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Abstract

The classical concept of Q-functions associated to symmetric and selfadjoint opera-
tors due to M.G. Krein and H. Langer is extended in such a way that the Dirichlet-
to-Neumann map in the theory of elliptic differential equations can be interpreted as
a generalized Q-function. For couplings of uniformly elliptic second order differential
expression on bounded and unbounded domains explicit Krein type formulas for the
difference of the resolvents and trace formulas in an H2-framework are obtained.
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1 Introduction

The notion of a Q-function associated to a pair {S,A} consisting of a symmet-
ric operator S and a selfadjoint extension A of S in a Hilbert or Pontryagin
space was introduced by M.G. Krein and H. Langer in [37,38]. A Q-function
contains the spectral information of the selfadjoint extensions of the underlying
symmetric operator and therefore these functions play a very important role
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in the spectral and perturbation theory of selfadjoint operators. Q-functions
appear also naturally in the description of the resolvents of the selfadjoint
extensions of a symmetric operator with the help of Krein’s formula and they
can be used to construct functional models for selfadjoint operators. In the
theory of boundary triplets associated to symmetric operators Q-functions can
be interpreted as so-called Weyl functions; cf. [16–19,29]. A prominent exam-
ple for a Q-function is the classical Titchmarsh-Weyl coefficient in the theory
of singular Sturm-Liouville operators.

The main objective of this paper is to extend the concept of Q-functions in such
a way that the Dirichlet-to-Neumann map in the theory of elliptic differential
equations can be identified as a generalized Q-function. In the abstract part
of the paper we introduce the notion of generalized Q-functions and we show
that these functions have similar properties as classical Q-functions. Besides
a symmetric operator S and a selfadjoint extension A also an operator T

whose closure coincides with S∗ is used. Some of the ideas here parallel [9],
where a more abstract approach with isometric and unitary relations in Krein
spaces was used. The main result in the abstract part is Theorem 2.6 which
states that an operator function is a generalized Q-function if and only if it
coincides up to a possibly unbounded constant on a dense subspace with the
restriction of a Nevanlinna function with an invertible imaginary part and a
certain asymptotic behaviour.

Section 3 and Section 4 deal with second order elliptic operators on bounded
and unbounded domains, and with the coupling of such operators. Suppose
first that the domain Ω ⊂ R

n, n > 1, is bounded with a smooth boundary
∂Ω. Let AD and AN be the selfadjoint realizations of an formally symmetric
uniformly elliptic differential expression

L = −
n∑

j,k=1

∂

∂xj

ajk
∂

∂xk

+ a (1.1)

in L2(Ω) defined on H2(Ω) and subject to Dirichlet and Neumann boundary
conditions, respectively. If T denotes the realization of L on H2(Ω), then the
closure of T in L2(Ω) coincides with the maximal operator associated to L in
L2(Ω), and AD and AN are both selfadjoint restrictions of T . For a function
f ∈ H2(Ω) denote the trace and the trace of the conormal derivative by f |∂Ω

and ∂f
∂ν
|∂Ω, respectively. Then for each λ ∈ ρ(AD) the Dirichlet-to-Neumann

map

Q(λ)(fλ|∂Ω) := −
∂fλ

∂ν

∣∣∣∣
∂Ω

, where Tfλ = λfλ, (1.2)

is well-defined and will be regarded as an operator in L2(∂Ω) defined on
H3/2(∂Ω) with values in H1/2(∂Ω). The minus sign in (1.2) is used for techni-
cal reasons. It turns out that the operator function λ 7→ Q(λ) is a generalized
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Q-function in the sense of Definition 2.2 and an explicit variant of Krein’s
formula for the resolvents of AD and AN is obtained in Theorem 3.4, see also
[9,13,25,26,47–50] for more general problems. In particular, in the case n = 2 it
follows from results due to M.S. Birman that the difference of these resolvents
is a trace class operator. As a consequence we obtain the trace formula

tr
(
(AD − λ)−1 − (AN − λ)−1

)
= tr

(
Q(λ)−1

d

dλ
Q̃(λ)

)
(1.3)

for λ ∈ ρ(AD) ∩ ρ(AN). Here Q(λ)−1 is the closure of Q(λ)−1 in L2(∂Ω) and
Q̃ is a Nevanlinna function which differs from the Dirichlet-to-Neumann map
by a symmetric constant. Trace formulas for canonical differential expressions
and in more abstract situations for finite dimensional resolvent differences can
be found in, e.g., [2,3,10].

In Section 4 we consider a so-called coupling of elliptic operators. Such cou-
plings are of great interest in problems of mathematical physics, e.g., in the
description of quantum networks; for more details and further references we
refer the reader to the recent works [20,21,44–46]. Suppose that R

n, n > 1,
is decomposed in a bounded domain Ω with smooth boundary C and the un-
bounded domain Ω′ = R

n\Ω. The orthogonal sum of the selfadjoint Dirichlet
operators AD and A′

D associated to L in L2(Ω) and L2(Ω′), respectively, is
regarded as a selfadjoint diagonal block operator matrix in L2(Rn). The resol-
vent of AD ⊕ A′

D is then compared with the resolvent of the usual selfadjoint
realization Ã of L in L2(Rn) defined on H2(Rn). In order to express this dif-
ference in the Krein type formula

(
(AD ⊕ A′

D) − λ
)−1

− (Ã − λ)−1 = Γ(λ)Q(λ)−1Γ(λ̄)∗ (1.4)

with a generalized Q-function an analogon of the Dirichlet-to-Neumann map
is constructed which measures the jump of the conormal derivative of L2(Ω)
and L2(Ω′)-solutions of Lu = λu on the boundary C, see (4.21). The operator
Γ(λ) : L2(C) → L2(Rn) in (1.4) is closely connected with the generalized
Q-function and is identified with a Poisson-type operator solving a certain
Dirichlet problem. As a consequence of the representation (1.4) we also obtain
a trace formula of the type (1.3) in the coupled case.
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2 Generalized Q-functions

In this section we introduce the notion of generalized Q-functions associated to
symmetric operators in Hilbert spaces. The class of generalized Q-functions is
characterized in Theorem 2.6, where it turns out that generalized Q-functions
are closely connected with operator-valued Nevanlinna or Riesz-Herglotz func-
tions. We also note in advance that for the case of finite deficiency indices of the
underlying symmetric operator the concept of generalized Q-functions coin-
cides with the classical notion of (ordinary) Q-functions studied by M.G. Krein
and H. Langer in [37,38], see also [35,36].

Let H be a separable Hilbert space and let S be a densely defined closed
symmetric operator with equal (in general infinite) deficiency indices

n±(S) = dim ker(S∗ ∓ i) ≤ ∞

in H. It is well known that under this assumption S admits selfadjoint ex-
tensions in H. In the following let A be a fixed selfadjoint extension of S in
H, so that, S ⊂ A = A∗ ⊂ S∗. Furthermore, let T be a linear operator in H
such that A ⊂ T ⊂ S∗ and T = S∗ holds, i.e., the domain dom T of T is a
core of dom S∗ (see [34]), dom T contains dom A and Af = Tf holds for all
f ∈ dom A.

For λ ∈ C belonging to the resolvent set ρ(A) of the selfadjoint operator A

define the defect spaces Nλ(T ) = ker(T −λ) and Nλ(S
∗) = ker(S∗ −λ). Then

the decompositions

dom S∗ = dom A +̇Nλ(S
∗) and dom T = dom A +̇Nλ(T ) (2.1)

hold for all λ ∈ ρ(A) and the closure Nλ(T ) of Nλ(T ) in H coincides with
Nλ(S

∗). Recall that the symmetric operator S is said to be simple if there
exists no nontrivial subspace D in dom S such that S restricted to D is a
selfadjoint operator in the Hilbert space D. It is important to note that S is
simple if and only if

H = span
{
Nλ(S

∗) : λ ∈ C\R
}

(2.2)

holds; cf. [36]. Here span denotes the closed linear span. As Nλ(T ) = Nλ(S
∗)

it is clear that the right hand side in (2.2) coincides with

span
{
Nλ(T ) : λ ∈ C\R

}
.

Fix some λ0 ∈ ρ(A), let G be a Hilbert space with the same dimension as
Nλ0

(T ) and let Γλ0
be a densely defined bounded operator from G into H such
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that ran Γλ0
= Nλ0

(T ) and ker Γλ0
= {0} holds. The domain dom Γλ0

of Γλ0

will be denoted by G0. Observe that the closure Γλ0
of the operator Γλ0

is the
bounded extension of Γλ0

which is defined on G0 = G. We write Γλ0
∈ L(G,H),

where L(G,H) is the space of bounded linear operators defined on G with
values in H.

Lemma 2.1 The operator function λ 7→ Γ(λ) := (I + (λ − λ0)(A − λ)−1)Γλ0

satisfies Γ(λ0) = Γλ0
,

Γ(λ) =
(
I + (λ − µ)(A − λ)−1

)
Γ(µ), λ, µ ∈ ρ(A),

and Γ(λ) is a bounded operator from G into H which maps dom Γ(λ) = G0

bijectively onto Nλ(T ) for all λ ∈ ρ(A). Moreover, λ 7→ Γ(λ)g is holomorphic

on ρ(A) for every g ∈ G0.

Proof. Let us show that ran Γ(λ) = Nλ(T ) is true. The other assertions in
the lemma are obvious or follow from a straightforward calculation. Since T

is an extension of A we have (T −λ)(A−λ)−1 = I for λ ∈ ρ(A) and therefore

(T − λ)Γ(λ)h = (T − λ)
(
I + (λ − λ0)(A − λ)−1

)
Γλ0

h = (T − λ0)Γλ0
h = 0

shows that ran Γ(λ) ⊂ Nλ(T ) holds. Now let fλ ∈ Nλ(T ). Then it follows as
above that

fλ0
:=

(
I + (λ0 − λ)(A − λ0)

−1
)
fλ

is an element in Nλ0
(T ) and hence there exists h ∈ G0 such that fλ0

= Γλ0
h.

Now a simple calculation shows fλ = Γ(λ)h, thus ran Γ(λ) = Nλ(T ). ¤

In the following definition the concept of generalized Q-functions is introduced.

Definition 2.2 Let S, A, T , and Γ(·) be as above. An operator function Q

defined on ρ(A) whose values Q(λ) are linear operators in G with dom Q(λ) =
G0 for all λ ∈ ρ(A) is said to be a generalized Q-function of the triple {S,A, T}
if

Q(λ) − Q(µ)∗ = (λ − µ̄)Γ(µ)∗Γ(λ), λ, µ ∈ ρ(A), (2.3)

holds on G0. If, in addition, G0 = G and T = S∗, then Q is called an ordinary
Q-function of {S,A}.

We note that the values Q(λ), λ ∈ ρ(A), of a generalized Q-function can be
unbounded non-closed operators. The adjoint Q(µ)∗ in (2.3) is well defined
since dom Q(µ) is dense in G and by (2.3) also Q(µ) ⊂ Q(µ̄)∗ holds for all
µ ∈ ρ(A). In particular, the operators Q(λ) are closable in G and symmetric
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for λ ∈ ρ(A) ∩ R. The real and imaginary parts of the operators Q(λ) are
defined as usual:

Re Q(λ) =
1

2

(
Q(λ) + Q(λ)∗

)
and Im Q(λ) =

1

2i

(
Q(λ) − Q(λ)∗

)
.

Since (Re Q(λ)h, h) and (Im Q(λ)h, h) are real for all h ∈ G0 the operators
Re Q(λ) and Im Q(λ) are symmetric.

Remark 2.3 We note that the concept of generalized Q-functions is closely

connected with the theory of boundary triplets and associated Weyl func-

tions. The Weyl function of an ordinary or generalized boundary triplet (see
[16,18,19,29]) is also a generalized Q-function, but the converse is not true.

The class of generalized Q-functions studied here coincides with the class of

Weyl functions of so-called quasi boundary triplets introduced in [9]. Further-

more, we note that generalized Q-functions are no subclass of the Weyl families

associated to boundary relations, see [17] and Theorem 2.6.

The concept of generalized Q-functions differs from the classical notion of
ordinary Q-functions only in the case n±(S) = ∞.

Proposition 2.4 Let Q be a generalized Q-function of the triple {S,A, T}
and assume, in addition, that the deficiency indices n±(S) are finite. Then

T = S∗ and Q is an ordinary Q-function of the pair {S,A}.

Proof. If the deficiency indices of the closed operator S are finite, then T

is a finite dimensional extension of S and hence also T is closed. Therefore
T = T = S∗. Moreover, in this case also dimG = dimNλ0

(T ) is finite and
hence G0 = dom Γ(λ) = dom Q(λ) = G, λ ∈ C\R. ¤

The representation of a generalized Q-function with the help of the resolvent
of A in the next proposition is formally the same as for ordinary Q-functions,
see [37–39].

Proposition 2.5 Let Q be a generalized Q-function of the triple {S,A, T} and

let λ0 ∈ ρ(A). Then Q can be written as the sum of the possibly unbounded

operator Re Q(λ0) and a bounded holomorphic operator function,

Q(λ) = Re Q(λ0) + Γ∗

λ0

(
(λ − Re λ0) + (λ − λ0)(λ − λ̄0)(A − λ)−1

)
Γλ0

,

(2.4)

and, in particular, any two generalized Q-functions of {S,A, T} differ by a

constant.

Proof. Let h ∈ G0 and set µ = λ0 in (2.3). Making use of the definition of
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Γ(λ) in Lemma 2.1 we obtain

Q(λ)h = Q(λ0)
∗h + (λ − λ̄0)Γ

∗

λ0

(
I + (λ − λ0)(A − λ)−1

)
Γλ0

h.

As Q(λ0)h − Q(λ0)
∗h = (λ0 − λ̄0)Γ

∗

λ0
Γλ0

h we see that the above formula can
be rewritten as

Q(λ)h = Q(λ0)h + (λ − λ0)Γ
∗

λ0
Γλ0

h + Γ∗

λ0
(λ − λ0)(λ − λ̄0)(A − λ)−1Γλ0

h.

The representation (2.4) follows by inserting Q(λ0)h = Re Q(λ0)h+iIm Q(λ0)h
and Im Q(λ0)h = Im λ0Γ

∗

λ0
Γλ0

h into this expression. ¤

Generalized Q-functions are closely connected with the class of Nevanlinna
functions; cf. Theorem 2.6 below. Let L(G) be the space of everywhere defined
bounded linear operators in G. Recall that an L(G)-valued operator function
Q̃ which is holomorphic on C\R and satisfies

Im Q̃(λ)

Im λ
≥ 0 and Q̃(λ̄) = Q̃(λ)∗ (2.5)

for λ ∈ C\R is said to be an L(G)-valued Nevanlinna function. We note that
Q̃ is an L(G)-valued Nevanlinna function if and only if Q̃ admits an integral
representation of the form

Q̃(λ) = α + λβ +
∫

R

(
1

t − λ
−

t

1 + t2

)
dΣ(t), λ ∈ C\R, (2.6)

where α = α∗ ∈ L(G), 0 ≤ β = β∗ ∈ L(G) and t 7→ Σ(t) ∈ L(G) is a selfadjoint
nondecreasing L(G)-valued function on R such that

∫

R

1

1 + t2
dΣ(t) ∈ L(G).

It is well known that Nevanlinna functions can be represented with the help
of selfadjoint operators or relations in Hilbert spaces in a very similar form as
in (2.4). Such operator and functional models for Nevanlinna functions can be
found in, e.g., [1,7,12,15,19,27,33,39,41].

In the next theorem we characterize the class of generalized Q-functions.
Roughly speaking, it turns out that up to a symmetric constant a general-
ized Q-function is a restriction of an L(G)-valued Nevanlinna function Q̃ with
invertible imaginary part on domQ(λ) and Q̃ satisfies certain limit properties
at ∞.

Theorem 2.6 Let G0 be a dense subspace of G, λ0 ∈ C\R, and let Q be a

function defined on C\R whose values Q(λ) are linear operators in G with

dom Q(λ) = G0, λ ∈ C\R. Then the following is equivalent:
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(i) Q is a generalized Q-function of a triple {S,A, T}, where S is a simple

symmetric operator in some separable Hilbert space H, A is a selfadjoint

extension of S in H and A ⊂ T ⊂ S∗ with T = S∗;

(ii) There exists a unique L(G)-valued Nevanlinna function Q̃ with the prop-

erties (α), (β) and (γ):
(α) The relations

Q(λ)h − Re Q(λ0)h = Q̃(λ)h

and

Q(λ)∗h − Re Q(λ0)h = Q̃(λ)∗h

hold for all h ∈ G0 and λ ∈ C\R;

(β) Im Q̃(λ)h = 0 for some h ∈ G0 and λ ∈ C\R implies h = 0;
(γ) The conditions

lim
η→+∞

1

η
(Q̃(iη)k, k) = 0 and lim

η→+∞
η Im (Q̃(iη)k, k) = ∞

are valid for all k ∈ G, k 6= 0.

Proof. We start by showing that (i) implies (ii). For this, let Q be a generalized
Q-function of the triple {S,A, T} and suppose that S is simple. Let Γλ0

be a
bounded operator defined on domQ(λ) = G0 such that ran Γλ0

= Nλ0
(T ) and

ker Γλ0
= {0}. According to Proposition 2.5 for each λ ∈ C\R

Q(λ) − Re Q(λ0) = Γ∗

λ0

(
(λ − Re λ0) + (λ − λ0)(λ − λ̄0)(A − λ)−1

)
Γλ0

is a bounded operator in G defined on the dense subspace G0 and hence admits
a unique bounded extension onto G which is given by

Q̃(λ) := Γ∗

λ0

(
(λ − Re λ0) + (λ − λ0)(λ − λ̄0)(A − λ)−1

)
Γλ0

, (2.7)

where Γλ0
∈ L(G,H) is the closure of Γλ0

. Obviously we have

Q(λ)h − Re Q(λ0)h = Q̃(λ)h

for all h ∈ G0 and λ ∈ C\R, which is the first relation in (α). Recall that for a
generalized Q-function Q(λ̄)∗ is an extension of Q(λ). This implies Re Q(λ0) ⊂
(Re Q(λ0))

∗,

Q(λ)∗ − Re Q(λ0) ⊂
(
Q(λ) − Re Q(λ0)

)∗

= Q̃(λ)∗

and therefore also Q(λ)∗h − Re Q(λ0)h = Q̃(λ)∗h is true for all h ∈ G0 and
λ ∈ C\R. Hence we have shown (α).
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Clearly Q̃ in (2.7) is a holomorphic L(G)-valued function on C\R. Denote by
Γ(λ) the closure of Γ(λ) = (I + (λ − λ0)(A − λ)−1)Γλ0

. Then

Γ(λ) =
(
I + (λ − λ0)(A − λ)−1

)
Γλ0

, λ ∈ C\R,

and it is not difficult to see that (2.3) extends to

Q̃(λ) − Q̃(µ)∗ = (λ − µ̄)Γ(µ)∗Γ(λ).

Hence

(
Im Q̃(λ)k, k

)
= (Im λ)

(
Γ(λ)∗Γ(λ)k, k

)
= (Im λ)‖Γ(λ)k‖2

holds for all k ∈ G and this implies that Q̃ is a Nevanlinna function; cf. (2.5).
Furthermore, for h ∈ G0 we have

Im Q̃(λ)h = (Im λ)Γ(λ)∗Γ(λ)h

and from the property ker Γ(λ) = {0} (see Lemma 2.1) we conclude that
Im Q̃(λ)h = 0 for h ∈ G0 implies h = 0, i.e., condition (β) holds. The same
arguments as in [39, Theorem 2.4, Corollaries 2.5 and 2.6] together with the
assumption that S is a densely defined closed simple symmetric operator show
that Q̃ satisfies the conditions in (γ).

Let us now verify the converse direction. If Q̃ is a L(G)-valued Nevanlinna
function, λ0 ∈ C\R and the first condition in (γ) holds, then it is well known
that there exists a Hilbert space H, a selfadjoint operator A in H and a
mapping Γ̃ ∈ L(G,H) such that the representation

Q̃(λ) = Re Q̃(λ0) + Γ̃∗
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(A − λ)−1

)
Γ̃ (2.8)

is valid for all λ ∈ C\R, see, e.g., [33,39]. Furthermore, the space H can be
chosen minimal, i.e.,

H = span
{(

I + (λ − λ0)(A − λ)−1
)
Γ̃k : k ∈ G, λ ∈ C\R

}
. (2.9)

We define the mapping Γλ0
to be the restriction of Γ̃ onto G0. As Γ̃ is bounded

the closure Γλ0
of Γλ0

coincides with Γ̃. We claim that Γλ0
is injective. In

fact, if Γλ0
h = 0 for some h ∈ G0 then Γ̃h = 0 and by (2.8) we have Q̃(λ)h =

Re Q̃(λ0)h. Therefore Im Q̃(λ)h = 0 and by assumption (β) this implies h = 0.

Define the operator S by

Sf = Af, dom S =
{
f ∈ dom A : ((A − λ̄0)f, Γλ0

h) = 0 for all h ∈ G0

}
.
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Then S is a closed symmetric operator and the identities ran (S − λ̄0) =
(ran Γλ0

)⊥ and ker(S∗ − λ0) = ran Γλ0
hold. Let

Γ(λ) = (I + (λ − λ0)(A − λ)−1)Γλ0
, λ ∈ C\R. (2.10)

It is not difficult to check that ran (S−λ̄) = (ran Γ(λ))⊥ is true for all λ ∈ C\R
and the conditions in (γ) together with (2.9) now yield in the same way as in
[39, Theorem 2.4, Corollaries 2.5 and 2.6] that S is densely defined and simple.

Note that domA ∩ ran Γλ0
= {0} since λ0 ∈ ρ(A) and ran Γλ0

⊂ Nλ0
(S∗). Let

us define a linear operator T in H on dom T := dom A +̇ ran Γλ0
by

T (f + fλ0
) := Af + λ0fλ0

, f ∈ dom A, fλ0
∈ ran Γλ0

.

Obviously T is an extension of A and since Nλ0
(T ) = ran Γλ0

and ran Γλ0
is

dense in Nλ0
(S∗) we obtain from domS∗ = dom A +̇Nλ0

(S∗) (see (2.1)) that
T ⊂ S∗ and T = S∗ holds.

According to condition (α) the Nevanlinna function Q̃ and the function Q are
related by

Q(λ)h = Q̃(λ)h + Re Q(λ0)h and Q(λ)∗h = Q̃(λ)∗h + Re Q(λ0)h

for all h ∈ G0 and λ ∈ C\R. It remains to show that Q satisfies (2.3). Observe
first that for λ, µ ∈ C\R we have

Q(λ)h − Q(µ)∗h = Q̃(λ)h − Q̃(µ)∗h. (2.11)

Denote the closures of the operators Γ(λ), λ ∈ C\R, in (2.10) by Γ̃(λ). Then

Γ̃(λ) = Γ(λ) =
(
I + (λ − λ0)(A − λ)−1

)
Γλ0

=
(
I + (λ − λ0)(A − λ)−1

)
Γ̃

and it follows from (2.8) with a straightforward calculation that

Q̃(λ) − Q̃(µ)∗ = (λ − µ̄)Γ̃(µ)∗Γ̃(λ), λ, µ ∈ C\R, (2.12)

holds. As Γ̃(µ)∗ = Γ(µ)
∗

= Γ(µ)∗ we conclude

Q(λ)h − Q(µ)∗h = (λ − µ̄)Γ(µ)∗Γ(λ)h, h ∈ G0,

from (2.11). Therefore Q is a generalized Q-function of the triple {S,A, T}. ¤

Remark 2.7 The definition of a generalized Q-function can be extended to

the case that A is a selfadjoint relation, S is a non-densely defined symmetric

operator or relation and T is a linear relation which is dense in the relation

S∗. We refer to [39] for ordinary Q-functions in this more general situation.

In this case the condition (γ) in Theorem 2.6 can be dropped.
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For ordinary Q-functions Theorem 2.6 reads as follows; cf. [39, Theorem 2.2
and Theorem 2.4].

Theorem 2.8 A L(G)-valued Nevanlinna function Q̃ is an ordinary Q-

function of some pair {S,A}, where S is a densely defined closed simple sym-

metric operator in some Hilbert space H and A is a selfadjoint extension of S

in H, if and only if condition (γ) in Theorem 2.6 and 0 ∈ ρ(Im Q̃(λ)) holds

for some, and hence for all, λ ∈ C\R.

Corollary 2.9 Let Q be a generalized Q-function of {S,A, T} and let Q̃ be

the L(G)-valued Nevanlinna function in Theorem 2.6. Then for all λ ∈ C\R
and h ∈ G0 we have

d

dλ
Q(λ)h =

d

dλ
Q̃(λ)h = Γ(λ̄)∗Γ(λ)h.

Proof. It follows from (2.12) that

d

dλ
Q̃(λ) = lim

µ̄→λ

Q̃(λ) − Q̃(µ)∗

λ − µ̄
= Γ̃(λ̄)∗Γ̃(λ)

holds. Hence condition (α) in Theorem 2.6 and Γ̃(λ) = Γ(λ) imply

d

dλ
Q(λ)h = lim

µ̄→λ

Q(λ)h − Q(µ)∗h

λ − µ̄
= lim

µ̄→λ

Q̃(λ)h − Q̃(µ)∗h

λ − µ̄
= Γ(λ̄)∗Γ(λ)h

for h ∈ G0. ¤

3 Elliptic operators and the Dirichlet-to-Neumann map

Let Ω ⊂ R
n be a bounded or unbounded domain with compact C∞-boundary

∂Ω. Let L be the ”formally selfadjoint” uniformly elliptic second order differ-
ential expression

(Lf)(x) := −
n∑

j,k=1

(
∂

∂xj

ajk
∂f

∂xk

)
(x) + a(x)f(x), (3.1)

x ∈ Ω, with bounded infinitely differentiable real valued coefficients ajk ∈
C∞(Ω) satisfying ajk(x) = akj(x) for all x ∈ Ω and j, k = 1, . . . , n; the function
a ∈ L∞(Ω) is real valued and

n∑

j,k=1

ajk(x)ξjξk ≥ C
n∑

k=1

ξ2
k (3.2)
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holds for some C > 0, all ξ = (ξ1, . . . , ξn)⊤ ∈ R
n and x ∈ Ω. We note that the

assumptions on the domain Ω and the coefficients of L can be relaxed but it
is not our aim to treat the most general setting here. We refer the reader to
e.g. [30,40,43,52] for possible generalizations.

In the following we consider the selfadjoint realizations of L in L2(Ω) subject
to Dirichlet and Neumann (or oblique Neumann) boundary conditions. For a
function f in the Sobolev space H2(Ω) we denote the trace by f |∂Ω and the
trace of the conormal derivative is defined by

∂f

∂ν

∣∣∣∣
∂Ω

:=
n∑

j,k=1

ajknj
∂f

∂xk

∣∣∣∣
∂Ω

;

here n(x) = (n1(x), . . . , nn(x))⊤ is the unit vector at the point x ∈ ∂Ω pointing

out of Ω. Recall that the mapping C∞(Ω) ∋ f 7→
{
f |∂Ω, ∂f

∂ν

∣∣∣
∂Ω

}
extends by

continuity to a continuous surjective mapping

H2(Ω) ∋ f 7→

{
f |∂Ω,

∂f

∂ν

∣∣∣∣
∂Ω

}
∈ H3/2(∂Ω) × H1/2(∂Ω). (3.3)

The kernel of this map is

H2
0 (Ω) =

{
f ∈ H2(Ω) : f |∂Ω =

∂f

∂ν

∣∣∣∣
∂Ω

= 0

}

which coincides with the closure of C∞

0 (Ω) in H2(Ω). We refer the reader to the
monographs [40,43,52] for more details. In the following the scalar products
in L2(Ω) and L2(∂Ω) are denoted by (·, ·)Ω and (·, ·)∂Ω, respectively. Then
Green‘s identity

(Lf, g)Ω − (f,Lg)Ω =

(
f |∂Ω,

∂g

∂ν

∣∣∣∣
∂Ω

)

∂Ω

−

(
∂f

∂ν

∣∣∣∣
∂Ω

, g|∂Ω

)

∂Ω

(3.4)

holds for all functions f, g ∈ H2(Ω). We note that (3.4) is even true for f ∈
H2(Ω) and g belonging to the domain of the maximal operator associated to
L in L2(Ω) if the (·, ·)∂Ω scalar product in L2(∂Ω) is extended by continuity to
H3/2(∂Ω) × H−3/2(∂Ω) and H1/2(∂Ω) × H−1/2(∂Ω), respectively, see [40,52].
However, we shall make use of (3.4) only for the case f, g ∈ H2(Ω).

It is known that the realizations AD and AN of L subject to Dirichlet and
Neumann boundary conditions defined by

ADf = Lf, dom AD =
{
f ∈ H2(Ω) : f |∂Ω = 0

}
,

ANf = Lf, dom AN =
{
f ∈ H2(Ω) :

∂f

∂ν

∣∣∣∣
∂Ω

= 0
}
,

(3.5)
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are selfadjoint operators in L2(Ω). The following statement is known and can
be found in, e.g., [40]. It can be proved with similar methods as Theorem 4.1
in the next section.

Proposition 3.1 Let L be the elliptic differential expression in (3.1). Then

the operator

Sf = Lf, dom S = H2
0 (Ω), (3.6)

is a densely defined closed symmetric operator in L2(Ω) with infinite deficiency

indices n±(S) and the adjoint S∗ of S coincides with the maximal operator

associated to L,

S∗f = Lf, dom S∗ =
{
f ∈ L2(Ω) : Lf ∈ L2(Ω)

}
.

The operator

Tf = Lf, dom T = H2(Ω),

is not closed as an operator in L2(Ω) and T satisfies T = S∗ and T ∗ = S.

Furthermore, the selfadjoint operators AD and AN in (3.5) are extensions of

S and restrictions of T .

In order to define a mapping Γλ0
for the definition of a generalized Q-function

associated to the triple {S,AD, T} we make use of the decomposition (2.1) in
the present situation. More precisely, for all points λ in the resolvent set ρ(AD)
of the selfadjoint Dirichlet operator AD we have the direct sum decomposition
of dom T = H2(Ω):

H2(Ω) = dom AD +̇Nλ(T ) =
{
f ∈ H2(Ω) : f |∂Ω = 0

}
+̇Nλ(T ), (3.7)

where

Nλ(T ) = ker(T − λ) =
{
fλ ∈ H2(Ω) : Lfλ = λfλ

}
.

Let now ϕ be a function in H3/2(∂Ω) and let λ0 ∈ ρ(AD). Then it follows from
(3.3) and (3.7) that there exists a unique function fλ0

∈ H2(Ω) which solves
the equation Lfλ0

= λ0fλ0
, i.e., fλ0

∈ Nλ0
(T ), and satisfies fλ0

|∂Ω = ϕ. We
shall denote the mapping that assigns fλ0

to ϕ by Γλ0
,

H3/2(∂Ω) ∋ ϕ 7→ Γλ0
ϕ := fλ0

∈ Nλ0
(T ), (3.8)

and we regard Γλ0
as an operator from L2(∂Ω) into L2(Ω) with dom Γλ0

=
H3/2(∂Ω) and ran Γλ0

= Nλ0
(T ).

Proposition 3.2 Let λ0 ∈ ρ(AD), let Γλ0
be as in (3.8) and let λ ∈ ρ(AD).

Then the following holds:

13



(i) Γλ0
is a bounded operator from L2(∂Ω) in L2(Ω) with dense domain

H3/2(∂Ω);
(ii) The operator Γ(λ) = (I + (λ − λ0)(AD − λ)−1)Γλ0

is given by

Γ(λ)ϕ = fλ, where fλ ∈ Nλ(T ) and fλ|∂Ω = ϕ;

(iii) The mapping Γ(λ̄)∗ : L2(Ω) → L2(∂Ω) satisfies

Γ(λ̄)∗(AD − λ)f = −
∂f

∂ν

∣∣∣∣
∂Ω

, f ∈ dom AD.

Proof. Statement (i) will be a consequence of (iii). We prove assertion (ii).
Recall that by Lemma 2.1 the range of the operator Γ(λ), λ ∈ ρ(AD), is
Nλ(T ). Let ϕ ∈ dom Γ(λ) = H3/2(∂Ω) and choose elements fλ ∈ Nλ(T ) and
fλ0

∈ Nλ0
(T ) such that

fλ|∂Ω = ϕ = fλ0
|∂Ω

holds. According to (3.7) the functions fλ and fλ0
are unique. Then Γλ0

ϕ = fλ0

and hence we obtain

Γ(λ)ϕ = Γλ0
ϕ + (λ − λ0)(AD − λ)−1Γλ0

ϕ = fλ0
+ (λ − λ0)(AD − λ)−1Γλ0

ϕ.

Since (λ − λ0)(AD − λ)−1Γλ0
ϕ belongs to dom AD it is clear that the trace of

this element vanishes. Therefore, the traces of the functions Γ(λ)ϕ ∈ Nλ(T )
and fλ0

coincide,

(Γ(λ)ϕ)|∂Ω = fλ0
|∂Ω = ϕ = fλ|∂Ω.

Thus we have that the traces of Γ(λ)ϕ ∈ Nλ(T ) and fλ ∈ Nλ(T ) coincide and
from (3.7) we conclude Γ(λ)ϕ = fλ.

(iii) Let ϕ ∈ H3/2(∂Ω) and choose the unique function gλ̄ ∈ Nλ̄(T ) with the
property gλ̄|∂Ω = ϕ. Hence we have Γ(λ̄)ϕ = gλ̄ and for f ∈ dom AD it follows

(
Γ(λ̄)ϕ, (AD − λ)f

)

Ω
= (gλ̄, ADf)Ω − (λ̄gλ̄, f)Ω = (gλ̄, ADf)Ω − (Tgλ̄, f)Ω.

Making use of Green’s identity (3.4) we find

(gλ̄, ADf)Ω − (Tgλ̄, f)Ω =

(
∂gλ̄

∂ν

∣∣∣∣
∂Ω

, f |∂Ω

)

∂Ω

−

(
gλ̄|∂Ω,

∂f

∂ν

∣∣∣∣
∂Ω

)

∂Ω

and since the trace of f ∈ dom AD vanishes the first summand on the right
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hand side is zero. Therefore

(
Γ(λ̄)ϕ, (AD − λ)f

)

Ω
= −

(
gλ̄|∂Ω,

∂f

∂ν

∣∣∣∣
∂Ω

)

∂Ω

=

(
ϕ,−

∂f

∂ν

∣∣∣∣
∂Ω

)

∂Ω

holds for all ϕ ∈ dom Γ(λ̄) = H3/2(∂Ω). This gives (AD − λ)f ∈ dom Γ(λ̄)∗

and

Γ(λ̄)∗(AD − λ)f = −
∂f

∂ν

∣∣∣∣
∂Ω

.

Moreover, as λ ∈ ρ(AD) and f ∈ dom AD was arbitrary we see that Γ(λ̄)∗ is
defined on the whole space L2(Ω). This together with the fact that Γ(λ̄)∗ is
closed implies

Γ(λ̄)∗ ∈ L
(
L2(Ω), L2(∂Ω)

)

for λ ∈ ρ(AD) and, in particular, Γ(λ̄) ⊂ Γ(λ̄) = Γ(λ̄)∗∗ is bounded. Inserting
λ0 = λ̄ this yields assertion (i). ¤

In the study of elliptic differential operators the so-called Dirichlet-to-
Neumann map plays an important role, we mention only [4,14,22–26,31,42,44–
49,51]. Roughly speaking this operator maps the Dirichlet boundary value
fλ|∂Ω of an H2(Ω)-solution of the equation Lu = λu onto the Neumann bound-
ary value ∂fλ

∂ν
|∂Ω of this solution. In the following definition also a minus sign

arises, which is needed to obtain a generalized Q-function in Theorem 3.4.
Otherwise −Q would turn out to be a generalized Q-function.

Definition 3.3 Let λ ∈ ρ(AD) and assign to ϕ ∈ H3/2(∂Ω) the unique func-

tion fλ ∈ Nλ(T ) such that fλ|∂Ω = ϕ, see (3.3) and (3.7). The operator Q(λ)
in L2(∂Ω) defined by

Q(λ)ϕ = Q(λ)(fλ|∂Ω) := −
∂fλ

∂ν

∣∣∣∣
∂Ω

, ϕ ∈ dom Q(λ) = H3/2(∂Ω), (3.9)

is called the Dirichlet-to-Neumann map associated to L.

Note that by (3.3) the range of the Dirichlet-to-Neumann map Q(λ), λ ∈
ρ(AD), lies in H1/2(∂Ω). We remark that the Dirichlet-to-Neumann map can
be extended, e.g., to an operator from H1(∂Ω) in L2(∂Ω) if instead of H2(Ω)
the operator T is defined on a suitable subspace of H3/2(Ω); cf. [4–6,9,32,40].
However, for our purposes this is not necessary since AD and AN are defined
on subspaces of H2(Ω).

In the next theorem we show that the Dirichlet-to-Neumann map is a gen-
eralized Q-function and we illustrate the usefulness of this object in the rep-
resentation of the difference of the resolvents of the Dirichlet and Neumann
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operators AD and AN in (3.5). Similar Krein type resolvent formulas can also
be found in [9,13,25,26,47–50]. The fact that the difference of the resolvents
belongs to some von Neumann-Schatten class depending on the dimension of
the space is well-known and goes back to M.S. Birman; cf. [11].

Theorem 3.4 Let L be the elliptic differential expression in (3.1) and let AD

and AN be the selfadjoint realizations of L in (3.5). Denote by S the minimal

operator associated to L and let T = L ↾ H2(Ω) be as in Proposition 3.1.
Define Γ(λ) as in Proposition 3.2 and let Q(λ), λ ∈ ρ(AD), be the Dirichlet-

to-Neumann map. Then the following holds:

(i) Q is a generalized Q-function of the triple {S,AD, T};
(ii) The operator Q(λ) is injective for all λ ∈ ρ(AD)∩ρ(AN) and the resolvent

formula

(AD − λ)−1 − (AN − λ)−1 = Γ(λ)Q(λ)−1Γ(λ̄)∗ (3.10)

holds;

(iii) For p > n−1

2
the difference of the resolvents in (3.10) belongs to the von

Neumann-Schatten class Sp(L
2(Ω)).

Proof. In order to prove assertion (i) we have to check the relation

Q(λ) − Q(µ)∗ = (λ − µ̄)Γ(µ)∗Γ(λ), λ, µ ∈ ρ(AD), (3.11)

on dom Q(λ) = H3/2(∂Ω). For this it will be first shown that H3/2(∂Ω) is a
subset of dom Q(µ)∗ and that Q(µ)∗ is an extension of Q(µ̄). Let ψ ∈ H3/2(∂Ω)
and choose the unique function fµ̄ ∈ Nµ̄(T ) such that fµ̄|∂Ω = ψ. For an
arbitrary ϕ ∈ dom Q(µ) = H3/2(∂Ω) let fµ ∈ Nµ(T ) be the unique function
that satisfies fµ|∂Ω = ϕ. By the definition of the Dirichlet-to-Neumann map
we have

Q(µ)ϕ = −
∂fµ

∂ν

∣∣∣∣
∂Ω

and Q(µ̄)ψ = −
∂fµ̄

∂ν

∣∣∣∣
∂Ω

and hence Green’s identity (3.4) shows

(Q(µ)ϕ, ψ)∂Ω =

(
−

∂fµ

∂ν

∣∣∣∣
∂Ω

, fµ̄|∂Ω

)

∂Ω

=

(
fµ|∂Ω,

∂fµ̄

∂ν

∣∣∣∣
∂Ω

)

∂Ω

−

(
∂fµ

∂ν

∣∣∣∣
∂Ω

, fµ̄|∂Ω

)

∂Ω

+

(
ϕ,−

∂fµ̄

∂ν

∣∣∣∣
∂Ω

)

∂Ω

= (Tfµ, fµ̄)Ω − (fµ, T fµ̄)Ω +

(
ϕ,−

∂fµ̄

∂ν

∣∣∣∣
∂Ω

)

∂Ω

.

Since fµ ∈ Nµ(T ) and fµ̄ ∈ Nµ̄(T ) it is clear that (Tfµ, fµ̄)Ω = (fµ, T fµ̄)Ω
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holds and therefore we obtain

(Q(µ)ϕ, ψ)∂Ω =

(
ϕ,−

∂fµ̄

∂ν

∣∣∣∣
∂Ω

)

∂Ω

for all ϕ ∈ dom Q(µ). Thus ψ ∈ dom Q(µ)∗ and

Q(µ)∗ψ = −
∂fµ̄

∂ν

∣∣∣∣
∂Ω

= Q(µ̄)ψ.

Next we prove the relation (3.11). Let ϕ, ψ ∈ H3/2(∂Ω) and choose the func-
tions fλ ∈ Nλ(T ) and gµ ∈ Nµ(T ) such that fλ|∂Ω = ϕ and gµ|∂Ω = ψ. Hence
we have

Q(λ)ϕ = −
∂fλ

∂ν

∣∣∣∣
∂Ω

, Q(µ)ψ = −
∂gµ

∂ν

∣∣∣∣
∂Ω

, Γ(λ)ϕ = fλ and Γ(µ)ψ = gµ.

Note that ϕ ∈ H3/2(Ω) belongs to dom Q(µ)∗ by the above considerations.
With the help of Green’s identity (3.4) we find

(
(Q(λ) − Q(µ)∗)ϕ, ψ

)

∂Ω
= −

(
∂fλ

∂ν

∣∣∣∣
∂Ω

, gµ|∂Ω

)

∂Ω

+

(
fλ|∂Ω,

∂gµ

∂ν

∣∣∣∣
∂Ω

)

∂Ω

= (Tfλ, gµ)Ω − (fλ, T gµ)Ω = (λ − µ̄)(fλ, gµ)Ω

= (λ − µ̄)(Γ(λ)ϕ, Γ(µ)ψ)Ω =
(
(λ − µ̄)Γ(µ)∗Γ(λ)ϕ, ψ

)

∂Ω
.

This holds for all ψ in the dense subset H3/2(∂Ω) of L2(∂Ω) and therefore
(3.11) is valid on domQ(λ) = dom Γ(λ) = H3/2(∂Ω), i.e., the Dirichlet-to-
Neumann map is a generalized Q-function of the triple {S,AD, T}.

(ii) Let λ ∈ ρ(AD) ∩ ρ(AN) and suppose that we have Q(λ)ϕ = 0 for some
ϕ ∈ H3/2(∂Ω). There exists a unique fλ ∈ Nλ(T ) such that fλ|∂Ω = ϕ and for
this fλ by assumption we have ∂fλ

∂ν
|∂Ω = 0. Hence fλ ∈ dom AN ∩ Nλ(T ) and

from λ ∈ ρ(AN) we conclude fλ = 0, that is, ϕ = fλ|∂Ω = 0.

Therefore Q(λ)−1, λ ∈ ρ(AD) ∩ ρ(AN) exists and, roughly speaking, Q(λ)−1

maps the negative Neumann boundary values of H2(Ω)-solutions of Lu = λu

onto their Dirichlet boundary values. Let us prove the formula (3.10) for the
difference of the resolvents of AD and AN . Observe first, that the right hand
side in (3.10) is well defined. In fact, by Proposition 3.2 (iii) and (3.3) the range
of Γ(λ̄)∗ lies in H1/2(∂Ω) and it follows from the surjectivity of the mapping in
(3.3) that Q(λ)−1 is defined on the whole space H1/2(∂Ω) and maps H1/2(∂Ω)
onto H3/2(∂Ω), the domain of Γ(λ).
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Let now f ∈ L2(Ω). We claim that the function

g = (AD − λ)−1f − Γ(λ)Q(λ)−1Γ(λ̄)∗f (3.12)

belongs to dom AN . It is clear that g is in H2(Ω) since (AD −λ)−1f ∈ dom AD

and the second term on the right hand side belongs to Nλ(T ), the range
of Γ(λ). In order to verify ∂g

∂ν
|∂Ω = 0 we choose fD ∈ dom AD such that

f = (AD − λ)fD, so that (3.12) becomes

g = fD − Γ(λ)Q(λ)−1Γ(λ̄)∗(AD − λ)fD = fD + Γ(λ)Q(λ)−1∂fD

∂ν

∣∣∣∣
∂Ω

, (3.13)

where we have used Proposition 3.2 (iii). Let fλ := Γ(λ)Q(λ)−1 ∂fD

∂ν
|∂Ω. Then

fλ ∈ Nλ(T ) and the trace of fλ is given by

fλ|∂Ω = Q(λ)−1∂fD

∂ν

∣∣∣∣
∂Ω

.

Hence Q(λ)fλ|∂Ω = ∂fD

∂ν
|∂Ω, but on the other hand, by the definition of the

Dirichlet-to-Neumann map Q(λ)fλ|∂Ω = −∂fλ

∂ν
|∂Ω. Therefore, the sum of the

Neumann boundary value of the function fλ and the Neumann boundary value
of fD is zero and we conclude from (3.13)

∂g

∂ν

∣∣∣∣
∂Ω

=
∂fD

∂ν

∣∣∣∣
∂Ω

+
∂

∂ν

(
Γ(λ)Q(λ)−1∂fD

∂ν

∣∣∣∣
∂Ω

) ∣∣∣∣
∂Ω

=
∂fD

∂ν

∣∣∣∣
∂Ω

+
∂fλ

∂ν

∣∣∣∣
∂Ω

= 0.

We have shown that g in (3.12) belongs to domAN . As T is an extension of
AN and AD, and ran Γ(λ) = ker(T − λ) we obtain

(AN − λ)g = (T − λ)(AD − λ)−1f − (T − λ)Γ(λ)Q(λ)−1Γ(λ̄)∗f = f.

Together with (3.12) we find

(AN − λ)−1f = (AD − λ)−1f − Γ(λ)Q(λ)−1Γ(λ̄)∗f

for all λ ∈ ρ(AD)∩ ρ(AN) and f ∈ L2(Ω), and therefore the resolvent formula
(3.10) is valid.

Up to some small modifications assertion (iii) was proved in [11]. ¤

We mention that for λ, λ0 ∈ ρ(AD) the Dirichlet-to-Neumann map is con-
nected with the resolvent of AD via

Q(λ) = Re Q(λ0) + Γλ0

(
(λ − Re λ0) + (λ − λ0)(λ − λ̄0)(AD − λ)−1

)
Γλ0

.
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This follows from the fact that Q is a generalized Q-function and Proposi-
tion 2.5. The following two corollaries collect some properties of the Dirichlet-
to-Neumann map and its inverse.

Corollary 3.5 For λ, λ0 ∈ ρ(AD) the Dirichlet-to-Neumann map Q(λ) has

the following properties.

(i) Q(λ) is a non-closed unbounded operator in L2(∂Ω) defined on H3/2(∂Ω)
with ran Q(λ) ⊂ H1/2(∂Ω);

(ii) Q(λ) − Re Q(λ0) is a non-closed bounded operator in L2(∂Ω) defined on

H3/2(∂Ω);
(iii) the closure Q̃(λ) of the operator Q(λ) − Re Q(λ0) in L2(∂Ω) satisfies

d

dλ
Q̃(λ) = Γ(λ̄)∗Γ(λ)

and Q̃ is a L(L2(∂Ω))-valued Nevanlinna function.

Proof. Besides the statement that Q(λ) is a non-closed unbounded operator
the assertions follow from the fact that Q is a generalized Q-function and the
results in Section 2. In Corollary 3.6 it will turn out that Q(λ)−1 is a compact
operator and that Q(λ)−1 is not closed. This implies that Q(λ) and Q(λ) are
unbounded and that Q(λ) is not closed. ¤

Corollary 3.6 For λ ∈ ρ(AD) ∩ ρ(AN) the inverse Q(λ)−1 of the Dirichlet-

to-Neumann map Q(λ) has the following properties.

(i) Q(λ)−1 is a non-closed bounded operator in L2(∂Ω) defined on H1/2(∂Ω)
with ran Q(λ)−1 = H3/2(∂Ω);

(ii) the closure Q(λ)−1 is a compact operator in L2(∂Ω);
(iii) the function λ 7→ −Q(λ)−1 is a L(L2(∂Ω))-valued Nevanlinna function.

Proof. It is clear that (i) is an immediate consequence of (ii). Statement
(iii) follows from Theorem 2.6 and general properties of the Nevanlinna class.
Assertion (ii) is essentially a consequence of the classical results in [40],
see also [32, Theorem 2.1]. Namely, for λ ∈ ρ(AD) ∩ ρ(AN) the operator
Q(λ) : H3/2(∂Ω) → H1/2(∂Ω) is an isomorphism and can be extended to
an isomorphism Q̂(λ) : H1(∂Ω) → L2(∂Ω) which acts as in (3.9). Therefore
Q(λ)−1 ⊂ Q̂(λ)−1 is a densely defined operator in L2(∂Ω) which is bounded as
an operator in H1(∂Ω) and hence also bounded when considered as an opera-
tor in L2(∂Ω). Its closure Q(λ)−1 in L2(∂Ω) is a bounded everywhere defined
operator in L2(∂Ω) with values in H1(∂Ω) and coincides with Q̂(λ)−1. As
H1(∂Ω) is compactly embedded in L2(∂Ω) it follows that Q(λ)−1 is a compact
operator in L2(∂Ω). ¤
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The next corollary is a simple consequence of Theorem 3.4 for the case that
the difference of the resolvents is a trace class operator.

Corollary 3.7 Let the assumptions be as in Theorem 3.4, let Q̃ be the Nevan-

linna function from Corollary 3.5 and suppose, in addition, n = 2. Then

tr
(
(AD − λ)−1 − (AN − λ)−1

)
= tr

(
Q(λ)−1

d

dλ
Q̃(λ)

)
(3.14)

holds for all λ ∈ ρ(AD) ∩ ρ(AN).

Proof. The resolvent formula (3.10) can be written in the form

(AD − λ)−1 − (AN − λ)−1 = Γ(λ) Q(λ)−1 Γ(λ̄)∗, (3.15)

where the closures Γ(λ) and Q(λ)−1 are everywhere defined bounded opera-
tors; cf. Corollary 3.6 (ii). In the case n = 2 it follows from Theorem 3.4 (iii)
that (3.15) is a trace class operator and from Corollaries 2.9, 3.5 (iii) and well
known properties of the trace of bounded operators (see [28]) we conclude
(3.14). ¤

4 Coupling of elliptic differential operators

In this section we study the uniformly elliptic second order differential expres-
sion L from (3.1) on two different domains and a coupling of the associated
Dirichlet operators. More precisely, let Ω ⊂ R

n be a simply connected bounded
domain with C∞-boundary C := ∂Ω and let Ω′ = R

n\Ω be the complement of
the closure of Ω in R

n. Clearly, Ω′ is an unbounded domain with the compact
C∞-boundary ∂Ω′ = C. Let again L be given by

Lh = −
n∑

j,k=1

∂

∂xj

ajk
∂h

∂xk

+ ah (4.1)

with bounded real valued coefficients ajk ∈ C∞(Rn) satisfying ajk(x) = akj(x)
for all x ∈ R

n and j, k = 1, . . . , n; the function a ∈ L∞(Rn) is real valued and
suppose that L is uniformly elliptic; cf. (3.2). The restriction of L on functions
f defined on Ω or functions f ′ defined on Ω′ will be denoted by LΩ and LΩ′ ,
respectively. Then it is clear that the differential expressions LΩ and LΩ′ are
of the type as in Section 3.

In the following we will usually denote functions defined on R
n by h or k,

and we denote functions defined on Ω or Ω′ by f, g or f ′, g′, respectively. The
scalar products of L2(Ω) and L2(Ω′) are indexed with Ω and Ω′, respectively,
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whereas the scalar product of L2(Rn) is just denoted by (·, ·). For the trace of
a function f ∈ H2(Ω) and f ′ ∈ H2(Ω′) we write f |C and f ′|C, and the trace of
the conormal derivatives are

∂f

∂ν

∣∣∣∣
C

=
n∑

j,k=1

ajknj
∂f

∂xk

∣∣∣∣
C

and
∂f ′

∂ν ′

∣∣∣∣
C

=
n∑

j,k=1

ajkn
′

j

∂f

∂xk

∣∣∣∣
C

; (4.2)

here n(x) = (n1(x), . . . , nn(x))⊤ and n′(x) = −n(x) are the unit vectors at
the point x ∈ C = ∂Ω = ∂Ω′ pointing out of Ω and Ω′, respectively. Note also
that the coefficients ajk in (4.2) are the restrictions of the coefficients in (4.1)
onto Ω and Ω′, respectively. The Dirichlet operators

AΩf = LΩf, dom AΩ =
{
f ∈ H2(Ω) : f |C = 0

}
,

AΩ′f ′ = LΩ′f ′, dom AΩ′ =
{
f ′ ∈ H2(Ω′) : f ′|C = 0

}
,

are selfadjoint operators in L2(Ω) and L2(Ω′), respectively. Hence the orthog-
onal sum

A =




AΩ 0

0 AΩ′


 , dom A = dom AΩ ⊕ dom AΩ′ , (4.3)

is a selfadjoint operator in L2(Rn) = L2(Ω) ⊕ L2(Ω′). Observe that

A(f ⊕ f ′) = L(f ⊕ f ′) = LΩf ⊕ LΩ′f ′,

dom A =
{
f ⊕ f ′ ∈ H2(Ω) ⊕ H2(Ω′) : f |C = 0 = f ′|C

}
,

(4.4)

and that A is not a usual second order elliptic differential operator on R
n since

for a function f ⊕ f ′ ∈ dom A the traces of the conormal derivatives ∂f
∂ν
|C and

−∂f ′

∂ν′
|C at the boundary C of the domains Ω and Ω′ in general do not coincide.

Besides the operator A we consider the usual selfadjoint operator associated
to L in L2(Rn) defined by

Ãh = Lh, h ∈ dom Ã = H2(Rn), (4.5)

and our aim is to prove a formula for the difference of the resolvents of Ã

and A with the help of a generalized Q-function in a similar form as in the
previous section.

The following theorem indicates how S and T in the triple {S,A, T} for the
definition of a generalized Q-function can be chosen.

Theorem 4.1 The operator

Sh = Lh, dom S =
{
h = f ⊕ f ′ ∈ H2(Rn) : f |C = 0 = f ′|C

}
, (4.6)
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is a densely defined closed symmetric operator in L2(Rn) with infinite defi-

ciency indices n±(S). The operator

T (f ⊕ f ′) = L(f ⊕ f ′),

dom T =
{
f ⊕ f ′ ∈ H2(Ω) ⊕ H2(Ω′) : f |C = f ′|C

}
,

(4.7)

is not closed as an operator in L2(Rn) and T satisfies T = S∗ and T ∗ = S.

Furthermore, the selfadjoint operators A and Ã in (4.3), (4.4) and (4.5) are

extensions of S and restrictions of T .

Proof. The operator S is a restriction of the selfadjoint operator A and hence
S is symmetric. The fact that dom S is dense follows, e.g., from the fact that
H2

0 (Ω) and H2
0 (Ω′) are dense subspaces of L2(Ω) and L2(Ω′), respectively, and

H2
0 (Ω) ⊕ H2

0 (Ω′) ⊂ dom S.

Since for any function h ∈ H2(Rn) decomposed as h = f ⊕ f ′, where f ∈
H2(Ω), f ′ ∈ H2(Ω′), we have f |C = f ′|C ∈ H3/2(C) it follows that Ã is an
extension of S and a restriction of the operator T . Moreover, S ⊂ A ⊂ T is
obvious.

Let us verify that S = T ∗ holds. In particular this implies that S is closed and
that T = S∗ is true. We start with the inclusion S ⊂ T ∗. Let h = f ⊕ f ′ ∈
dom S and k = g ⊕ g′ ∈ dom T , where f, g ∈ H2(Ω) and f ′, g′ ∈ H2(Ω′). First
of all we have

(Tk, h) − (k, Sh) = (LΩg, f)Ω − (g,LΩf)Ω + (LΩ′g′, f ′)Ω′ − (g′,LΩ′f ′)Ω′

and Green’s identity (3.4) shows that this is equal to

(
g|C,

∂f

∂ν

∣∣∣∣
C

)

C

−

(
∂g

∂ν

∣∣∣∣
C

, f |C

)

C

+

(
g′|C,

∂f ′

∂ν ′

∣∣∣∣
C

)

C

−

(
∂g′

∂ν ′

∣∣∣∣
C

, f ′|C

)

C

.

Since h = f ⊕ f ′ ∈ dom S we have

f |C = f ′|C = 0 and
∂f

∂ν

∣∣∣∣
C

= −
∂f ′

∂ν ′

∣∣∣∣
C

,

and for k = g ⊕ g′ ∈ dom T by definition g|C = g′|C holds. Hence we conclude

(Tk, h) − (k, Sh) = 0

and therefore every h ∈ dom S belongs to dom T ∗ and T ∗h = Sh, i.e., S ⊂ T ∗.
Let us now prove the converse inclusion T ∗ ⊂ S. For this it is sufficient to
check that every function h ∈ dom T ∗ belongs to dom S. From the fact that
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T is an extension of the selfadjoint operators A and Ã we conclude

T ∗ ⊂ A∗ = A ⊂ T and T ∗ ⊂ Ã∗ = Ã ⊂ T,

so that T ∗ is a restriction of A and Ã. Hence every function h in dom T ∗

belongs also to domA and dom Ã. Thus h = f ⊕ f ′ ∈ H2(Rn) and f ∈ H2(Ω)
and f ′ ∈ H2(Ω′) satisfy f |C = f ′|C = 0. Therefore dom T ∗ ⊂ dom S and we
have shown T ∗ = S.

Next it will be verified that T is not closed. The arguments are similar as in
[8, Proof of Proposition 4.5] and could also be formulated in terms of unitary
relations between Krein spaces; cf. [17]. Assume that T is closed, i.e., T = T ,
and consider the subspace

M =








f ⊕ f ′

T (f ⊕ f ′)

f |C
∂f
∂ν
|C + ∂f ′

∂ν′
|C




: f ⊕ f ′ ∈ dom T





⊂ L2(Rn) ⊕ L2(Rn) ⊕ L2(C) ⊕ L2(C).

Observe that by (3.3) and the definition of T the mapping

dom T ∋ f ⊕ f ′ 7→

{
f |C,

∂f

∂ν

∣∣∣∣
C

+
∂f ′

∂ν ′

∣∣∣∣
C

}
∈ H3/2(C) × H1/2(C) (4.8)

is onto. Setting N = L2(Rn) ⊕ L2(Rn) ⊕ {0} ⊕ {0} it is clear that the sum of
the subpaces M and N is

M + N = L2(Rn) ⊕ L2(Rn) ⊕
(
H3/2(C) × H1/2(C)

)
. (4.9)

We will calculate the orthogonal complements of M and N in L2(Rn) ⊕
L2(Rn) ⊕ L2(C) ⊕ L2(C) and show that M⊥ + N⊥ is closed. First of all we
have

N⊥ = {0} ⊕ {0} ⊕ L2(C) ⊕ L2(C) (4.10)

and in order to determine M⊥ suppose that




l ⊕ l′

g ⊕ g′

ϕ

ψ




∈ M⊥, g, l ∈ L2(Ω), g′, l′ ∈ L2(Ω′), ϕ, ψ ∈ L2(C), (4.11)
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is an element in L2(Rn)⊕L2(Rn)⊕L2(C)⊕L2(C) which is orthogonal to M.
Then we have

(
T (f ⊕ f ′), g ⊕ g′

)
+

(
f ⊕ f ′, l ⊕ l′

)
= −

(
f |C, ϕ

)

C
−

(
∂f

∂ν

∣∣∣∣
C

+
∂f ′

∂ν ′

∣∣∣∣
C

, ψ

)

C

(4.12)

for all f ⊕ f ′ ∈ dom T . In particular, for f ⊕ f ′ ∈ dom S we have

∂f

∂ν

∣∣∣∣
C

= −
∂f ′

∂ν ′

∣∣∣∣
C

and f |C = f ′|C = 0,

so that (4.12) becomes

(
T (f ⊕ f ′), g ⊕ g′

)
=

(
S(f ⊕ f ′), g ⊕ g′

)
= −

(
f ⊕ f ′, l ⊕ l′

)

and hence g ⊕ g′ ∈ dom S∗ and S∗(g ⊕ g′) = −l ⊕ l′. But we have assumed
that T is closed and hence from S = T ∗ we conclude S∗ = T ∗∗ = T = T , so
that

g ⊕ g′ ∈ dom T and T (g ⊕ g′) = −l ⊕ l′. (4.13)

From Green’s identity we then obtain

(
T (f ⊕ f ′), g ⊕ g′

)
−

(
f ⊕ f ′, T (g ⊕ g′)

)

= (LΩf, g)Ω − (f,LΩg)Ω + (LΩ′f ′, g′)Ω′ − (f ′,LΩ′g′)Ω′

=

(
f |C,

∂g

∂ν

∣∣∣∣
C

)

C

−

(
∂f

∂ν

∣∣∣∣
C

, g|C

)

C

+

(
f ′|C,

∂g′

∂ν ′

∣∣∣∣
C

)

C

−

(
∂f ′

∂ν ′

∣∣∣∣
C

, g′|C

)

C

=

(
f |C,

∂g

∂ν

∣∣∣∣
C

+
∂g′

∂ν ′

∣∣∣∣
C

)

C

−

(
∂f

∂ν

∣∣∣∣
C

+
∂f ′

∂ν ′

∣∣∣∣
C

, g|C

)

C

,

where we have used that f⊕f ′, g⊕g′ ∈ dom T satisfy f |C = f ′|C and g|C = g′|C.
Inserting (4.13) in (4.12) and comparing this with the above relation shows
that the identity

(
f |C,

∂g

∂ν

∣∣∣∣
C

+
∂g′

∂ν ′

∣∣∣∣
C

+ ϕ

)

C

=

(
∂f

∂ν

∣∣∣∣
C

+
∂f ′

∂ν ′

∣∣∣∣
C

, g|C − ψ

)

C

(4.14)

holds for all f ⊕f ′ ∈ dom T . As the mapping (4.8) is surjective and H3/2(C)×
H1/2(C) is dense in L2(C) ⊕ L2(C) we conclude from (4.14) that

ϕ = −

(
∂g

∂ν

∣∣∣∣
C

+
∂g′

∂ν ′

∣∣∣∣
C

)
and ψ = g|C
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holds. Hence we have seen that the element (4.11) in M⊥ is of the form




−T (g ⊕ g′)

g ⊕ g′

− ∂g
∂ν
|C −

∂g′

∂ν′
|C

g|C




(4.15)

for some g⊕ g′ ∈ dom T . It is not difficult to check that conversely an element
as in (4.15) belongs to M⊥. Therefore the orthogonal complement of M is
given by

M⊥ =








−T (g ⊕ g′)

g ⊕ g′

− ∂g
∂n

∣∣∣
C
− ∂g′

∂ν′

∣∣∣
C

g|C




: g ⊕ g′ ∈ dom T





⊂ L2(Rn) ⊕ L2(Rn) ⊕ L2(C) ⊕ L2(C)

and together with (4.10) we find that the sum of M⊥ and N⊥ is

M⊥ + N⊥ =







−T (g ⊕ g′)

g ⊕ g′


 : g ⊕ g′ ∈ dom T




⊕ L2(C) ⊕ L2(C).

The assumption that T is closed implies that M⊥ + N⊥ is a closed subspace
of L2(Rn) ⊕ L2(Rn) ⊕ L2(C) ⊕ L2(C). But then according to [34, IV Theorem
4.8] also M + N is a closed subspace of L2(Rn) ⊕ L2(Rn) ⊕ L2(C) ⊕ L2(C)
which is a contradiction to (4.9). Thus T can not be closed. ¤

The following lemma will be useful later in this section.

Lemma 4.2 Let S and T be as in Theorem 4.1 and let Ã be the selfadjoint

realization of L in L2(Rn) defined on H2(Rn). For a function f ⊕ f ′ ∈ dom T ,

where f ∈ H2(Ω) and f ′ ∈ H2(Ω′), we have

f ⊕ f ′ ∈ dom Ã if and only if
∂f

∂ν

∣∣∣∣
C

= −
∂f ′

∂ν ′

∣∣∣∣
C

.

Proof. For a function f ⊕f ′ ∈ dom Ã = H2(Rn) it is clear that ∂f
∂ν
|C = −∂f ′

∂ν′
|C

holds. Conversely, let f ⊕ f ′ ∈ dom T and assume

∂f

∂ν

∣∣∣∣
C

= −
∂f ′

∂ν ′

∣∣∣∣
C

. (4.16)
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Then also f |C = f ′|C and since every g ⊕ g′ ∈ dom Ã satisfies

g|C = g′|C and
∂g

∂ν

∣∣∣∣
C

= −
∂g′

∂ν ′

∣∣∣∣
C

Green’s identity implies

(
Ã(g ⊕ g′), f ⊕ f ′

)
−

(
g ⊕ g′, T (f ⊕ f ′)

)

=

(
g|C,

∂f

∂ν

∣∣∣∣
C

)

C

−

(
∂g

∂ν

∣∣∣∣
C

, f |C

)

C

+

(
g′|C,

∂f ′

∂ν

∣∣∣∣
C

)

C

−

(
∂g′

∂ν

∣∣∣∣
C

, f ′|C

)

C

= 0.

Therefore f ⊕ f ′ ∈ dom Ã∗ = dom Ã. ¤

Next we define a mapping Γλ0
which satisfies the assumptions in the definition

of a generalized Q-function. For this let A be the selfadjoint operator in L2(Rn)
in (4.3) and (4.4) which is the orthogonal sum of the Dirichlet operators AΩ

and AΩ′ in L2(Ω) and L2(Ω′), respectively. For λ ∈ ρ(A) the domain of the
operator T in Theorem 4.1 can be decomposed in

dom T = dom A +̇Nλ(T )

=
{
f ⊕ f ′ ∈ H2(Ω) ⊕ H2(Ω′) : f |C = f ′|C = 0

}
+̇Nλ(T );

(4.17)

cf. (2.1). Let us fix some λ0 ∈ ρ(A). The decomposition (4.17) and the surjec-
tivity of the map

dom T ∋ f ⊕ f ′ 7→

{
f |C,

∂f

∂ν

∣∣∣∣
C

+
∂f ′

∂ν ′

∣∣∣∣
C

}
∈ H3/2(C) × H1/2(C) (4.18)

(see (3.3) and (4.8)) imply that for a given function ϕ ∈ H3/2(C) there exists
a unique function fλ0

⊕ f ′

λ0
∈ Nλ0

(T ) such that fλ0
|C = f ′

λ0
|C = ϕ. Let Γλ0

be
the mapping that assigns fλ0

⊕ f ′

λ0
to ϕ,

H3/2(C) ∋ ϕ 7→ Γλ0
ϕ := fλ0

⊕ f ′

λ0
. (4.19)

Similarly as in the previous section Γλ0
will be regarded as an operator from

L2(C) to L2(Rn) with dom Γλ0
= H3/2(C) and ran Γλ0

= Nλ0
(T ). Observe that

the function Γλ0
ϕ = fλ0

⊕ f ′

λ0
consists of an H2(Ω)-solution fλ0

of LΩu = λ0u

and an H2(Ω′)-solution f ′

λ0
of LΩ′u′ = λ0u

′ satisfying the boundary conditions
ϕ = fλ0

|C = f ′

λ0
|C.

The following proposition parallels Proposition 3.2.

Proposition 4.3 Let λ0 ∈ ρ(A), let Γλ0
be as in (4.19) and let λ ∈ ρ(A).

Then the following holds:
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(i) Γλ0
is a bounded operator from L2(C) in L2(Rn) with dense domain

H3/2(C);
(ii) The operator Γ(λ) = (I + (λ − λ0)(A − λ)−1)Γλ0

is given by

Γ(λ)ϕ = fλ ⊕ f ′

λ, where fλ ⊕ f ′

λ ∈ Nλ(T ) and fλ|C = ϕ = f ′

λ|C;

(iii) The mapping Γ(λ̄)∗ : L2(Rn) → L2(C) satisfies

Γ(λ̄)∗(A − λ)h = −
∂f

∂ν

∣∣∣∣
C

−
∂f ′

∂ν ′

∣∣∣∣
C

, h = f ⊕ f ′ ∈ dom A.

Proof. We start with the proof (ii). Let ϕ ∈ H3/2(C) and choose the unique
elements fλ ⊕ f ′

λ ∈ Nλ(T ) and fλ0
⊕ f ′

λ0
∈ Nλ0

(T ) such that

fλ|C = f ′

λ|C = ϕ = fλ0
|C = f ′

λ0
|C

holds. By definition Γλ0
ϕ = fλ0

⊕ f ′

λ0
and therefore

Γ(λ)ϕ = Γλ0
ϕ + (λ − λ0)(A − λ)−1Γλ0

ϕ

= fλ0
⊕ f ′

λ0
+ (λ − λ0)(A − λ)−1Γλ0

ϕ.

Since (λ − λ0)(A − λ)−1Γλ0
ϕ is a function belonging to domA we have

(
(λ − λ0)(A − λ)−1Γλ0

ϕ
)∣∣∣

C
= 0;

cf. (4.4). This implies

(Γ(λ)ϕ)|C = (Γλ0
ϕ)|C =

(
fλ0

⊕ f ′

λ0

)
|C = fλ0

|C = f ′

λ0
|C = ϕ

and since ran Γ(λ) = Nλ(T ) (see Lemma 2.1) and fλ⊕f ′

λ is the unique function
in Nλ(T ) with fλ|C = f ′

λ|C = ϕ we conclude Γ(λ)ϕ = fλ ⊕ f ′

λ.

Next we verify (iii). Observe that then Γ(λ̄)∗, λ ∈ ρ(A), is a closed operator
which is defined on the whole space, i.e., Γ(λ̄)∗ is bounded and hence assertion
(i) follows by setting λ0 = λ̄. Let ϕ ∈ H3/2(C) and choose the unique function
fλ̄ ⊕ f ′

λ̄ ∈ Nλ̄(T ) such that

fλ̄|C = f ′

λ̄|C = ϕ (4.20)

holds. Then Γ(λ̄)ϕ = fλ̄ ⊕ f ′

λ̄ and for each h = f ⊕ f ′ ∈ dom A, where
f ∈ H2(Ω), f ′ ∈ H2(Ω′), we have

(
Γ(λ̄)ϕ, (A − λ)h

)
=

(
fλ̄ ⊕ f ′

λ̄, A(f ⊕ f ′)
)
−

(
T (fλ̄ ⊕ f ′

λ̄), f ⊕ f ′
)

= (fλ̄,LΩf)Ω − (LΩfλ̄, f)Ω + (f ′

λ̄,LΩ′f ′)Ω′ − (LΩ′f ′

λ̄, f
′)Ω′ .
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With the help of Green’s identity this can be rewritten as

(
∂fλ̄

∂ν

∣∣∣∣
C

, f |C

)

C

−

(
fλ̄|C,

∂f

∂ν

∣∣∣∣
C

)

C

+

(
∂f ′

λ̄

∂ν ′

∣∣∣∣
C

, f ′|C

)

C

−

(
f ′

λ̄|C,
∂f ′

∂ν ′

∣∣∣∣
C

)

C

.

Since for h = f ⊕ f ′ ∈ dom A we have f |C = f ′|C = 0 we conclude from the
above calculation and (4.20) that

(
Γ(λ̄)ϕ, (A − λ)h

)
= −

(
ϕ,

∂f

∂ν

∣∣∣∣
C

+
∂f ′

∂ν ′

∣∣∣∣
C

)

C

holds for every ϕ ∈ H3/2(C) = dom Γ(λ̄). Hence (A − λ)h ∈ dom Γ(λ̄)∗ and

Γ(λ̄)∗(A − λ)h = −
∂f

∂ν

∣∣∣∣
C

−
∂f ′

∂ν ′

∣∣∣∣
C

, h = f ⊕ f ′ ∈ dom A.

Furthermore, for λ ∈ ρ(A) we have ran (A − λ) = L2(Rn), so that Γ(λ̄)∗ is a
bounded operator defined on L2(Rn). ¤

Next we define a function Q in a similar way as the Dirichlet-to-Neumann map
in Definition 3.3. For this we make use of the decomposition (4.17). Namely,
for λ ∈ ρ(A) and ϕ ∈ H3/2(C) there exists a unique function fλ ⊕ f ′

λ ∈ Nλ(T )
such that fλ|C = f ′

λ|C = ϕ. The operator Q(λ) in L2(C) is now defined by

Q(λ)ϕ := −
∂fλ

∂ν

∣∣∣∣
C

−
∂f ′

λ

∂ν ′

∣∣∣∣
C

, ϕ ∈ dom Q(λ) = H3/2(C). (4.21)

Observe that ran Q(λ) ⊂ H1/2(C) holds. Roughly speaking, up to a minus
sign Q(λ) maps the Dirichlet boundary value of the H2-solutions of LΩu = λu

and LΩ′u′ = λu′, u|C = u′|C, onto the sum of the Neumann boundary values
of these solutions. We mention that in the analysis of so-called intermediate
Hamiltonians a modified form of such a Dirichlet-to-Neumann map has been
used in [44].

In the following theorem it turns out that Q can be interpreted as a generalized
Q-function and the difference of the resolvents of A and Ã is expressed with
the help of Q.

Theorem 4.4 Let L be the elliptic differential expression in (4.1) and let A

and Ã be the selfadjoint realizations of L in (4.3)-(4.4) and (4.5), respectively.

Let S and T be the operators in Theorem 4.1, define Γ(λ) as in Proposition 4.3
and let Q(λ), λ ∈ ρ(A), be as in (4.21). Then the following holds:

(i) Q is a generalized Q-function of the triple {S,A, T};
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(ii) The operator Q(λ) is injective for all λ ∈ ρ(A) ∩ ρ(Ã) and the resolvent

formula

(A − λ)−1 − (Ã − λ)−1 = Γ(λ)Q(λ)−1Γ(λ̄)∗ (4.22)

holds;

(iii) For p > n−1

2
the difference of the resolvents in (4.22) belongs to the von

Neumann-Schatten class Sp(L
2(Rn)).

Proof. Let us prove assertion (i). Before the defining relation (2.3) for a
generalized Q-function will be verified we show that the operator Q(µ)∗ is an
extension of Q(µ̄), µ ∈ ρ(A). For this let ψ ∈ H3/2(C) and choose the unique
element fµ̄ ⊕ f ′

µ̄ ∈ Nµ̄(T ) with the property fµ̄|C = f ′

µ̄|C = ψ. For ϕ ∈ H3/2(C)
let fµ ⊕ f ′

µ ∈ Nµ(T ) be such that fµ|C = f ′

µ|C = ϕ holds. By the definition of
Q in (4.21) we have

Q(µ)ϕ = −
∂fµ

∂ν

∣∣∣∣
C

−
∂f ′

µ

∂ν ′

∣∣∣∣
C

and Q(µ̄)ψ = −
∂fµ̄

∂ν

∣∣∣∣
C

−
∂f ′

µ̄

∂ν ′

∣∣∣∣
C

.

From (fµ|C,
∂fµ̄

∂ν
|C)C = (∂fµ

∂ν
|C, fµ̄|C)C and (f ′

µ|C,
∂f ′

µ̄

∂ν′
|C)C = (

∂f ′

µ

∂ν′
|C, f

′

µ̄|C)C we then
conclude

(Q(µ)ϕ, ψ) = −

(
∂fµ

∂ν

∣∣∣∣
C

, fµ̄|C

)

C

−

(
∂f ′

µ

∂ν ′

∣∣∣∣
C

, f ′

µ̄|C

)

C

= −

(
ϕ,

∂fµ̄

∂ν

∣∣∣∣
C

+
∂f ′

µ̄

∂ν ′

∣∣∣∣
C

)

C

and therefore ψ ∈ dom Q(µ)∗ and Q(µ)∗ψ = Q(µ̄)ψ.

Let Γ(·) be as in Proposition 4.3. We prove now that

Q(λ) − Q(µ)∗ = (λ − µ̄)Γ(µ)∗Γ(λ), λ, µ ∈ ρ(A) (4.23)

holds on dom Γ(λ) = H3/2(C). For this let ϕ, ψ ∈ H3/2(C) and choose the
unique elements fλ ⊕ f ′

λ ∈ Nλ(T ), fµ ⊕ f ′

µ ∈ Nµ(T ) with the properties

fλ|C = f ′

λ|C = ϕ and fµ|C = f ′

µ|C = ψ. (4.24)

Then according to Proposition 4.3 (ii) Γ(λ)ϕ = fλ ⊕ f ′

λ and Γ(µ)ψ = fµ ⊕ f ′

µ

and the definition of Q(·) in (4.21) shows

(
(Q(λ) − Q(µ)∗)ϕ, ψ

)

C
= −

(
∂fλ

∂ν

∣∣∣∣
C

+
∂f ′

λ

∂ν ′

∣∣∣∣
C

, ψ

)

C

+

(
ϕ,

∂fµ

∂ν

∣∣∣∣
C

+
∂f ′

µ

∂ν ′

∣∣∣∣
C

)

C

.
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By inserting (4.24) and making use of Green’s identity we obtain

(
(Q(λ) − Q(µ)∗)ϕ, ψ

)

C

= (LΩfλ, fµ)Ω − (fλ,LΩfµ)Ω + (LΩ′f ′

λ, f
′

µ)Ω′ − (f ′

λ,LΩ′f ′

µ)Ω′

= (λ − µ̄)
(
(fλ, fµ)Ω + (f ′

λ, f
′

µ)Ω′

)
= (λ − µ̄)

(
fλ ⊕ f ′

λ, fµ ⊕ f ′

µ

)

= (λ − µ̄)(Γ(λ)ϕ, Γ(µ)ψ) =
(
(λ − µ̄)Γ(µ)∗Γ(λ)ϕ, ψ

)

C
,

i.e., (4.23) holds and Q is a generalized Q-function for the triple {S,A, T}.

(ii) We check first that ker Q(λ) = {0} holds for λ ∈ ρ(A) ∩ ρ(Ã). Assume
that Q(λ)ϕ = 0 for some ϕ ∈ H3/2(C) and let fλ ⊕ f ′

λ ∈ Nλ(T ) be the unique
element with the property fλ|C = f ′

λ|C = ϕ. Then the definition of Q and the
assumption Q(λ)ϕ = 0 imply

∂fλ

∂ν

∣∣∣∣
C

= −
∂f ′

λ

∂ν ′

∣∣∣∣
C

.

According to Lemma 4.2 this yields fλ⊕f ′

λ ∈ dom Ã∩Nλ(T ). But as λ ∈ ρ(Ã)
we conclude fλ = 0 and f ′

λ = 0, and hence ϕ = 0.

Now we prove the formula (4.22) for the difference of the resolvents of A and
Ã. By the above argument Q(λ)−1 exists for λ ∈ ρ(A) ∩ ρ(Ã). Furthermore,
(4.18) implies ran Q(λ) = H1/2(C) and it follows from Proposition 4.3 that
the right hand side in (4.22) is well defined. Let h ∈ L2(Rn) and define the
function k as

k = (A − λ)−1h − Γ(λ)Q(λ)−1Γ(λ̄)∗h. (4.25)

We show k ∈ dom Ã. First of all it is clear that k ∈ dom T since (A−λ)−1h ∈
dom A ⊂ dom T and Γ(λ) maps into Nλ(T ). Therefore k = g ⊕ g′, where g ∈
H2(Ω), g′ ∈ H2(Ω′), and g|C = g′|C. According to Lemma 4.2 for k ∈ dom Ã

it is sufficient to check

∂g

∂ν

∣∣∣∣
C

+
∂g′

∂ν ′

∣∣∣∣
C

= 0. (4.26)

We proceed in a similar way as in the proof of Theorem 3.4. Let hA = fA⊕f ′

A ∈
dom A be such that h = (A − λ)hA. Making use of Proposition 4.3 (iii) we
obtain

k = hA + fλ ⊕ f ′

λ, fλ ⊕ f ′

λ := Γ(λ)Q(λ)−1

(
∂fA

∂ν

∣∣∣∣
C

+
∂f ′

A

∂ν ′

∣∣∣∣
C

)
∈ Nλ(T ),

(4.27)

from (4.25). Then Proposition 4.3 (ii) together with the definition of Q(λ) in
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(4.21) implies

∂fA

∂ν

∣∣∣∣
C

+
∂f ′

A

∂ν ′

∣∣∣∣
C

= Q(λ)(fλ|C) = Q(λ)(f ′

λ|C) = −
∂fλ

∂ν

∣∣∣∣
C

−
∂f ′

λ

∂ν ′

∣∣∣∣
C

.

Hence we conclude that the function k = g ⊕ g′ in (4.27) fulfils (4.26), i.e.,
k ∈ dom Ã. From (4.25) and A, Ã ⊂ T we obtain

(Ã − λ)k = (T − λ)(A − λ)−1h − (T − λ)Γ(λ)Q(λ)−1Γ(λ̄)∗h = h

and now k = (Ã − λ)−1h and (4.25) imply (4.22).

Assertion (iii) is a direct consequence of [11, Theorem 1.3]. ¤

The following corollaries can be proved in the same way as Corollary 3.5 and
Corollary 3.6.

Corollary 4.5 For λ, λ0 ∈ ρ(A) the following holds.

(i) Q(λ) is a non-closed unbounded operator in L2(C) defined on H3/2(C)
with ran Q(λ) ⊂ H1/2(C);

(ii) Q(λ) − Re Q(λ0) is a non-closed bounded operator in L2(C) defined on

H3/2(C);
(iii) the closure Q̃(λ) of the operator Q(λ) − Re Q(λ0) in L2(C) satisfies

d

dλ
Q̃(λ) = Γ(λ̄)∗Γ(λ)

and Q̃ is a L(L2(C))-valued Nevanlinna function.

Corollary 4.6 For λ ∈ ρ(A) ∩ ρ(Ã) the following holds.

(i) Q(λ)−1 is a non-closed bounded operator in L2(C) defined on H1/2(C) with

ran Q(λ)−1 = H3/2(C);
(ii) the closure Q(λ)−1 is a compact operator in L2(C);
(iii) the function λ 7→ −Q(λ)−1 is a L(L2(C))-valued Nevanlinna function.

As a corollary of Theorem 4.4 we obtain a trace formula for the difference of
the resolvents of A and Ã.

Corollary 4.7 Let the assumptions be as in Theorem 4.4, let Q̃ be the Nevan-

linna function from Corollary 4.5 and suppose, in addition, n = 2. Then

tr
(
(A − λ)−1 − (Ã − λ)−1

)
= tr

(
Q(λ)−1

d

dλ
Q̃(λ)

)

holds for all λ ∈ ρ(A) ∩ ρ(Ã).
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