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Abstract. For closed linear operators or relations A and B acting between
Hilbert spaces H and K the concepts of compact and finite rank perturbations
are defined with the help of the orthogonal projections PA and PB in H⊕K

onto the graphs of A and B. Various equivalent characterizations for such
perturbations are proved and it is shown that these notions are a natural
generalization of the usual concepts of compact and finite rank perturbations.
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1. Introduction

Let H and K be Hilbert spaces and assume first that A and B are bounded linear
operators defined on H with values in K. Then A is said to be a compact (finite
rank) perturbation of B if the operator A − B is compact (finite dimensional,
respectively). If A and B are unbounded closed operators these notions in general
make no sense since the domains dom A and dom B may not coincide and hence
A − B can only be defined on the (possibly trivial) subspace dom A ∩ dom B of
H. However, if in the special case H = K the operators A and B have a common
point in their resolvent sets, then a natural generalization of the above notions of
compact and finite rank perturbations is defined via the resolvent difference of A
and B. Namely, A is said to be a compact (finite rank) perturbation of B if

(A− λ)−1 − (B − λ)−1, λ ∈ ρ(A) ∩ ρ(B), (1.1)

1 The research of Tomas Ya. Azizov is partially supported by RFBR grant 05-01-00203-a.
2 Sadly, our colleague and friend Peter Jonas passed away on July, 18th 2007.
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is a compact operator (finite rank operator, respectively). Such types of compact
and finite rank perturbations play an important role in pure and applied linear
functional analysis and have been studied extensively for a long time, see, e.g., [8].

The main objective of this paper is to introduce the notions of compact and
finite rank perturbations of closed linear operators and, more generally, closed
linear relations A and B acting between H and K, and to give various equivalent
characterizations. The key idea here is to use the orthogonal projections PA and
PB in H ⊕ K onto the closed graphs or subspaces A and B of H ⊕ K. We shall
say that A is a compact (finite rank) perturbation of B if PA − PB is a compact
operator (finite dimensional operator, respectively). It is shown in Theorem 3.1
that A is a finite rank perturbation of B if and only if A and B are both finite
dimensional extensions of their common part A ∩ B. Furthermore, it is verified
in Theorem 4.2 that the linear relation A is a compact perturbation of the linear
relation B if and only if for every ε > 0 there exists a closed linear relation F
from H in K such that PB −PF is a finite rank operator and ‖PA −PF ‖ < ε. This
characterization of compact perturbations is very convenient and useful, see, e.g.,
[2] for stability investigations of sign type properties of spectral points of closed
linear operators and relations in indefinite inner product spaces under compact
perturbations and perturbations small in gap.

The paper is organized as follows. In Section 2 we first recall some basic def-
initions (cf. [1, 4]) and decompositions of linear relations in Hilbert spaces. The
orthogonal projection PA in H⊕K onto a closed linear relation A from H in K is
expressed in terms of the operator part Aop of A in Proposition 2.1. This represen-
tation of PA coincides in essence with the Stone-de Snoo formula, cf. [5, 7, 10, 13].
Sections 3 and 4 are devoted to the concepts of finite rank and compact perturba-
tions of closed linear operators and relations and contain our main results. Here
we introduce the corresponding notions and prove various equivalent formulations.
Moreover, we show that theses notions are natural generalizations of the usual ones
for bounded and unbounded operators.

2. The orthogonal projection onto a closed linear relation

Let throughout this paper H and K be Hilbert spaces. We study linear relations
from H in K, that is, linear subspaces of H×K. The set of all closed linear relations

from H in K will be denoted by C̃(H,K). If K = H we write C̃(H). For a linear
relation A we write dom A, ran A, kerA and mul A for the domain, range, kernel
and multivalued part of A, respectively. The elements in a linear relation A will
usually be written as column vectors ( x

x′ ), where x ∈ dom A and x′ ∈ ran A. For
the usual definitions of the linear operations with relations, the inverse etc., we
refer to [1, 4, 6]. The set of all densely defined closed linear operators from H to
K will be denoted by C(H,K), we write C(H) if H = K. For the set of everywhere
defined bounded linear operators from H in K we write L(H,K) and L(H) if H
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and K coincide. Linear operators are identified as linear relations via their graphs

and hence the inclusions L(H,K) ⊂ C(H,K) ⊂ C̃(H,K) hold.

Let A be a linear relation from H in K. Then the adjoint relation A∗ ∈
C̃(K,H) is defined by

A∗ =

{(
y
y′

)
: (x′, y) = (x, y′) for all

(
x
x′

)
∈ A

}
.

Note that this definition extends the usual definition of the adjoint of a densely
defined operator. If A is a linear relation in H, then A is said to be symmetric

(selfadjoint) if A ⊂ A∗ (A = A∗, respectively). Let A ∈ C̃(H,K). As

mul A = (dom A∗)⊥ and mul A∗ = (dom A)⊥

it is clear that A (A∗) is a densely defined closed operator if and only if dom A∗

(dom A, respectively) is dense. Observe that the orthogonal complement of A in
H⊕K is the relation (−A∗)−1, that is, H⊕K = A⊕ (−A∗)−1.

Let A ∈ C̃(H,K). In the following the Hilbert spaces H and K will be decom-
posed in the form

H = mul A∗ ⊕H1, where H1 := (mul A∗)⊥ = dom A, (2.1)

and

K = K1 ⊕ mul A, where K1 := (mul A)⊥ = dom A∗, (2.2)

respectively. The operator part Aop of A is defined by

Aop := A ∩
(
H1 ×K1

)
.

It is easy to see that in fact mul Aop = {0} holds, and hence it follows that Aop

is a densely defined closed operator from H1 in K1, that is, Aop ∈ C(H1,K1).
Furthermore, dom Aop = dom A and

A =

{(
x

Aopx+ z

)
: x ∈ dom Aop, z ∈ mul A

}
. (2.3)

Analogously the operator part (A∗)op of the relation A∗ ∈ C̃(K,H) is defined as

(A∗)op := A∗ ∩
(
K1 ×H1

)
∈ C(K1,H1)

and it is straightforward to check that the adjoint (Aop)∗ ∈ C(K1,H1) of the
operator part Aop of A coincides with the operator part (A∗)op of the adjoint
relation A∗, that is, (Aop)∗ = (A∗)op. In the sequel we simply write A∗

op.

The next proposition will be useful for the considerations in Section 3 and
Section 4.
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Proposition 2.1. Let A ∈ C̃(H,K) be a closed linear relation from H in K and let
H1, K1, and the operators Aop and A∗

op be defined as above. Then the operator

PA =




0 0 0 0
0 (I +A∗

opAop)−1 A∗
op(I +AopA

∗
op)−1 0

0 Aop(I +A∗
opAop)−1 AopA

∗
op(I +AopA

∗
op)−1 0

0 0 0 I


 (2.4)

is the orthogonal projection in H⊕K onto the linear relation A with respect to the
decomposition mul A∗ ⊕H1 ⊕K1 ⊕ mul A of H⊕K.

In the operator case Proposition 2.1 reduces to the following well-known
statement, see, e.g., [3, 11, 13].

Corollary 2.2. Let A ∈ C(H,K) be a closed densely defined linear operator from H
in K. Then the orthogonal projection PA in H⊕K onto A is given by

PA =

(
(I +A∗A)−1 A∗(I +AA∗)−1

A(I +A∗A)−1 AA∗(I +AA∗)−1

)
.

Proof of Proposition 2.1. Recall that A∗
opAop and AopA

∗
op are nonnegative selfad-

joint operators in the Hilbert spaces H1 and K1, respectively, cf. [8, § V. Theo-
rem 3.24]. In particular, the entries in the matrix representation of PA are every-
where defined bounded operators.

For x ∈ dom Aop we have

Aopx = Aop(I +A∗
opAop)(I +A∗

opAop)−1x = (I +AopA
∗
op)Aop(I +A∗

opAop)−1x

and hence (I + AopA
∗
op)−1Aopx = Aop(I + A∗

opAop)−1x. As dom Aop = H1 and

(I + A∗
opAop)−1 ∈ L(H1) we conclude

(I +AopA∗
op)−1Aop = Aop(I +A∗

opAop)−1. (2.5)

Making use of (2.5) it follows without difficulties that P 2
A = PA holds. Further-

more, from (2.5) we conclude
(
A∗

op(I +AopA
∗
op)−1

)∗
= (I +AopA∗

op)−1Aop = Aop(I +A∗
opAop)−1. (2.6)

Now relation (2.6) together with the selfadjointness of A∗
opAop and AopA

∗
op imply

PA = P ∗
A. Therefore PA is an orthogonal projection in H⊕K.

It remains to show ran PA = A. According to [8, §V. Theorem 3.24] the
(graph of the) restriction Aop ↾ dom A∗

opAop is dense in Aop and hence it follows
that the range of the orthogonal projection

PAop
:=

(
(I +A∗

opAop)−1 A∗
op(I +AopA

∗
op)−1

Aop(I +A∗
opAop)−1 AopA

∗
op(I +AopA

∗
op)−1

)
:

(
H1

K1

)
→

(
H1

K1

)

is a dense subspace of Aop. On the other hand ran PAop
is closed, therefore

ran PAop
= Aop and with (2.3) we have ran PA = A. Proposition 2.1 is proved. �
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For a closed linear relation A the following matrix representation of PA is
due to H.S.V. de Snoo and can be obtained from Proposition 2.1, see also [5] and
[7].

Proposition 2.3. Let A ∈ C̃(H,K) be a closed linear relation. Then A∗A ∈ C̃(H)

and AA∗ ∈ C̃(K) are nonnegative selfadjoint relations and the orthogonal projec-
tion PA in Proposition 2.1 has the form

PA =

(
(I +A∗A)−1 ιH1

[A∗(I +AA∗)−1]op
ιK1

[A(I +A∗A)−1]op I − (I +AA∗)−1

)
:

(
H
K

)
→

(
H
K

)
, (2.7)

where ιH1
and ιK1

denote the canonical embeddings of H1 in H and K1 in K,
respectively.

Let again A ∈ C̃(H,K). Following [12] we define the operators cosA and sinA
by

cosA := (I +A∗A)−1/2 ∈ L(H)

and

sinA := ιK1

[
A(I +A∗A)−1/2

]
op

∈ L(H,K),

where ιK1
is the canonical embedding of K1 into K. Now Propositions 2.1 and 2.3

yield the following corollary, which is a slight generalization of the main result in
[12], see also [9].

Corollary 2.4. Let A ∈ C̃(H,K) be a closed linear relation. Then the orthogonal
projection PA in H⊕K onto A has the form

PA =

(
cos2A cosA sinA∗

cosA∗ sinA I − cos2A∗

)
=

(
cos2A sinA∗ cosA∗

sinA cosA I − cos2A∗

)
.

Proof. It is clear from Proposition 2.3 that the diagonal entries of PA are given by
cos2A and I − cos2A∗. In order to see the form of the offdiagonal entries denote
by EA∗

opAop
(·) and EAopA∗

op
(·) the spectral functions of the selfadjoint operators

A∗
opAop ∈ C(H1) and AopA

∗
op ∈ C(K1), respectively. Then

AopEA∗

opAop
(·)x = EAopA∗

op
(·)Aopx, x ∈ dom Aop,

A∗
opEAopA∗

op
(·)y = EA∗

opAop
(·)A∗

opy, y ∈ dom A∗
op,

imply that the identities

Aop(I +A∗
opAop)−1 = (I +AopA

∗
op)−1/2Aop(I +A∗

opAop)−1/2,

A∗
op(I +AopA

∗
op)−1 = (I +A∗

opAop)−1/2A∗
op(I +AopA

∗
op)−1/2

hold. Now the statement follows from Proposition 2.1,

cosA =

(
0 0
0 (I +A∗

opAop)−1/2

)
:

(
mul A∗

H1

)
→

(
mul A∗

H1

)
,

cosA∗ =

(
(I +AopA

∗
op)−1/2 0

0 0

)
:

(
K1

mul A

)
→

(
K1

mul A

)
,



6 Azizov, Behrndt, Jonas and Trunk

and

sinA =

(
0 Aop(I +A∗

opAop)−1/2

0 0

)
:

(
mul A∗

H1

)
→

(
K1

mul A

)
,

sinA∗ =

(
0 0

A∗
op(I +AopA

∗
op)−1/2 0

)
:

(
K1

mul A

)
→

(
mul A∗

H1

)
.

�

3. Finite rank perturbations of closed linear operators and
relations

In this section we are concerned with finite dimensional perturbations of closed
linear operator and, more generally, closed linear relations in Hilbert spaces. The
notion of finite rank perturbations introduced below is compatible with the usual
notions for unbounded and bounded operators, cf. Corollary 3.4 and Corollary 3.5.
Roughly speaking, a linear relation is a finite rank perturbation of another linear
relation if both differ by finitely many dimensions. This is made precise in the
following theorem, where also an alternative description in terms of orthogonal
projections is given.

Theorem 3.1. Let A,B ∈ C̃(H,K) be closed linear relations from H in K and let
PA and PB be the orthogonal projections in H ⊕ K onto A and B, respectively.
Then the following assertions are equivalent:

(i) PA − PB is a finite rank operator;
(ii) dimA/(A ∩B) <∞ and dimB/(A ∩B) <∞.

If (i) or (ii) holds, then A is said to be a finite rank perturbation of B and B is
said to be a finite rank perturbation of A.

Proof. The identities

dim ran (PA − PA∩B) = dimA/(A ∩B),

dim ran (PB − PA∩B) = dimB/(A ∩B)

together with PA − PB = (PA − PA∩B) − (PB − PA∩B) show that (ii) implies (i).
Assume now that (i) holds. We can assume B = H× {0} since H⊕K = B ⊕B⊥

and A can also be regarded as a closed linear relation from B to B⊥. Hence in the
following we consider the case B = 0 ∈ L(H,K). Then

PB =




I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0


 :




mul A∗

H1

K1

mul A


 →




mul A∗

H1

K1

mul A


 , (3.1)
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where H1 = dom A and K1 = dom A∗, and by Proposition 2.1 we have

PA − PB =




−I 0 0 0
0 −A∗

opAop(I +A∗
opAop)−1 A∗

op(I +AopA
∗
op)−1 0

0 Aop(I +A∗
opAop)−1 AopA

∗
op(I +AopA

∗
op)−1 0

0 0 0 I


 .

Thus, the assumption dim ran (PA − PB) <∞ implies

dim mul A∗ <∞ and dimmul A <∞.

Moreover, as Aop ↾ dom A∗
opAop is dense in Aop it follows that Aop ∈ C(H1,K1) is

an operator of finite rank. Therefore dimH1/ kerAop <∞ and also dimH/ kerA <
∞. From A ∩ B = kerA × {0} we conclude dimA/(A ∩ B) < ∞. Replacing the
roles of A and B it follows that also dimB/(A ∩B) <∞ holds. Hence (i) implies
(ii) and Theorem 3.1 is proved. �

Proposition 3.2. Let A,B ∈ C̃(H,K) and T ∈ L(H,K). Then A is a finite rank
perturbation of B if and only if A− T is a finite rank perturbation of B − T .

Proof. Assume that A is a finite rank perturbation of B. Then it follows from
Theorem 3.1 (ii) that there exists a finite dimensional subspace N ⊂ A such that
each element ( u

v ) ∈ A can be written as
(
u
v

)
=

(
u1

v1

)
+

(
u2

v2

)
, where

(
u1

v1

)
∈ A ∩B,

(
u2

v2

)
∈ N.

Hence (
u

v − Tu

)
=

(
u1

v1 − Tu1

)
+

(
u2

v2 − Tu2

)
,

that is, A− T = ((A ∩B) − T ) M , where

M =

{(
u2

v2 − Tu2

)
:

(
u2

v2

)
∈ N

}

and denotes the sum of two linear manifolds. Since

(A− T ) ∩ (B − T ) = (A ∩B) − T

and dimM <∞ it follows that

dim(A− T )/
(
(A− T ) ∩ (B − T )

)
<∞.

Similarly, we get

dim(B − T )/
(
(A− T ) ∩ (B − T )

)
<∞,

so that, by Theorem 3.1 (ii) A − T is a finite rank perturbation of B − T . The
converse implication follows when A, B and T are replaced by A− T , B − T and
−T , respectively. �
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For A,B ∈ C̃(H,K) we define

ρ(A,B) :=
{
T ∈ L(H,K) : (A− T )−1, (B − T )−1 ∈ L(K,H)

}
(3.2)

Observe that if in the special case H = K the intersection of the resolvent sets
ρ(A) and ρ(B) is nonempty, then {λI : λ ∈ ρ(A) ∩ ρ(B)} is a subset of ρ(A,B).

Proposition 3.3. Let A,B ∈ C̃(H,K) and ρ(A,B) 6= ∅. Then A is a finite rank
perturbation of B if and only if (A − T )−1 − (B − T )−1 is a finite rank operator
for some (and hence for all) T ∈ ρ(A,B).

Proof. Suppose that A is a finite rank perturbation of B and let T ∈ ρ(A,B). By
Proposition 3.2 A− T is a finite rank perturbation of B − T and Theorem 3.1 (ii)
implies that the closed linear relations A−T and B−T are both finite dimensional
extensions of the linear relation (A− T ) ∩ (B − T ). Hence the same holds for the
inverses, that is,

dim(A− T )−1/((A− T )−1 ∩ (B − T )−1) <∞ (3.3)

and

dim(B − T )−1/((A− T )−1 ∩ (B − T )−1) <∞. (3.4)

Now the statement follows from (A − T )−1 − (B − T )−1 ∈ L(K,H). Conversely,
if for some T ∈ ρ(A,B) the operator (A − T )−1 − (B − T )−1 ∈ L(K,H) is of
finite rank, then (3.3) and (3.4) hold. This implies that A − T and B − T are
finite dimensional extensions of (A− T )∩ (B− T ) and therefore A is a finite rank
perturbation of B by Theorem 3.1 (ii) and Proposition 3.2. �

We complete this section with two corollaries. The first one shows that for
closed linear operators and relations in the same Hilbert space and a common point
in their resolvent sets the notion of finite rank perturbations suggested above is
compatible with the usual definition via resolvent differences.

Corollary 3.4. Let A,B ∈ C̃(H) and ρ(A) ∩ ρ(B) 6= ∅. Then A is a finite rank
perturbation of B if and only if (A − λ)−1 − (B − λ)−1 is a finite rank operator
for some (and hence for all) λ ∈ ρ(A) ∩ ρ(B).

Corollary 3.5. Let A,B ∈ L(H,K). Then A is a finite rank perturbation of B if
and only if A−B is a finite rank operator.

Proof. Suppose that A is a finite rank perturbation of B, i.e., PA − PB is a finite
rank operator. From Corollary 2.2 it follows that the entries in the first column of
PA − PB are given by

(I +A∗A)−1 − (I +B∗B)−1 and A(I +A∗A)−1 −B(I +B∗B)−1,

respectively, and are finite rank operators. Multiplying the first operator from the
left with B and subtracting the second one yields that A − B is a finite rank
operator.

Conversely, if A−B is a finite rank operator, then also A∗−B∗, A∗A−B∗B
and AA∗ − BB∗ are finite rank operators. Making use of Corollary 2.2 it is not
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difficult to see that PA − PB is a finite rank operator and hence A is a finite rank
perturbation of B �

4. Compact perturbations of closed linear operators and relations

Recall that the gap between two closed subspaces M and N of a Hilbert space is
defined by

δ̂(M,N) := max
{

sup
u∈M,‖u‖=1

dist (u,N), sup
v∈N,‖v‖=1

dist (v,M)
}
.

If PM and PN denote the orthogonal projections onto M and N , respectively, then
the gap between M and N is

δ̂(M,N) = ‖PM − PN‖,

cf. [8]. The following lemma is known for the special case that A and B are closed
operators, see [8, Theorem IV.2.17]. The proof for the relation case is very similar,
however, for the convenience of the reader we present the details.

Lemma 4.1. Let A,B ∈ C̃(H,K), T ∈ L(H,K) and

γ := 2(1 + ‖T‖2).

Denote by PA, PB, PA−T and PB−T the orthogonal projections in H⊕K onto A,
B, A− T and B − T , respectively. Then the following estimate holds:

1

γ
‖PA−T − PB−T ‖ ≤ ‖PA − PB‖ ≤ γ‖PA−T − PB−T ‖. (4.1)

Proof. It suffices to verify the first estimate in (4.1), the second estimate follows
when A− T , B − T and T are replaced by A, B and −T , respectively.

Let ϕ ∈ A− T , ‖ϕ‖ = 1, and choose ( u
v ) ∈ A such that

ϕ =

(
u

v − Tu

)
∈ A− T, ‖ϕ‖2 = ‖u‖2 + ‖v − Tu‖2 = 1. (4.2)

Then r2 := ‖u‖2 + ‖v‖2 > 0, and r−1 ( u
v ) belongs to the unit sphere of A.

Therefore, for any δ′ > ‖PA − PB‖ = δ̂(A,B) the element r−1 ( u
v ) has a distance

less than δ′ from B. Hence there exists an element ( x
y ) ∈ B with

‖r−1u− x‖2 + ‖r−1v − y‖2 < δ′
2
,

i.e.,

‖u− rx‖2 + ‖v − ry‖2 < r2δ′
2
. (4.3)

We define an element ψ of B − T by

ψ :=

(
rx

ry − rTx

)
.
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With the help of (4.3) we find

‖ϕ− ψ‖2 = ‖u− rx‖2 + ‖(v − ry) − T (u− rx)‖2

≤ ‖u− rx‖2 + 2‖v − ry‖2 + 2‖T‖2‖u− rx‖2

≤ 2(1 + ‖T‖2)(‖u− rx‖2 + ‖v − ry‖2) < 2(1 + ‖T‖2)r2δ′
2

and on the other hand

r2 = ‖u‖2 + ‖v − Tu+ Tu‖2 ≤ ‖u‖2 + 2‖v − Tu‖2 + 2‖T‖2‖u‖2.

Then (4.2) implies r2 ≤ 2(1 + ‖T‖2) and hence

‖ϕ− ψ‖2 ≤ 4(1 + ‖T‖2)2δ′
2
. (4.4)

As ϕ is an element of the unit sphere of A− T , ψ ∈ B − T and δ′ is an arbitrary
number greater than ‖PA − PB‖ it follows that

sup
ϕ∈A−T,‖ϕ‖=1

dist (ϕ,B − T ) ≤ 2(1 + ‖T‖2)‖PA − PB‖

holds. The estimate

sup
ϕ∈B−T,‖ϕ‖=1

dist (ϕ,A− T ) ≤ 2(1 + ‖T‖2)‖PA − PB‖

is obtained by interchanging A and B in the above considerations and therefore
‖PA−T − PB−T ‖ ≤ γ‖PA − PB‖, where γ = 2(1 + ‖T‖2). �

In the next theorem, which is the main result in this section, two equivalent
notions for compact perturbations of closed linear operators and relations are in-
troduced. In analogy to Theorem 3.1 a linear relation is a compact perturbation
of another linear relation if the difference of the corresponding orthogonal projec-
tions is compact. In connection with (semi-)Fredholm theory of linear relations
this notion was already used in [11, Proposition 18].

Theorem 4.2. Let A,B ∈ C̃(H,K) be closed linear relations from H in K and let
PA and PB be the orthogonal projections in H ⊕ K onto A and B, respectively.
Then the following assertions are equivalent:

(i) PA − PB is a compact operator;

(ii) For every ε > 0 there exists a linear relation F ∈ C̃(H,K) such that PB −PF

is a finite rank operator and

δ̂(A,F ) = ‖PA − PF ‖ < ε.

If (i) or (ii) holds, then A is said to be a compact perturbation of B and B is said
to be a compact perturbation of A.

Proof. Since PA−PB = PA−PF −(PB−PF ) it is clear that (ii) implies (i). Suppose
that (i) holds. As in the proof of Theorem 3.1 we can assume that B = 0, B ∈
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L(H,K). Let H1 = dom A and K1 = dom A∗. Then the orthogonal projections
PA and PB are given by (2.4) and (3.1), respectively. Since

PA − PB =




−I 0 0 0
0 −A∗

opAop(I +A∗
opAop)−1 A∗

op(I +AopA
∗
op)−1 0

0 Aop(I +A∗
opAop)−1 AopA

∗
op(I +AopA

∗
op)−1 0

0 0 0 I




is compact it is clear that mul A∗ and mul A are finite dimensional and the non-
negative selfadjoint operator A∗

opAop(I + A∗
opAop)−1 ∈ L(H1) is also compact.

Therefore

σ
(
A∗

opAop(I +A∗
opAop)−1

)
\{0}

consists only of isolated eigenvalues with finite multiplicity and zero is the only
possible accumulation point. It follows from the spectral mapping theorem that
σ(A∗

opAop) has the same properties, hence A∗
opAop is a compact operator. Using

the polar decomposition of Aop it follows that also Aop ∈ L(H1,K1) is compact.
Therefore, for each ε > 0 there exists a decomposition Aop = Fop +Gop such that
Fop ∈ L(H1,K1) is a finite rank operator, Gop ∈ L(H1,K1) is sufficiently small,
and ‖PAop

− PFop
‖ < ε, where PAop

and PFop
are the orthogonal projections in

H1 ⊕ K1 onto Aop and Fop, respectively. The norm estimate ‖PAop
− PFop

‖ < ε
can easily be verified with the help of Corollary 2.2.

Define the linear relation F ∈ C̃(H,K) by

F :=

{(
x

Fopx+ x′

)
: x ∈ H1, x

′ ∈ mul A

}
.

Then mul F = mul A and mul F ∗ = (dom F )⊥ = (dom A)⊥ = mul A∗ imply that
the orthogonal projection PF in H⊕K onto F is given by

PF =




0 0 0 0
0 (I + F ∗

opFop)−1 F ∗
op(I + FopF

∗
op)−1 0

0 Fop(I + F ∗
opFop)−1 FopF

∗
op(I + FopF

∗
op)−1 0

0 0 0 I


 (4.5)

with respect to the decomposition mul A∗ ⊕H1 ⊕K1 ⊕mul A, cf. Proposition 2.1.
Hence, by (2.4) and Corollary 2.2 we have ‖PA − PF ‖ = ‖PAop

− PFop
‖ < ε. As

mul A∗and mul A are finite dimensional and Fop is a finite rank operator it follows
from (3.1) and (4.5) that

PB − PF =




−I 0 0 0
0 F ∗

opFop(I + F ∗
opFop)−1 F ∗

op(I + FopF
∗
op)−1 0

0 Fop(I + F ∗
opFop)−1 FopF

∗
op(I + FopF

∗
op)−1 0

0 0 0 I




is a finite rank operator. This completes the proof of Theorem 4.2. �
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The next proposition is the analogue of Proposition 3.2 for compact pertur-
bations. For the case of closed linear operators in H = K the statement reduces to
[10, Proposition 3.1].

Proposition 4.3. Let A,B ∈ C̃(H,K) and T ∈ L(H,K). Then A is a compact
perturbation of B if and only if A− T is a compact perturbation of B − T .

Proof. Assume that A is a compact perturbation of B and let T ∈ L(H,K).

According to Theorem 4.2 (ii) for given ε > 0 there exists F ∈ C̃(H,K) such that
PB − PF is a finite rank operator and ‖PA − PF ‖ < ε. According to Theorem 3.1
and Proposition 3.2 also PB−T −PF−T is a finite rank operator and by Lemma 4.1

‖PA−T − PF−T ‖ ≤ 2(1 + ‖T‖2)‖PA − PF ‖ < 2(1 + ‖T‖2)ε

holds. This implies that PA−T − PB−T is compact and hence A− T is a compact
perturbation of B − T by Theorem 4.2 (i). By replacing A, B and T with A− T ,
B − T and −T , respectively, it follows that A is a compact perturbation B when
A− T is a compact perturbation of B − T . �

Next we formulate an analogue of Proposition 3.3 for the case of compact
perturbations. The set ρ(A,B) was introduced in (3.2).

Proposition 4.4. Let A,B ∈ C̃(H,K) and ρ(A,B) 6= ∅. Then A is a compact per-
turbation of B if and only if (A − T )−1 − (B − T )−1 is a compact operator for
some (and hence for all) T ∈ ρ(A,B).

Proof. Assume that A is a compact perturbation of B and let T ∈ ρ(A,B). By
Proposition 4.3, A−T is a compact perturbation of B−T and hence the operator
PA−T − PB−T is compact. Observe that PA−T is connected with the orthogonal
projection P(A−T )−1 ∈ L(K⊕H) in K⊕H onto (A−T )−1 in the following manner:
Let h ∈ H and k ∈ K. Then

PA−T

(
h
k

)
=

(
z
z′

)
∈ A− T

if and only if

P(A−T )−1

(
k
h

)
=

(
z′

z

)
∈ (A− T )−1.

The projections PB−T and P(B−T )−1 are connected in the same way. Therefore,
since the compact operator PA−T −PB−T maps bounded sequences onto sequences
with a convergent subsequence, the same is true for P(A−T )−1 − P(B−T )−1 , and
hence this operator is compact. From Corollary 2.2 it follows that the entries in
the first column of P(A−T )−1 − P(B−T )−1 are given by

(
I + (A∗ − T ∗)−1(A− T )−1

)−1
−

(
I + (B∗ − T ∗)−1(B − T )−1

)−1
(4.6)
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and

(A− T )−1
(
I + (A∗ − T ∗)−1(A− T )−1

)−1

− (B − T )−1
(
I + (B∗ − T ∗)−1(B − T )−1

)−1
(4.7)

and both are compact operators. Multiplying (4.6) from the left with (B − T )−1

and subtracting (4.7) then implies that (A − T )−1 − (B − T )−1 is a compact
operator.

Conversely, suppose that (A − T )−1 − (B − T )−1 is compact for some T ∈
ρ(A,B). Then also the operators in (4.6) and (4.7) are compact and with the help
of Corollary 2.2 it follows that P(A−T )−1 − P(B−T )−1 is compact. Therefore the
above considerations imply that also PA−T − PB−T is compact. Hence A − T is
a compact perturbation of B − T and Proposition 4.3 yields that A is a compact
perturbation of B. �

The following two corollaries show that the notion of compact perturbations
introduced in Theorem 4.2 reduces to the usual notions if, e.g., both operators or
relations act in the same Hilbert space and have a common point in their resolvent
sets.

Corollary 4.5. Let A,B ∈ C̃(H) and ρ(A) ∩ ρ(B) 6= ∅. Then A is a compact per-
turbation of B if and only if (A−λ)−1− (B−λ)−1 is a compact operator for some
(and hence for all) λ ∈ ρ(A) ∩ ρ(B).

Corollary 4.6. Let A,B ∈ L(H,K). Then A is a compact perturbation of B if and
only if A−B is a compact operator.

Corollary 4.6 can be proved in the same way as Corollary 3.5; simply replace
the expression “finite rank” in the proof of Corollary 3.5 by “compact”.
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(French), Trans. Amer. Math. Soc. 352 (2000), 2789-2800.

[13] M.H. Stone, On unbounded operators on a Hilbert space, J. Indian Math. Soc. 15
(1951), 155–192.

Tomas Ya. Azizov1

Department of Mathematics, Voronezh State University, Universitetskaya pl. 1, 394006
Voronezh, Russia
e-mail: azizov@math.vsu.ru

Jussi Behrndt
Institut für Mathematik, MA 6-4, Technische Universität Berlin, Straße des 17. Juni 136,
10623 Berlin, Germany
e-mail: behrndt@math.tu-berlin.de

Peter Jonas2

Institut für Mathematik, MA 6-4, Technische Universität Berlin, Straße des 17. Juni 136,
10623 Berlin, Germany

Carsten Trunk
Institut für Mathematik, Technische Universität Ilmenau, Postfach 10 05 65, 98684 Ger-
many, Ilmenau
e-mail: carsten.trunk@tu-ilmenau.de


