Dy Golul,. .. ud) @)
holds, where all definitions are as in Proposition 3.1 aiig(u!, . .., u?) is given in(4).
Proof:

We only have to show that the supremum of the differ@noé‘,phndén vanishes fom — oo to apply
Lemma 3.1, which completes the proof. Note thatandC,, coincide on the grid (i1 /n,...,iq/n),1 <
i1,...,1q < n}. It follows that

o (IR B e W3 P

< max s
n n

T1<il, . id<n

Thus,sup,: i [Co(ul,. .. u) — Cp(ul,. .. ut)| — 0 for n — oo and (7) follows. O

.....

In the sequel, alU?,i = 1,...,d are uniformly distributed random variables {th 1] and all integrals
have to be understood in the sense of Lebesgue-Stieltjds. tNat the next theorem is an extension of
[Fermanian et al., 2004, Theorem 6] from the case of bivat@mthe case of multi-variate random vectors
U= U, ...,U%).

Theorem 3.1 Let the copulaC of (UY, ..., U%) have continuous partial derivatives and Jet [0, 1]¢ —
R be a right-continuous function of bounded variation in tkaese of Hardy-Krause. Then

1 & D
— ENUY,..., FYUD) - E[f(U,...,U? Goul, .. uDdf(ul, ... u?),
77 L (AN, B~ Bl 0= el )af )

where the functiorf : [0,1]¢ — R is defined by:

~ a 0 ifatleastonew’ =1, forj=1,...,d,
flus. )_{ flut,...,u?) otherwise. ®)

Furthermore, the limit distribution is Gaussian.

Proof:
By definition f is right-continuous and of bounded variation in the sendgastly-Krause. Furthermore,
it follows that almost surely

% .Z:(JC(F;(US)7 .., FYUd) - E[f(UL,.. .7Ud)]>



= Z( L FIUD) - EBIFWY, .., 0Y),

by the fact that” is continuous orf0, 1]<.
We use a multidimensional integration-by-parts techniguoposed by [Zaremba, 1968, Proposition 2].
Using the notation of [Zaremba, 1968] we get

~

%Z(ﬂFHUS)w-,Fﬁ(Uf))fE[ @', u%)

=Vn Ft, ... uhd(C, — O, ... ut

[0,1)¢

d
=y (-1) Z A]M, /[O 1]k(c”_C)(ul,...,uffl)djmjkf(ul,...,ud). 9)
k=0 s

.....

Here), ., denotes the sum over all possible partitions of the{get..., s} into two subsets
{1+ Jr} @nd{jrs1, ..., ja} Of k respectivelyl — k elements, where each partition is taken exactly
once. In the casds= 0 andk = d, the sum is interpreted as being reduced to one term.

Furthermore, the operatdy, ., indicates that the integral only applies to the variables. . , j,. Note

that after the application of the integral with respectl}p_“,]kf( u4), the integrated function is
a function ind — k variables. Furthermore for a functigrof d — k varlables the operataﬁsjk+1 ja 1S
given by

A.;k+1},,‘7jdg(jk+lv'"7jd) = Z (_1)mg(i17"'aid7k)7

{i1,esta—r }€{0,1}4 =k

wherem denotes the number of zerosfify, . .. , 14—« }. This means that, fof ¢ {j1,...,jx}
A’;/ (CnfC)(ulw..,ud)dj1 ,,,,, jkf(ul,...,ud)
[0,1]d—F
:/ (Cp —CO)ul,. .. w7 1,00 ,ud)djh___yjkf(ul,...,ujil,l,ujJrl,...,ud)
(0.1]
— / (Cp —C)(u!,. .. 70,07 ,ud)djhm,jkf(ul, 7 N | NV A T
[0 1]d k

and
A* , =4 ..A;d.

Jk+1,-- Jk+1

Thus

d
Vi (1) Z [ M/ (o= Ot Pl
k=0

(0,1]

.....

:\/ﬁz( Z AJk+1 ..... j /[Ollk(cﬂ_C)(ulv"~7ud)dj1 ----- jkf(ul""aud)
k=0 T

1,...,d;k

—&—\/ﬁ(—l)d/ (Cp — O)(ult, ..., ud)df(ul,. .. ub)

[0,1]4

:\/ﬁ(fl)d/ (C — O)(ut, ..., ud)df(ul,... u).
0.1)¢



The term

d—1

ﬁZ(—l)k Z A;k+17___7jd/[01}k(0n—O)(ul’,..,’ud)dj17___7jkf('u17,..,ud)
1,...,d;k ’

k=0

vanishes because each of its terms is equal to zero due tsablee of the following two reasons: firstly,
atleastone’,j = 1,...,dis equal to one and therefogéu!, . .., u?) = 0 by definition, or, secondly,
atleastone/,j = 1,...,d is equal to zero, hend@, (u*, ... ,u?) = C(u',...,u?) = 0.

Thus, by the continuous mapping theorem and (7), it folldves t

% Z(f(Fi(U}), . FY{UH) —E[f(U,. .., Ud)])
i=1

~

=(-1)%/n (Cp — CYu, ... ub)df(ut,. .., u?)

[0,1]¢
EEN Gc(ul,...,ud)df(ul,...,ud).
[0,1]¢
Sincef[o’l]d Ge(ul,. .. ,ud)df(ul, ...,u?) is a continuous, linear transformation of a tight Gaussian
process, it follows that the limiting distribution is Gaizss O

Remark 3.1 The reason for using the functioﬁ instead off is that the integrals of dimensioh =
2,...,d — 1in (9) are in general not vanishing. The one-dimensional integeak zero for every right-
continuous function of bounded variatighbecause of special properties of the functi@p, for more
details see [Fermanian et al., 2004]. In particular, this ams that in the two-dimensional case it is
sufficient to assume

f(l’):f($)7 z € R%

With this assumption instead ¢8) andd = 2, Theorem 3.1 is equivalent to [Fermanian et al., 2004,
Theorem 6]. We use the functighto get a more convenient representation for the limit vaceiof the
LHSD technique, which we state in the next theorem.

Theorem 3.2 Under the assumptions and notations of Theorem 3.1, we have
LS (FVh e V)~ B UD)) 2 N (0.2 ) (10)
\/ﬁ ims o Vin ) yOLHSD)>
=1

where

~ o~

aiHSD:/[O 1]2dE[GC(u1,...7ud)Gc(ﬂl,...,Ed)]df(ul,...,ud)df(ﬂl,...,ﬂd). (11)

Proof:
We want to apply Theorem 3.1 together with Lemma 3.1, so we taghow that

n

3 [f(m}n, VY= FENUD, . FS(U?))} | 0,  asn - oo.

i=1

1
NG




By [Leonov, 1998, Corollary 1]

Sk Vi) = FELUD, - FAUD)] | < V() < ox,
=1
whereV () is the Hardy-Krause variation ¢gf. Hence
1 n
=1

which, together with Lemma 3.1 and Theorem 3.1, proves émuét0). R
To derive equation (11) we apply Fubini’s theorernIEtpif{M]d Ge(ut, .. ud)df(ul, ... u?))?]. By
[Leonov, 1998, Theorem 3] a function of bounded variatforan always be written as the difference of

two completely monotone functions h and therefore an integral with respectft@an be written as a
difference of two integrals with respect to positive measyt h. Thus

B[( ], ettt o) ] -
Ge(@,...,u")df(@, ... ,Ed))}
[0,1]¢

Go(l,. . u®)dh(ut,. .. ,ud))

| )
- E[(/[o,ud Go(u',...,ub)dg(u',. .. u?) — /

[0,1]4
( GC(Ulw-wﬂd)dQ(ﬂlw--,ﬂd)—/ Gc(ﬂl,...,ﬂd)dh(ﬂl,...,ﬂd)ﬂ
(0.1 [0,1]4
:E{(/ Go(u',...,u")Ge (@', ..., uh)dg(u', ... ,ut)dg(@",...,u?)
[071]2d

+/ E|Go(ul,...,ud)Ge(@, ..., ad)|dh(u, ... u)dh@",... a%)
[0,1]¢

/[ | d]E|:GC(U1,.."Ud)Gc(ﬂl""?ﬂd)}df(ul,-..,ud)df(ﬂ17.N’ﬂd)’
0,1]2

where the use of Fubini's theorem is justified sirfde bounded anf.[ X Y] < oo for two jointly normal
random variables( andY". O



Remark 3.2 Note that by(5) and (6) the expression for? ;; s, in equation(11) can be represented in
terms ofC'. Additionally, further simplifications can be given for ttedlowing terms:

E[Bc(ut,...,u) - Bo(1,...,1,@,1,...,1)]
=C((h, ..., v Ll AT T ud)) = Ot u) T,
E[Bc(1,...,1,u'1,...,1)- Bo(1,...,1,@,1,...,1)]
=C((1,...,1,u"1,. .., L@ 1., 1)) — ',
E[Bc(1,...,1,u?,1,...,1)- Bc(1,...,1,@,1,...,1)] = v/ AW —u/W,
sinceC(1,...,1,u/,1,...,1) =/ forall j =1,...,d.

Next we want to give conditions under whief{;. > o7 ;; 5. The variance of a standard Monte Carlo
estimator is given by

2
012\46,:/ f(ul,...,ud)QdC(u17...7ud)—(/ f(ul,...,ud)dC(u17...,ud)> .
0.1)¢ 0.1]¢

Proposition 3.3 Let the copulaC of (U, ..., U4) have continuous partial derivatives, l¢t: [0,1]¢ —
R be a right-continuous function of bounded variation in tlemse of Hardy-Krause and let be as

defined in Theorem 3.1. S@tC(ul, ..., ul) = %u,“d) and

P c@,...,L,ui1,...,1,w,1,...,1), i#j
Ci’j(u,uﬂ):{ wAT, i=j.

Then
U%HSD :UJQMC
d
+/ QZajC(ul,...,ud)<O(al,...,ﬂd)uj—C(ﬂl,...,ﬂjfl,ﬂjAuj,ﬂj“,...,ad))
[0’1]2d j=1

d d
+3 Y o0@, ... ahocw,. . ,ud)(ci,j(ui,m) - uiaj)df(ul, uddf@, ... ad).

j=11i=1

Proof:
Note that

/ f(ul,...,ud)2d0(u1,...,ud):/ Ft, @ Aot AT ud AT,
[0,1]¢ [0,1]24

and that the functio®(u' A @, ..., u? Au?) is also a copula, which follows by observing that
Cut anat,...,u Aad) =PU <ur AT, ..., UL <ud Aud)
=PU' < U <@t . U <, U <7?)

10



is a joint probability distribution with uniform marginals
By integration-by-parts like in Theorem 3.1 it follows fdret variance of the Monte Carlo estimator that

2
020 = / Ft, .. uh)2dot, .. ud) — (/ Fa, ... ,ud)dC(ul,...,ud))
[0,1]¢ [0,1]4
:/ f(ul,...,ud)f(ﬂl,...,ﬂd)dC’((ul,...,ud)/\(ﬂl,...,ﬂd)>
[O,I]Qd
—/ f@t, . f@t, .. at)de (Wt .. ud)dC (@t ... a?)
[0,1]24
:/ Oty A @) dF
[071]2d
—/ Ct,...,uho@', ... uad)df ... . uddf@",. .. ah).
[071]2d
The proof is completed by using equations (5), (6), (11) aach&k 3.2. |
Theorem 3.3 Let C and f satisfy the assumptions in Theorem 3.1 andfldse as defined in Theorem

3.1. Furthermore let the functiofibe monotone non-decreasing in each argument&nd. .., 1)) < 0.
Moreover assume thédt satisfies the following conditions:

1 d
Wzajc*(ul,...,ud), je{l,....d, (13)
d PR - o o PR _
C; (v, at - C@,. ., A, WL
= W Ca,...,u%)
i=1,i#j ’ ’

forall w/ € [0,1], (@', ...,a?%) and@’ € (0,1],7 =1,...,d.
Theno? ysp < oiyc-

Proof:

By the assumptions ofiit follows that f is right-continuous, of bounded variation in the sense atifa
Krause and monotone non-decreasing in each argument. Y@t is sufficient to show that

M-

ajC’(ul,...,ud)<C(ﬂl,...,ﬂd)uj —C@,..., @ w Auj,ﬂj“,...,ﬂd))

j=1
d d o o
Y Y ac@,.. ahocwt,. ) (Ciyld @) —wiat) <0
=1 i=1
forall (u!,...,u), (@,...,a%) € [0,1]%

The above inequality holds true if

d
2(c@',....ut/ —c@,.... w W A, WL at) <Y o, ut) (Wt - C (o T

i=1

is satisfied for allj € {1,...,d} and allu/ € [0, 1], (@',...,a%) € [0,1]%
First we show that

c@,...,ut)y —o@, ..., @@ Al @t et < o;0@ . at) (W - AT

11

))



Note that this is true ifi/ A%’ € {0,1}. Now assume thdt < @/ </ < 1, then
c@,...., ! —Cc@@,...,.u%) <9;,Cc@',...,u") (Wl — )
o@,...,u") (! —1) <o;C@, ..., a"w (v — 1)
—1 —d
C('LL a~t'7u ) 28jC(Hl,...,ﬂd)

w

which holds by assumption (13). Next assume thatu’ < @’/ < 1, then

c@',...,uMd —Cc@,...,w W @t L at) < 9,0@@ . at) (Wi — )
c@',....uMd —o@,... @ W Wttt < 9,0 . atd (W - 1)
c@,... wtu wt ... ul .
c@',...,ut) - @, @ UI: LTI <o;,c@',...,ut) (@ —1)
c@,..., w @t . ad)  o@,...,a?)
1 —d _
C,...,u") - s < ’ﬂj’ (@ —1)
c@,..., w1, wtt .. . u?) - c@t,...,u?
uJ - w ’

(ul, ud) e [o 1]
Now IetC(* u?) > 0 and note that’/u’ — C; ;(v’,u’) < 0 for all w?, ' € [0, 1] holds by the fact
thatM is non-increasing in’ for all u/ € [0 1], (v, ..., u?) € [0,1)%. Thus we obtain that

d
c@,...,uty’ —c@,... @ w A, W at) <Y a0@ .. at) (W - Gyl a)

d _ _
—1 —dy, j —1 —j—1 —j j =i+l —d c@',...,u") j (i =i
Ca,..., v —C,...,w ", @ A/, @7 ... |1 )SZ . (uu - C;,; (v, 1))

C@@,..., w 1@ Aot @t ad) >ZCJ(u3 , ")
c(@@,...,u% T4
=

which holds by assumption (14). The caséu!, ..., u?) = 0 follows by the fact thatw <1
forall (@', ...,a?) € [0,1]% O

Remark 3.3 Note that in the two-dimensional case, assumptibB) is equivalent to the left tail in-
creasing property which implies a positive quadrant degawa of the copuld@’. This means that the
components of’ are more likely to be simultaneously small or simultaneplesige than in the indepen-
dent case. More information on different dependence pi@secan be found in [Joe, 1997] and [Nelsen,
1999].

In the following two remarks we give examples of copula disttions which satisfy the assumptions of
Theorem 3.3.
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Remark 3.4 Consider a multi-dimensional, one-parametric extensiithe Farlie-Gumbel-Morgenstern
(FGM) copula given by

d d
Cul,...,u?) = (HUZ) (aH(l—ui)—&—l) (15)
i=1

i=1

wherea € [—1,1]. By simple calculations one can verify that assump{it) is fulfilled if o« € [0, 1].
Now consider the right hand-side ¢14)

Zdj oy, @) Ed: Wz
w B w
i=1,i#] i=1,i#]
=(d—1)u’.
Finally assumptior{14) holds since
C@h,...,w 1w Aot @t ad)
C(@t,...,u?)
C@,...,w o, @t . . . ud)
:mln ]‘7 ) ) T ) 9 d ) )
C@,...,u%)

| (Hf:l 7) (a H?:1(1 —at) + 1)
(a [Ty (1 =) (1 =) + 1)
w (0‘ [T, (1 —7') + 1)

=min | 1,4’

>u?

fora € [0,1].
Note that the independence copdtéu?, ..., u?) = Hle u® is the special case of the FGM copula with
a = 0, hence Theorem 3.3 holds for the independence copula.

Remark 3.5 A multi-dimensional version of the Ali-Mikhail-Haq (AMHmula is given by

i=1 U

d i
Cut,...,ut) = l—a%d 1—a)
i=1

wherea € [—1, 1]. As in the previous example it is easy to see (ha) is fulfilled if « € [0, 1].
To prove(14) consider again the term on the right hand-side(bfl)

d Ci)j (uj,ﬂi) d W
y, STy 2
i=1,i#j i=1,i#j
= (d—1)u’.
Furthermore Theorem 3.3 applies since
c@,...,w tw Aud, @t ad)

c(@@t, ..., u%
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, C@@t,..., w @t . ad)
=min | 1, C@t )
ey

(ML) (1=l 0 —a)
(ngl ﬂy) (1 - H?:l,i;éj(l —a')(1 - “j))

=min | 1,/

zuj.

4  Application to option pricing

In this section we illustrate the effectiveness of Latin énqube sampling with dependence in basket
option pricing problems. The derivatives which we consiler Asian and lookback basket options. Let
(St)t>0 be ad-dimensional vector of asset price processes an@Sgl >, denote itsj-th component.
Then the price of an Asian basket call option is given by

m

ABC:]E{_TT( Z ZSr )}

where K > 0 denotes the fixed strike pricé,is the number of underlying assets= tg < t; < t2 <
. < t,, = T denote the observation points,is the maturity of the option anddenotes the risk free
interest rate. Similarly, the price of a discrete lookbaakket call option is given by

oLC — B[ (o ;i K)7.

As a model for the asset price procésé)tzo of each asset=1,...,d, we use

S§ = Sle =MHXT i dt>0,
wherew’ € R are constantss; > 0 denote the constant initial asset values affdare variance gamma
(VG) processes foj = 1,...,d. A VG process( X7 );>o with parameterg6?, 7, ¢/), which was first
introduced by [Madan and Seneta, 1990], is defined as a salated Brownian motion by

X} =X (07,07,¢) = Bé](cj 1)(93’,0-7), j=1,...,d,t>0, (16)
whereB{ (67, 07) are independent Brownian motions with drift parametrand volatility parameters
0/,5=1,...,d,andG?(c’, 1) are independent gamma processes independe®t,gf = 1,. .., d with
drift equal to one and volatility/ > 0. To ensure that the discounted value of a portfolio investete
asset is a martingale, we choose

w! =log(l — @/ — (07)%c7 /2) )¢, j=1,...,d.

By [Madanetal., 1998] a VG process can also be representad dﬁ‘ference of two independent gamma
processes, i&7 = G —G;7,j=1,...,d. Let (u+, v,) and(’_, 1) denote the parameters of the
gamma processa@Jr J G, respectively These pairs of parameters can be easilylatd from the
parameters in equation (16) through

i = (VO 2l 2) £00)/2, vl = (S, j=1,...d

14



Due to the fact that a gamma process has non-decreasing G@‘Hﬂis_:orresponds to the positive move-
ments of X7 and G, “ corresponds to the negative movements\gf Our assumption is that all pos-
itive movements of components of, = (X}, ..., X{) are dependent and all negative movements of
components ofX,; are dependent, but positive (negative) movements ofjitiecomponent are inde-
pendent of negative (positive) movements of all other camepts, for allj = 1,...,d. The depen-
dence structure between positive and negative movemeltsewnodelled by copula€'®, respectively.
Summarising, the increment of thedimensional gamma processes in the intefval, ¢;] given by
(Gt = GEL L G — G has cumulative distribution functio@™ (FyL,..., F; 1), where
ijil is the inverse cumulative distribution function of a gamnsdribution with the specific parameters
of the j-th asset.

4.1 Numerical results

In the sequel we use the parameter set stated in Table 1. Thpavé@neter values are taken from a
calibration of the VG process against options on the S&P B86x by [Hirsa and D.B.Madan, 2004]. As
underlying copula distribution we chose a FGM copula of traf (15) wherex = 0.5.

Parameters of the numerical examples

VG parameters:

i, g=1,...,d -0.2859
0j,j=1,...,d 0.1927
c,j=1,...,d 0.2505
Option parameters:

number of assei$ 10
maturity T’ 1
initial asset prices?,j = 1,...,d 100
risk free interest rate 0.05
number of monitoring points 4
time between monitoring points — ¢t;_1,i =1,...,k 0.25
Simulation parameters:

number of simulated option prices per estimator 4000
number of simulations of the estimators 100
choice of parameterg j=1,....d,i=1,...,n 0.5

Table 1: Parameters sets for the VG processes, the optidrtasimulations.

Using the parameter set given in Table 1, the evaluationaf eathe option prices included the compu-
tation of an80-dimensional integral. Standard deviation and varianceewemputed based on = 100
runs of the LHSD and MC estimators. The ratios in columns 67aoftable 2 and table 3 were computed
as the quotient of MC value and LHSD value.

It is obvious that the effectiveness of LHSD compared to MCreases with increasing strike price
K. The same phenomenon was also observed by [Packham andd&ch®diO] in a multi-dimensional
Black-Scholes model for the LHSD estimator and by [Glasser@004] for the standard LHS estimator.
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Prices of Asian basket call options with varying strike price K

o K Price LHSD Price MC Std. Dev. LHSD Std. Dev. MC  Std. Dev. rati®ar. ratio

05 80
05 90
0.5 100
0.5 110
0.5 120

22.0542
12.5511
3.79294
0.17227
0.00024

22.0448
12.5419
3.78732
0.17210
0.00024

0.00071
0.00080
0.00241
0.00119
0.000040

0.00748
0.00748
0.00621
0.00140
0.000041

10.419
9.270
2.577
1.174
1.009

108.575
85.944
6.642
1.379
1.018

Table 2: Prices of Asian basket call options, where the dégece structure of positive and negative

movements are modelled by a FGM copula with parameter

Prices of Lookback basket call options with varying strike price K

o K Price LHSD Price MC Std. Dev. LHSD Std. Dev. MC  Std. Dev. rati¥ar. ratio

05 80
05 90
0.5 100
0.5 110
0.5 120

25.662
16.151
6.893
1.192
0.060

25.658
16.147
6.890
1.192
0.060

0.00294
0.00294
0.00322
0.00305
0.00086

0.00839
0.00839
0.00760
0.00406
0.00089

2.850
2.850
2.356
1.332
1.029

8.125
8.125
5.553
1.775
1.060

Table 3: Prices of Lookback basket call options, where tipddence structure of positive and negative

movements are modelled by a FGM copula with parameter

We observed in price valuations, which we do not state hedetail, that the computation of one LHSD
price took about .4 times of the computation time of a corresponding Monte Cparice. Nevertheless

in our concrete implementation the most time-consuming pfathe simulation was to transform the
uniformly marginals into gamma distributed marginals.sThas to be done only once for all LHSD
estimator since by using (2) witlf , = 1/2,j = 1,...,d,i = 1,...,n we can apply the same set of
guantiles of the gamma distribution for each simulated patithe other hand we had to perform the
transformationdn times for each standard MC estimator. As a consequence fietieéness of LHSD

compared to standard Monte Carlo increases with the nunflessetsi. This can be observed in table
4. For a detailed analysis of computation time in differentipg problem we refer to [Packham and

Schmidt, 2010].
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Ratios of computation times of MC and LHSD estimators

Number of assetd Time MC / Time LHSD

5 8.44
10 11.19
20 13.37
30 14.35
40 14.93
50 15.05

Table 4: Ratios of computations times of different estimator the price of an Asian basket option.
Parameters are taken from table 1 and the number of simyatedn = 4000.
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