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Abstract

By a classical result of Weyl (1916), for any increasing sequence (nk) of positive inte-
gers, (nkx) is uniformly distributed mod 1 for almost all x. The precise asymptotics of
the discrepancy of this sequence is known only in a few cases, e.g. for nk = k (Khinchin
(1924)) and for lacunary (nk) (Philipp (1975)). In this paper we extend Philipp’s result
to lacunary sequences with multidimensional indices.

1 Introduction

Let (nk)k≥1 be an increasing sequence of positive integers and for x ∈ (0, 1) we set

ηk = ηk(x) := 〈nkx〉, (1)

where 〈 · 〉 denotes fractional part. The discrepancy of the first N elements of the sequence
(ηk) is defined as

DN = DN (x) := sup
0≤t≤1

∣∣∣∣
1

N
card (k ≤ N : ηk(x) ≤ t) − t

∣∣∣∣ . (2)

By a classical result of H. Weyl [11], DN (x) → 0 for almost all x ∈ (0, 1), i.e. (nkx) is
uniformly distributed mod 1 for all x ∈ (0, 1) except for a set of Lebesgue measure zero.
Estimating the speed of the convergence of DN (x) to 0 is a difficult problem requiring
sophisticated analytic and number theoretic tools and the precise order of magnitude of
DN (x) is known only for a few special sequences (nk). In the case nk = k Khinchin [5]
proved that

Dn(x) = O((log N)1+ε) a.e. (ε > 0),

and this becomes false for ε = 0. On the other hand, Philipp [8] proved that if (nk)k≥1 is
a lacunary sequence of integers, i.e. a sequence of integers satisfying

nk+1/nk ≥ q > 1 k = 1, 2 . . . , (3)
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then DN (x) satisfies the law of the iterated logarithm (LIL), i.e.

1√
32

≤ lim sup
N→∞

NDN(x)√
N log log N

≤ Cq a.e., (4)

where Cq is a positive number depending on q. Except the value of the limsup in (4), this
behavior is the same as that of the discrepancy of independent random variables, where the
limsup is 1/2 (see e.g. [9], p. 504). If (nk) grows much faster than exponential, the limsup
equals 1/2 (this follows, e.g., from the results of Gaposhkin [4] or from the approximation
theorems in Berkes [1]). However, assuming only the Hadamard gap condition (3), the
limsup is generally different from 1/2, see Fukuyama [3]. It is an open problem if the
limsup is a constant almost everywhere.

The purpose of this paper is to extend the theorem of Philipp for sequences (nk) with
multidimensional indices. Most results in the theory of uniform distribution and discrep-
ancy extend for sequences with values in R

d, although usually there is a price in accuracy
to pay for the high dimensional result. In contrast, there are very few results on the
discrepancy of sequences with multidimensional indices, even though the corresponding
problem, namely the uniform asymptotic behavior of random fields, has been extensively
studied in probability theory (see e.g. Khoshnevisan [6]). In view of this fact, it seems to
be of considerable interest to study the multiparameter version Philipp’s theorem, one of
the sharp and delicate results in metric discrepancy theory.

Let N
d denote the set of d-dimensional vectors with positive integer components and

let (nk)k∈Nd be a sequence of integers with d-dimensional indices. Letting k = (k1, . . . , kd)
and k′ = (k′

1, . . . , k
′
d), we say that k ≤ k′ if ki ≤ k′

i, 1 ≤ i ≤ d and k < k′ if k ≤ k′ and
k 6= k′. We say that (nk)k∈Nd is nondecreasing if nk′ ≤ nk provided k′ ≤ k. Let 1 denote

the d-dimensional vector (1, . . . , 1) and for N = (N1, . . . , Nd) we set |N| =
∏d

i=1 Ni.
The discrepancy DN(x) of the finite sequence (nk)1≤k≤N is defined, similarly to the one-
parameter case, as

DN(x) = sup
0≤a<b≤1

∣∣∣∣∣

∑N

k=1
1[a,b)(〈nkx〉)
|N| − (b − a)

∣∣∣∣∣ ,

where
∑

N

k=1
=
∑

k: 1≤k≤N
. Our main result is

Theorem 1 Let (nk)k∈Nd be a nondecreasing sequence of positive integers for which

#{k ∈ N
d : 2r ≤ nk < 2r+1} ≤ Q, r = 1, 2, . . . (5)

with a constant Q. Then

lim sup
|N|→∞

|N|DN(x)√
|N| log log |N|

≤ CQ,d a.e., (6)

where CQ,d is a positive number depending on Q and d.

Note that the one-dimensional Hadamard gap condition (3) has been replaced by
condition (5) which has a different character. In one dimension, (5) is satisfied if and
only if (nk) is the union of finitely many sequences each of which satisfies the Hadamard
gap condition (3). Note that any such sequence will satisfy the upper bound in Philipp’s
result (4). Thus Theorem 1 really is a generalization of Philipp’s result, and condition
(5) can be seen as a generalization of the concept of lacunary sequences to the case of
sequences with multidimensional indices. We emphasize that the lower bound in (4) may
not necessarily hold for sequences that satisfy only (5) instead of (3).
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It would be tempting to define the Hadamard gap condition for a sequence (nk)k∈Nd

with multidimensional indices by requiring that

nk′/nk ≥ q > 1 for k′ > k. (7)

However, with definition (7), Theorem 1 fails. Let e.g. d = 2 and nk = 2k1+k2 for
k = (k1, k2). In Section 4 we will show that for almost all x ∈ (0, 1), the inequality
|N|DN(x) ≥ const |N|3/4 holds for infinitely many N, and thus (6) is not valid.

To prove Theorem 1 we use techniques developed by Takahashi [10], Philipp [8] and
Erdős and Gál [2].

2 Exponential bounds

In the following let a d-dimensional vector N = (N1, . . . , Nd) of positive integers be given,
let f(x) denote an even function satisfying

f(x + 1) = f(x), Var f ≤ 2, ‖f‖∞ ≤ 1,

∫ 1

0

f(x) dx = 0 (8)

and let

f(x) ∼
∞∑

j=1

cj cos 2πjx

be its Fourier series. Additionally we assume

2−h−2 ≤
∫ 1

0

f(x)2 dx ≤ 2−h−1, (9)

where h is a positive integer with h ≤ (log2 |N|)/2; this condition will play a crucial role
in the chaining argument in Section 3. Let

g(x) =

|N|3∑

j=1

cj cos 2πjx.

Then ‖g‖∞ ≤ ‖f‖∞ + Var f ≤ 3. By (8) and Zygmund [12, p. 48]

|cj | ≤
Var f

2j
≤ 1

j
, j ≥ 1,

and thus
∞∑

j=1

c2
j ≤ 2

and for any J ≥ 1
∞∑

j=J+1

c2
j ≤

∫ ∞

J

1

t2
dt =

1

J
. (10)

Lemma 1

P

{
max
M≤N

∣∣∣∣∣

M∑

k=1

(
f(nkx) − g(nkx)

)∣∣∣∣∣ > h−2
√
|N| log log |N|

}
≤ (log2 |N|)4

|N| .
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Proof: For 1 ≤ M ≤ N we have

∥∥∥∥∥

M∑

k=1

(
f(nkx) − g(nkx)

)∥∥∥∥∥
2

≤ |M| ‖f − g‖2

≤ |M|

√√√√
∞∑

j=|N|3+1

c2
j

≤ |M|
|N|3/2

≤ 1

|N|1/2
.

Thus by the Markov inequality and h ≤ (log2 |N|)/2

P

{
max
M≤N

∣∣∣∣∣

M∑

k=1

(
f(nkx) − g(nkx)

)∣∣∣∣∣ > h−2
√
|N| log log |N|

}

≤
∑

M≤N

P

{∣∣∣∣∣

M∑

k=1

(
f(nkx) − g(nkx)

)∣∣∣∣∣ > h−2
√
|N| log log |N|

}

≤ |N| (log2 |N|)4
|N|2 ≤ (log2 |N|)4

|N| .

The following lemma, which extends [10] and [8, Proposition], is the key technical step
in the proof of Theorem 1.

Lemma 2 Let K̃ be a finite set of d-dimensional vectors of positive integers. Then

P





∣∣∣∣∣∣

∑

k∈ eK

g(nkx)

∣∣∣∣∣∣
> C1h

−2

√
|K̃| log log |K̃|



 ≤ 2e−2(d+1)h log log | eK|, (11)

provided |N|1/3 ≤ |K̃| < |N| and |N| is sufficiently large.

Here and in the following C1, C2, . . . denote suitable positive numbers that may depend
on d and Q but not on k, K̃,N or anything else. |K̃| denotes the number of elements of K̃.

Proof: We write {nk : k ∈ K̃} as a nondecreasing sequence with 1-dimensional indices
(nk)1≤k≤| eK|. It suffices to prove

P





∣∣∣∣∣∣

| eK|∑

k=1

g(nkx)

∣∣∣∣∣∣
> C1h

−2

√
|K̃| log log |K̃|



 ≤ 2e−2(d+1)h log log | eK| (12)

for sufficiently large |N|. We put

Um(x) =

Mm+1∑

k=Mm+1

g(nkx),

where Mm is the smallest integer greater or equal m|K̃|1/3, m = 0, . . . , ⌊|K̃|2/3⌋, and

M⌊| eK|2/3⌋+1 = |K̃|. We put m+ = ⌊|K̃|2/3⌋/2,

I1(λ) =

∫ 1

0

exp


2λ

⌊m+⌋∑

m=0

U2m(x)


 dx
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and

I2(λ) =

∫ 1

0

exp


2λ

⌈m+⌉∑

m=1

U2m−1(x)


 dx.

For |z| ≤ 1 we have
ez ≤ 1 + z + z2,

and since 2λ|U2m(x)| ≤ 2λ‖g‖∞(M2m+1 − M2m) ≤ 6λ(|K̃|1/3 + 1) ≤ 1 for

λ ≤ 1

6(|K̃|1/3 + 1)
, (13)

we obtain

I1(λ) ≤
∫ 1

0

⌊m+⌋∏

m=0

(
1 + 2λU2m + 4λ2U2

2m

)
dx,

provided that (13) holds. For any m

U2
m(x) ≤ 2

Mm+1∑

k=Mm+1

Mm+1∑

k′=k

g(nkx)g(nk′x) = Wm(x) + Vm(x),

where Wm is a sum of trigonometric functions whose frequencies lie between nMm+1 and
2|N|3nMm+1

, and where Vm is a sum of trigonometric functions with frequencies at most
nMm+1 − 1.

|Vm(x)| ≤ 2

Mm+1∑

k=Mm+1

Mm+1∑

k′=k

∑

1 ≤ j, j′ ≤ |N|3,

|nkj − nk′j′| < nMm+1

|cjcj′ |

≤ 2

Mm+1∑

k=Mm+1

Mm+1∑

k′=k

∑

1 ≤ j, j′ ≤ |N|3,

|j −
nk′

nk
j′| < 1

|cjcj′ |

≤ 4

Mm+1∑

k=Mm+1

Mm+1∑

k′=k




∞∑

j′=1

c2
j′




1/2
 ∑

j>nk′/nk−1

c2
j




1/2

.

For fixed k there are at most 2Q integers k′ ≥ k for which nk

nk′
≥ 1 (for these nk′ = nk),

at most 2Q for which 1 > nk

nk′
≥ 1

2 , at most 2Q for which 1
2 > nk

nk′
≥ 1

4 and so on. Thus

|Vm(x)| ≤ 4
√

2‖f‖2(Mm+1 − Mm)2Q

(
2
√

2 +
∞∑

i=1

√
1

2i − 1

)
≤ 64Q‖f‖2(Mm+1 − Mm).

Therefore

I1(λ) ≤
∫ 1

0

⌊m+⌋∏

m=0

(
1 + 2λU2m(x) + 4λ2W2m(x) + 256λ2Q‖f‖2(M2m+1 − M2m)

)
.

If d2m cos 2πu2mx is any term of the trigonometric polynomial 2λU2m(x)+4λ2W2m, then

u2m−
m−1∑

k=0

u2k ≥ nM2m−2|N|3
m−1∑

k=0

nM2k
≥ nM2m

(
1 − 2|N|3

m−1∑

k=0

(
2−⌊| eK|1/3/Q⌋

)m−k
)

> 0
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for sufficiently large |N|, since by assumption |K̃| > |N|1/3. Hence

I1(λ) ≤
⌊m+⌋∏

m=0

(
1 + 256λ2Q‖f‖2(M2m+1 − M2m)

)
≤ exp




⌊m+⌋∑

m=0

256λ2Q‖f‖2(M2m+1 − M2m)


 .

In the same way we can prove a similar inequality for I2(λ), and thus by the Cauchy-
Schwarz-inequality

∫ 1

0

exp


λ

| eK|∑

k=1

g(nkx)


 dx ≤

√
I1(λ)I2(λ) ≤ exp

(
128λ2Q‖f‖2|K̃|

)
,

valid for sufficiently large |N| and any λ satisfying (13). We choose

λ = h3

√
log log |K̃|

|K̃|
,

and observe that this λ satisfies (13) for sufficiently large |N|. Thus we get by Markov’s
inequality

P




| eK|∑

k=1

g(nkx) > C1h
−2

√
|K̃| log log |K̃|




≤ exp
(
128Qh6‖f‖2 log log |K̃| − C1h log log |K̃|

)

≤ exp
(
−2(d + 1)h log log |K̃|

)

for a sufficiently large C1 that satisfies 128Qh62(−h−1)/2 − C1h ≤ −2(d + 1)h for h ≥ 1
and sufficiently large |N|. A similar result for −g(x) instead of g(x) yields (12), which
proves Lemma 2.

Until now we considered only even functions f . Since any function f satisfying (8) can
be written as the sum of an even and an odd function both of which satisfy (8) and our
previous estimates remain valid for odd functions f , we get as a consequence of Lemma
1 and Lemma 2

Corollary 1 Let f(x) be a function which satisfies (8) and which can be divided into an
even and an odd part both of which satisfy (9). Write g(x) for the |N|3-th partial sum of
the Fourier series of f . Then we have

P

{
max
M≤N

∣∣∣∣∣

M∑

k=1

(
f(nkx) − g(nkx)

)∣∣∣∣∣ > 2h−2
√
|N| log log |N|

}
≤ 2(log2 |N|)4

|N|

Let K̃ be a finite set of d-dimensional vectors of positive integers. Then

P





∣∣∣∣∣∣

∑

k∈ eK

g(nkx)

∣∣∣∣∣∣
> 2C1h

−2

√
|K̃| log log |K̃|



 ≤ 4e−2(d+1)h log log | eK|,

provided |N|1/3 ≤ |K̃| < |N| and |N| is sufficiently large.
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3 Proof of Theorem 1

Using the inequalities in Section 2 it is not difficult to prove that
∣∣∣∣∣

N∑

k=1

(
1[a,b)(〈nkx〉) − (b − a)

)
∣∣∣∣∣ = O

(√
|N| log log |N|

)
a.e.

for any fixed 0 ≤ a < b ≤ 1. To prove the uniformity in a, b we will use a multiparameter
chaining argument which extends the arguments in Erdős and Gál [2] and Philipp [8], but
the multiparameter setting presents considerable difficulties.

Let N = (N1, . . . , Nd) with |N| = 2n be given. We put H = (log2 |N|)/2 = n/2. Every
a ∈ [0, 1) can be written in dyadic expansion

a =

∞∑

h=1

2−hah, ah ∈ {0, 1},

and obviously
H∑

h=1

2−hah ≤ a ≤
H∑

h=1

2−hah + 2−H .

We define functions

̺
(j)
h (x) = 1[(j−1)2−h,j2−h)(x), 1 ≤ j ≤ 2h, 1 ≤ h ≤ H,

where 1[a,b) denotes the indicator of the interval [a, b), extended with period 1, and

ϕ
(j)
h (x) = ̺

(j)
h (x) −

∫ 1

0

̺
(j)
h (x) dx, 1 ≤ j ≤ 2h, 1 ≤ h ≤ H.

Then for any a there exist coefficients εh = εh(a) ∈ {0, 1} and indices jh = jh(a), 1 ≤ h ≤
H , plus an additional index j̄H = j̄H(a) such that

H∑

h=1

εh̺
(jh)
h (x) ≤ 1[0,a)(x) ≤

H∑

h=1

εh̺
(jh)
h (x) + ̺

( ¯jH )
H (x). (14)

The functions ϕ
(j)
h (x) satisfy the conditions of Corollary 1. We write ϕ̂

(j)
h for the |N|3-th

partial sum of the Fourier series of ϕ
(j)
h (corresponding to the function g in Section 2) and

ϕ̄
(j)
h for the remainder terms (corresponding to f − g).

We define sets

K̂i =

log2 Ni⋃

L=0

Ni
2L −1⋃

l=0

{{
x ∈ N : l2L + 1 ≤ x ≤ (l + 1)2L

}}
, i = 1, . . . , d,

(that means for example if Ni = 4 then K̂i = {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3, 4}})
and put

K̂ = K̂(N) =
{
K̃1 × · · · × K̃d : K̃i ∈ K̂i, i = 1, . . . , d

}
.

Now let any M = (M1, . . . , Md) ≤ N be given. We write each Mi in dyadic expansion
Mi =

∑∞
l=0 Mi,l2

l, put

M̂i =

log2 Ni⋃

L=0







x ∈ N :

log2 Ni∑

l=L

Mi,l2
l + 1 ≤ x ≤

log2 Ni∑

l=L−1

Mi,l2
l







 ,
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write the set {x ∈ N
d : x ≤ M} as an union of disjoint sets

K̃(M) ∈ M̂ =
{

M̃1 × · · · × M̃d : M̃i ∈ M̂i, i = 1, . . . , d
}

and write K̄(M) for the class of sets K̃(M). (For example if d = 2 and M = (7, 5), then
M̂1 = {{1, 2, 3, 4}, {5, 6}, {7}}, M̂2 = {{1, 2, 3, 4}, {5}} and

K̄(M) = {{1, 2,3, 4} × {1, 2, 3, 4}}, {{1, 2, 3, 4}× {5}}, {{5, 6}× {1, 2, 3, 4}}, {{5, 6}× {5}},
{{7} × {1, 2, 3, 4}}, {{7}× {5}}.

We emphasize that the elements K̃ of K̄(M) are contained in K̂ as well.) Thus

M∑

k=1

f(nkx) =
∑

eK∈K̄(M)

∑

k∈ eK

f(nkx).

The number of sets K̃ = K̃(M) with |K̃| = 2l is at most d!ld−1 (by the construction of

the sets K̃ it is clear that |K̃| always is an integer power of 2). Thus

∣∣∣∣∣

M∑

k=1

f(nkx)

∣∣∣∣∣ ≤


 ∑

eK(M): | eK|>|N|1/3

∣∣∣∣∣∣

∑

k∈ eK

f(nkx)

∣∣∣∣∣∣


+ 2d!

(
log2

(
|N|1/3

))d−1

|N|1/3‖f‖∞.

In K̃(M) there are at most d!ld−1 sets with |K̃| = 2n−l. We define

GN =
⋃

eK∈K̂(N),| eK|>|N|1/3

H⋃

h=1

2h⋃

j=1





∣∣∣∣∣∣

∑

k∈ eK

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣
>

C2

h2

(
log2

|N|
|K̃|

)−d−1√
|N| log log |N|





HN =

H⋃

h=1

2h⋃

j=1

{
max
M≤N

∣∣∣∣∣

M∑

k=1

ϕ̄
(j)
h

∣∣∣∣∣ > 2h−2
√
|N| log log |N|

}

where C2 will be chosen later. Here and in the sequel, log2 is meant as max(1, log2 x).
For x ∈ (0, 1) in Gc

N
∩ Hc

N
(Ac denotes the complement of A) we have

∣∣∣∣∣

M∑

k=1

ϕ
(j)
h (nkx)

∣∣∣∣∣

=

∣∣∣∣∣

M∑

k=1

(
ϕ̂

(j)
h (nkx) + ϕ̄

(j)
h (nkx)

)∣∣∣∣∣

≤


 ∑

eK∈K̄(M),| eK|>|N|1/3

∣∣∣∣∣∣

∑

k∈ eK

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣




+2d!
(
log2

(
|N|1/3

))d−1

|N|1/3 +

∣∣∣∣∣

M∑

k=1

ϕ̄
(j)
h (nkx)

∣∣∣∣∣
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≤




2n/3∑

l=0

∑

eK: |N|

|fK|
=2l

C2h
−2l−d−1

√
|N| log log |N|




+2d!
(
log2

(
|N|1/3

))d−1

|N|1/3 + 2h−2
√
|N| log log |N|

≤




2n/3∑

l=0

C2h
−2l−d−1d!ld−1

√
|N| log log |N|




+2d!
(
log2

(
|N|1/3

))d−1

|N|1/3 + 2h−2
√
|N| log log |N|

≤ C3h
−2
√
|N| log log |N| for all M ≤ N, h = 1, . . . , H, j = 1, . . . , 2h.

Hence by (14) we have for such x

sup
a∈[0,1)

max
M:|N|/2<|M|≤|N|

∣∣∣∣∣

M∑

k=1

1[0,a)(nkx) − |M|a
∣∣∣∣∣

≤ sup
a∈[0,1)

max
M:|N|/2<|M|≤|N|

H∑

h=1

∣∣∣∣∣

M∑

k=1

ϕ
(jh)
h (nkx)

∣∣∣∣∣+
∣∣∣∣∣

M∑

k=1

ϕ
( ¯jH )
H (nkx)

∣∣∣∣∣+ 2
√
|N|

≤
H∑

h=1

C3h
−2
√
|N| log log |N| + C3H

−2
√
|N| log log |N| + 2

√
|N|

≤ C4

√
|N| log log |N|

and thus ∣∣∣∣∣

M∑

k=1

1[0,a)(nkx) − |M|a
∣∣∣∣∣ ≤ 2C4

√
|M| log log |M|

for all M ≤ N with |N|/2 < |M| ≤ |N| and all a ∈ [0, 1). We write

Gn =
⋃

N: |N|=2n

GN, Hn =
⋃

N: |N|=2n

HN.

Then for all x ∈ [0, 1) in Gc
n ∩ Hc

n

∣∣∣∣∣

M∑

k=1

1[0,a)(〈nkx〉) − |M|a
∣∣∣∣∣ ≤ 2C4

√
|M| log log |M| (15)

for all M with 2n−1 < |M| ≤ 2n and all a ∈ [0, 1). If we can show

∞∑

n=1

P(Gn) < ∞,

∞∑

n=1

P(Hn) < ∞ (16)

then, by the Borel-Cantelli lemma, for almost all x ∈ [0, 1) there exists an n0 = n0(x)
such that x 6∈ (Gn ∪ Hn) for all n > n0, and thus by (15)

lim sup
N≥1

|N|DN(x)√
|N| log log |N|

≤ 4C4 a.e.,

which proves (6). It remains to show (16). There are at most d!nd−1 different vectors N
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with |N| = 2n. By Corollary 1

∞∑

n=1

P(Hn) ≤ d!

∞∑

n=1

nd−1 max
N: |N|=2n

P(HN)

≤ d!

∞∑

n=1

nd−1
H∑

h=1

2h∑

j=1

2n4

2n

≤ 2d!

∞∑

n=1

nd−1 n

2
2n/2 n4

2n
< ∞.

For any N with |N| = 2n and K̃ ∈ K̂(N) with |K̃| = 2n−l, l ≥ n/3, and any 1 ≤ h ≤ H
and 1 ≤ j ≤ 2h by Corollary 1

P





∣∣∣∣∣∣

∑

k∈ eK

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣
> C2h

−2

(
log2

|N|
|K̃|

)−d−1√
|N| log log |N|





≤ P





∣∣∣∣∣∣

∑

k∈ eK

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣
> C2h

−2(log2 2l)−d−1
√

2l

√
|K̃| log log |K̃|





≤ P





∣∣∣∣∣∣

∑

k∈ eK

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣
> 2C1h

−2

√
|K̃| log log |K̃|





≤ 4e−2(d+1)h log log | eK|,

if n is sufficiently large and if C2 is chosen such that C2(log2 2l)−d−1
√

2l > 2C1 for
l = 0, 1, 2, . . . , and so

P(GN) ≤
∑

eK∈K̂(N):| eK|>|N|1/3

H∑

h=1

2h∑

j=1

4e−2(d+1)h log log | eK|

≤ 4

2n/3∑

l=0

d!ld−1
H∑

h=1

2h

(
1

log 2n−l

)2(d+1)h

≤ 4 d!nd
H∑

h=1

(
2

log 2n/3

)2(d+1)h

≤ 4 d!nd

(
9

n

)2(d+1)

for sufficiently large n. Thus

P(Gn) ≤ d!nd−1 max
N: |N|=2n

P(GN)

≤ d! 4 d! 92(d+1)nd−1ndn−2(d+1) < C5n
−3

for sufficiently large n, which implies that

∞∑

n=1

P(Gn) < ∞.

This proves the theorem.
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In conclusion we prove the remark made in the introduction, namely that Theorem 1
fails for the sequence (nk)k∈N2 defined by nk = 2k1+k2 for k = (k1, k2). To see this, let
N = (n, n) and f(x) = 1[0,1/2)(x) − 1/2, extended with period 1. Then

∑

1≤k≤N

f(nkx) =

2n∑

j=2

c
(n)
j f

(
2jx
)

(17)

where c
(n)
j = j − 1 for 2 ≤ j ≤ n + 1 and c

(n)
j = 2n − j + 1 for n + 2 ≤ j ≤ 2n. Observe

that

f
(
2jx
)

=
1

2
rj+1(x), j ≥ 1,

where rj denotes the j-th Rademacher function, and thus the sequence (rj(x))j≥1 is a
sequence of i.i.d. random variables. Hence using the central limit theorem with Berry-
Esseen remainder term (see e.g. Petrov [7, p. 149]) we get that

∣∣∣∣∣∣
µ


x ∈ (0, 1) : B−1/2

n

2n∑

j=2

c
(n)
j f(2jx) < t


− Φ(t)

∣∣∣∣∣∣
≤ C Ln ≤ C′n−1/2, (18)

where µ is the Lebesgue measure, Φ is the standard normal distribution function, C, C′

are absolute constants,

Bn =

∫ 1

0




2n∑

j=2

c
(n)
j f(2jx)




2

dx =

2n∑

j=2

(
c
(n)
j

)2
∫ 1

0

f(x)2dx =
2n3 + n

12
.

and

Ln = B−3/2
n

2n∑

j=2

∫ 1

0

∣∣∣c(n)
j f(2jx)

∣∣∣
3

dx

= B−3/2
n

2n∑

j=2

(
c
(n)
j

)3
∫ 1

0

|f(x)|3 dx =

(
12

2n3 + n

)3/2
n4 + n2

16
.

Given ε > 0 choose a > 0 so small that Φ(a) − Φ(−a) ≤ ε, then by (18) we get

µ


x ∈ (0, 1) :

∣∣∣∣∣∣

2n∑

j=2

f
(
2jx
)
∣∣∣∣∣∣
≥ aB1/2

n


 ≥ 1 − 2ε

for sufficiently large n. Since Bn ≥ n3/6 ≥ |N|3/2/6, the last relation implies

µ


x ∈ (0, 1) :

∣∣∣∣∣∣

∑

1≤k≤N

f(nkx)

∣∣∣∣∣∣
≥ a|N|3/4

√
6


 ≥ 1 − 2ε (19)

for sufficiently large n. Letting Fn denote the set in the brackets in (19), it follows that

µ(∩∞
n=1 ∪∞

k=n Fk) ≥ 1 − 2ε,

i.e. the set of x ∈ (0, 1) such that

∣∣∣∣∣∣

∑

1≤k≤N

f(nkx)

∣∣∣∣∣∣
≥ const |N|3/4 for infinitely many N (20)
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has measure ≥ 1 − 2ε. Since ε was arbitrary, we get

lim sup
|N|→∞

|N|DN(x)√
|N| log log |N|

≥ lim sup
|N|→∞

∣∣∣
∑

1≤k≤N
f(nkx)

∣∣∣
√
|N| log log |N|

= +∞ a.e.,

i.e. the conclusion of Theorem 1 fails for the sequence (nk)k∈N2 .
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der Diophantischen Approximationen, Math. Ann. 92:115-125, 1924.

[6] D. Khoshnevisan, Multiparameter Processes. Springer, 2002.

[7] V.V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, 1995.

[8] W. Philipp, Limit theorems for lacunary series and uniform distribution mod 1.
Acta Arith. 26:241-251, 1975.

[9] R. Shorack and J. Wellner, Empirical Processes with Applications to Statistics,
Wiley, New York, 1986.

[10] S. Takahashi, An asymptotic property of a gap sequence. Proc. Japan Acad. 38:101-
104, 1962.

[11] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77:313-352,
1916.

[12] A. Zygmund, Trigonometric series. Vol. I, II. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, 2002.

12


