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Sadly, our friend and colleague Peter Jonas passed away on July, 18th 2007.

Abstract

Spectral points of type π+ and type π− for closed linear operators and relations in Krein spaces
are introduced with the help of approximative eigensequences. It turns out that these spectral
points are stable under compact perturbations and perturbations small in the gap metric.

1. Introduction

Let (H, [·, ·]) be a Krein space and let A be a bounded or unbounded linear operator in H
which is selfadjoint with respect to the Krein space inner product [·, ·]. The spectral properties of
selfadjoint operators in Krein spaces differ essentially from the spectral properties of selfadjoint
operators in Hilbert spaces, e.g., the spectrum σ(A) of A is in general not real and even
σ(A) = C may happen. If, besides selfadjointness, further assumptions on A are imposed the
situation becomes more interesting from a spectral theoretic point of view.

Let, e.g., A be a [·, ·]-nonnegative selfadjoint operator in H with a nonempty resolvent set.
Then σ(A) ⊂ R holds and the spectral points of A in (0,∞) and (−∞, 0) are of positive type
and negative type, respectively, i.e., each point in σ(A) ∩ (0,∞) (σ(A) ∩ (−∞, 0)) belongs to
the approximate point spectrum of A and for every normed approximative eigensequence (xn)
the accumulation points of the sequence ([xn, xn]) are positive (resp. negative), cf. Definition 1.
These spectral points were introduced and studied by P. Lancaster, H. Langer, A. Markus and
V. Matsaev in [36, 39] for arbitrary bounded selfadjoint operators.

Not surprisingly, spectral points of positive and negative type are in general not stable under
finite rank and compact perturbations. But, if the nonnegative selfadjoint operator A from
above is perturbed by a finite rank operator F such that the resulting operator B = A + F is
selfadjoint, then the hermitian form [B·, ·] is only nonnegative on the complement of a finite
dimensional subspace. However, if (xn) is an approximative eigensequence corresponding to
λ ∈ σ(B) ∩ (0,∞) (λ ∈ σ(B) ∩ (−∞, 0)) and all xn belong to a suitable linear manifold of
finite codimension, then the accumulation points of the sequence ([xn, xn]) are again positive
(resp. negative).

In [4] the latter property of approximative eigensequence serves as a definition of so-called
spectral points of type π+ and type π−, respectively, for arbitrary selfadjoint operators in
Krein spaces. These concepts of spectral points of positive/negative type and type π+/π− can
be regarded as a localization of the spectral properties of (selfadjoint) operators in Hilbert and
Pontryagin spaces, respectively.

It is the aim of this paper to introduce and study spectral points of positive/negative type
and type π+/π− for closed linear operators in Krein spaces and to develop a comprehensive

2000 Mathematics Subject Classification 47B50 (primary), 46C20, 47A06 (secondary).

The research of Tomas Ya. Azizov is partially supported by RFBR grant 08-01-00566-a.



Page 2 of 21 T.YA. AZIZOV, J. BEHRNDT, P. JONAS AND C. TRUNK

perturbation theory. We view it as an important step to introduce theses notions for non-
selfadjoint operators also. This gives us the opportunity to develop a pertubation theory for
non-selfadjoint operators in Krein spaces. The main results are the stability of spectral points
of type π+ and type π− under compact perturbations and under perturbations small in gap.
We mention, that the stability result for perturbations small in gap is new also for selfadjoint
operators in Krein spaces.

For us it is natural to regard bounded and unbounded linear operators via their graphs as
linear subspaces and therefore we find it easier and convenient to present our observations for
the slightly more general case of linear relations.

Spectral points of positive/negative type and type π+/π− for selfadjoint operators and their
behaviour under different types of selfadjoint perturbations play an important role in many
situations, see, e.g., [23, 24, 27, 28, 42]. Moreover, these types of spectral points appear in the
analysis of definitizable and locally definitizable selfadjoint operators. Vice versa the notion
of spectral points of positive/negative type offers a convenient way to define and describe
definitizable and locally definitizable operators, cf. [30, 39] which, e.g., appear in in the study
of indefinite Sturm-Liouville operators, [8, 12, 13, 10, 16, 32, 33, 35]. Spectral points of
positive/negative type are a standard tool in the study of selfadjoint operator functions and
they are in a close relation to points of positive/negative type of a specific linear operator in
some Krein space which serves as a linearization. For questions concerning spectral points of
positive/negative type, perturbation theory and local spectral functions for selfadjoint operator
functions we refer to [38, 40, 41].

For spectral theoretic investigations and perturbation problems in the non-selfadjoint case
we mention [2, 3, 6, 7, 20, 44], where perturbation problems for normal or dissipative operators
in Krein spaces are considered.

The paper is organized as follows. After some preparations in Section 2 we introduce spectral
points of positive/negative type and type π+/π− for closed linear operators and relations in
Krein spaces in Section 3. We generalize various earlier results from [4, 39] on spectral sets
consisting of these points.

The main objective of this paper is the investigation of stability properties of spectral points
of positive and negative type, and type π+ and type π− in the non-selfadjoint case under
various kinds of perturbations in Section 4. Many of the perturbations results proved there are
also new for the special case of bounded or unbounded selfadjoint operators in Krein spaces.
Let us sketch the main results. In Theorem 4.1 it is shown that spectral points of type π+ and
type π− of closed linear operators and relations are stable under compact perturbations. As a
corollary we obtain a variant of [9, Theorem 2.4], [39, Theorem 5.1] and [4, Theorem 29], see
also Theorem 5.3. Section 4.2 is devoted to perturbations which are small in the gap metric.
We verify first that spectral points of positive and negative type are stable under sufficiently
small perturbations and extend this result to spectral points of type π+ and type π−. The
behaviour of spectral points of positive and negative type of fundamentally reducible closed
linear operators and relations under perturbations small in gap is studied in Theorem 4.9. This
can be viewed as a natural generalization of a result for bounded selfadjoint operators in [39,
Theorem 4.1].

Finally, in Section 5 we consider the special case of selfadjoint operators and relations in
Krein spaces. In Theorem 5.1 it is shown that a real spectral point of type π+ (type π−) of
a selfadjoint relation A, which is not an interior point of σ(A), has a deleted neighbourhood
consisting only of spectral points of positive type (resp. negative type) or of regular points
of A. This implies also local definitizability of A in a neighbourhood of a point of type π+

or type π−, cf. Definition 3 and Theorem 5.2. As a consequence A possesses a local spectral
function on subsets of R consisting of spectral points of type π+ or type π− and regular points.
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2. Preliminaries

Throughout this paper (H, [·, ·]) denotes a Krein space. In the following all topological
notions are understood with respect to some Hilbert space norm ‖ . ‖ on H such that the
indefinite inner product [., .] is ‖ . ‖-continuous. Any two such norms are equivalent, see, e.g.,
[37, Proposition 1.2].

We study closed linear relations in H, that is, linear subspaces of the Cartesian product
H×H. We emphasize that a subspace is always assumed to be a closed linear manifold. A
closed linear relation A will usually be viewed as a multivalued mapping and the elements
x̂ ∈ A will be written as column vectors, x̂ =

( x
x′

)
. Linear operators are always identified with

linear relations via their graphs. The linear space of bounded linear operators defined on H is
denoted by L(H). For the usual definitions of the linear operations with relations, the inverse
etc., we refer to [1, 18], and to the monographs [15] and [25]. We denote the sum of linear
manifolds and subspaces by +̂, if this sum is direct we shall mention it explicitely. Sometimes
it is convenient for us to make use of the so-called transformer of a linear relation (see [19,
45]): If M =

( α β
γ δ

)
is a 2× 2-matrix and A is a closed linear relation in H we define MA by

MA :=
{(

αx + βy
γx + δy

)
:
(

x
y

)
∈ A

}
. (2.1)

Clearly, MA is a closed linear relation in H. We assign to every regular matrix M =
( α β

γ δ

)
the

fractional linear mapping ΦM of C onto itself defined by

ΦM (λ) :=
δ λ + γ

β λ + α
, ΦM

(
−α

β

)
:= ∞, ΦM (∞) :=

δ

β
. (2.2)

Observe that ΦM1M2 = ΦM1 ◦ ΦM2 holds for regular 2× 2-matrices M1 and M2.
Let A be a closed linear relation in H. The resolvent set ρ(A) of A is the set of all λ ∈ C

such that (A− λ)−1 ∈ L(H), the spectrum σ(A) of A is the complement of ρ(A) in C. The
extended spectrum σ̃(A) of A is defined by σ̃(A) = σ(A) if A ∈ L(H) and σ̃(A) = σ(A) ∪ {∞}
otherwise. The extended resolvent set ρ̃(A) of A is defined by C \ σ̃(A). A point λ ∈ C is an
eigenvalue of A if ker(A− λ) 6= {0}; we write λ ∈ σp(A).

We say that λ ∈ C belongs to the approximate point spectrum of a closed linear relation A,
denoted by σap(A), if there exists a sequence

( xn
x̃n

) ∈ A, n = 1, 2, . . . , such that

‖xn‖ = 1 and lim
n→∞

‖x̃n − λxn‖ = 0.

The extended approximate point spectrum σ̃ap(A) of A is defined by

σ̃ap(A) :=

{
σap(A) ∪ {∞} if 0 ∈ σap(A−1),
σap(A) if 0 6∈ σap(A−1).

We set

r(A) := C\σap(A) and r̃(A) := C\σ̃ap(A).

A point µ ∈ r(A) is called of regular type of A.
A proof of the following useful lemma can be found in [19, 30].

Lemma 2.1. Let A be a closed linear relation in H, let M be a regular 2× 2-matrix, and
define MA and ΦM as in (2.1) and (2.2), respectively. Then we have

σ̃ap(MA) = ΦM (σ̃ap(A)), r̃(MA) = ΦM (r̃(A)), ρ̃(MA) = ΦM (ρ̃(A)).
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Since A is closed it follows that for every µ ∈ r(A) the range of A− µ is closed and ker(A−
µ) = {0} holds, i.e., (A− µ)−1 is a bounded (in general not everywhere defined) operator.
Similarly, if ∞ ∈ r̃(A), then A is a bounded (in general not everywhere defined) operator.

Lemma 2.2. Let A be a closed linear relation in H. Then the following holds.
(i) The boundary points of σ̃(A) in C belong to σ̃ap(A).
(ii) For every λ0 ∈ r̃(A) there exist an open neighbourhood Uλ0 in C of λ0 and kλ0 > 0 such

that for all λ ∈ Uλ0 \ {∞} and all
(

x
x̃

) ∈ A

‖x̃− λx‖ ≥ kλ0‖x‖ (2.3)

holds. In particular, the sets r(A) and r̃(A) are open in C and C, respectively.

Proof. (i) The statement is well-known for bounded and closed linear operators, see, e.g.,
[21, §IV 1.10]. The general case will be reduced to this as follows. If λ0 is a boundary point
of σ̃(A), then ρ(A) is non-empty. Choose µ ∈ ρ(A) and M =

(−µ 1
1 0

)
. Then by (2.1) we have

MA = (A− µ)−1 and (2.2) becomes ΦM (λ) = (λ− µ)−1 for λ ∈ C, ΦM (∞) = 0 and ΦM (µ) =
∞. According to Lemma 2.1 we have

ΦM (ρ̃(A)) = ρ̃((A− µ)−1) and ΦM (σ̃ap(A)) = σ̃ap((A− µ)−1).

Therefore ΦM (λ0) is a boundary point of σ̃((A− µ)−1) and, as (A− µ)−1 is a bounded
operator, ΦM (λ0) ∈ σ̃ap((A− µ)−1). Hence Lemma 2.1 implies λ0 ∈ σ̃ap(A).

(ii) For λ = λ0 ∈ r(A) it follows from the definition of the set r(A) that (2.3) holds and from
this it is easy to see that for all λ in an open neighbourhood Uλ0 of λ0 (2.3) is still true. A
similar argument applies for ∞ ∈ r̃(A).

3. Spectral points of definite type and type π for closed linear relations

We first recall the notion of spectral points of positive and negative type of closed linear
operators and relations in Krein spaces from [30]. For bounded selfadjoint operators this
definition can already be found in [39]. Equivalent descriptions of the spectral points of positive
and negative type in the selfadjoint case were obtained in [30, Theorem 3.18]. In the following
H is always assumed to be a Krein space with an indefinite inner product denoted by [·, ·].

Definition 1. Let A be a closed linear relation in H. A point λ ∈ σap(A) is said to be of
positive type (negative type) with respect to A, if for every sequence

( xn
x̃n

) ∈ A, n = 1, 2 . . . ,
with ‖xn‖ = 1 and limn→∞ ‖x̃n − λxn‖ = 0 we have

lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0).

If ∞ ∈ σ̃ap(A), then ∞ is said to be of positive type (negative type) with respect to A, if for
every sequence

( xn
x̃n

) ∈ A, n = 1, 2 . . . , with limn→∞ ‖xn‖ = 0 and ‖x̃n‖ = 1 we have

lim inf
n→∞

[x̃n, x̃n] > 0 (resp. lim sup
n→∞

[x̃n, x̃n] < 0).

The set of all points of σ̃(A) of positive type (negative type) with respect to A will be denoted
by σ++(A) (resp. σ−−(A)). A point from σ++(A) ∪ σ−−(A) is said to be of definite type.

The spectral points of positive and negative type of a closed linear relation A transform in
the same way as the points in σ̃ap(A), r̃(A) and ρ̃(A), cf. Lemma 2.1. More precisely, if M is
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a regular 2× 2-matrix, MA and ΦM are as in (2.1) and (2.2), respectively, then we have

σ++(MA) = ΦM (σ++(A)) and σ−−(MA) = ΦM (σ−−(A)), (3.1)

cf. [30, Lemma 2.4].
The following statement is a straightforward generalization of [4, Lemma 2], see also [39,

§1]. The proof is a simple modification of the proof of [4, Lemma 2] and is left to the reader.

Lemma 3.1. Let A be a closed linear relation in H and let F ⊂ C be a compact set with
F ⊂ σ++(A) ∪ r̃(A) (F ⊂ σ−−(A) ∪ r̃(A)). Then there exists an open neighbourhood U in C of
F such that the following holds.

(i) There exist numbers ε > 0, δ > 0 such that

λ ∈ U\{∞},
(

x
x̃

)
∈ A, ‖x‖ = 1, and ‖x̃− λx‖ ≤ ε

implies

[x, x] ≥ δ (resp. [x, x] ≤ −δ).

(ii) U ⊂ σ++(A) ∪ r̃(A) (resp. U ⊂ σ−−(A) ∪ r̃(A))

Let A be a closed linear relation in H and let S ⊂ A be a linear manifold. If, for a finite
dimensional subspace F , we have A = S+̂F , where +̂ denotes the sum of linear manifolds, then
we will write

codimAS < ∞.

In the next definition we generalize the notion of spectral points of positive and negative
type.

Definition 2. Let A be a closed linear relation in H. A point λ0 ∈ σap(A) is said to be of
type π+ (type π−) with respect to A, if there exists a linear relation S ⊂ A with codimAS < ∞
such that for every sequence

( xn
x̃n

) ∈ S, n = 1, 2 . . . , with ‖xn‖ = 1 and limn→∞ ‖x̃n − λ0xn‖ =
0 we have

lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0). (3.2)

If ∞ ∈ σ̃ap(A), then ∞ is said to be of type π+ (type π−) with respect to A, if there exists a
linear relation S ⊂ A with codimAS < ∞ such that for every sequence

( xn
x̃n

) ∈ S, n = 1, 2 . . . ,
with limn→∞ ‖xn‖ = 0 and ‖x̃n‖ = 1 we have

lim inf
n→∞

[x̃n, x̃n] > 0 (resp. lim sup
n→∞

[x̃n, x̃n] < 0). (3.3)

The set of all points in σ̃(A) of type π+ (type π−) with respect to A will be denoted by
σπ+(A) (resp. σπ−(A)). A point from σπ+(A) ∪ σπ−(A) is said to be of type π.

We remark that for selfadjoint operators the spectral points of type π+ and type π− were
introduced in a slightly different way in [4]. However, in the selfadjoint case is not difficult to
check that the definition in [4] coincides with the definition above. Note also that in Definition 2
it is not assumed that the linear relation S is closed. As it is more convenient in some situations
to work with a closed linear relation S we formulate the following proposition.

Proposition 3.2. Let A be a closed linear relation in H and suppose that λ0 ∈ σ̃ap(A)
belongs to σπ+(A) (σπ−(A)). Then there exists a closed linear relation S ⊂ A with codimAS <
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∞ such that every sequence
( xn

x̃n

) ∈ S, n = 1, 2 . . . , satisfies (3.2) if λ0 6= ∞ and (3.3) if λ0 = ∞,
respectively.

Proof. Let S be as in Definition 2. Then the closure S of S is a closed linear relation with
finite codimension in A. For every sequence

( xn
x̃n

) ∈ S, n = 1, 2 . . . , there exists a sequence( yn

ỹn

) ∈ S, n = 1, 2 . . . , with

lim
n→∞

(xn − yn) = lim
n→∞

(x̃n − ỹn) = 0.

Now it is easily seen that every sequence
( xn

x̃n

) ∈ S, n = 1, 2 . . . , with ‖xn‖ = 1 and
limn→∞ ‖x̃n − λ0xn‖ = 0 has the property

lim inf
n→∞

[xn, xn] = lim inf
n→∞

[yn, yn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0)

or, if λ0 = ∞, then every sequence with ‖x̃n‖ = 1 and limn→∞ ‖xn‖ = 0 has the property

lim inf
n→∞

[x̃n, x̃n] = lim inf
n→∞

[ỹn, ỹn] > 0 (resp. lim sup
n→∞

[x̃n, x̃n] < 0).

Definition 2 and Proposition 3.2 imply the following corollary.

Corollary 3.3. Let A be a closed linear relation in H. A point λ0 ∈ σ̃ap(A) belongs to
σπ+(A) (σπ−(A)) if and only if there exists a closed linear relation S ⊂ A with codimAS < ∞
such that

λ0 ∈ σ++(S) ∪ r̃(S) (resp. λ0 ∈ σ−−(S) ∪ r̃(S)).

Remark 1. Definition 2 can be viewed as a localization of the spectral properties of closed
linear relations in Pontryagin spaces. Indeed, if H is a Pontryagin space with finite rank of
negativity and if H = H+[+̂]H−, direct sum, is a fundamental decomposition of H, dimH− <
∞, and A is a closed linear relation inH, then with S := A ∩ (H+)2 it follows σ̃ap(A) = σπ+(A).

Next we verify that spectral points of type π+ and type π− transform in the same way as
spectral points of positive and negative type in (3.1).

Lemma 3.4. Let A be a closed linear relation in H, let M be a regular 2× 2-matrix, and
define MA and ΦM as in (2.1) and (2.2), respectively. Then we have

σπ+(MA) = ΦM (σπ+(A)) and σπ−(MA) = ΦM (σπ−(A)).

Proof. We verify σπ+(MA) = ΦM (σπ+(A)). The proof of the equality σπ−(MA) =
ΦM (σπ−(A)) is completely analogous. Let us first check the inclusion

ΦM (σπ+(A)) ⊂ σπ+(MA). (3.4)

For this, let λ0 ∈ σπ+(A). Then, by Corollary 3.3, there exists a closed linear relation S ⊂ A
with codimAS < ∞ such that λ0 ∈ σ++(S) ∪ r̃(S). Let F ⊂ A be a finite dimensional subspace
of A with A = S+̂F , direct sum. This gives

MA = MS +̂MF, direct sum,

and dim MF = dim F . By Lemma 2.1 and (3.1) the point ΦM (λ0) belongs to σ++(MS) ∪
r̃(MS), hence, by Corollary 3.3, ΦM (λ0) ∈ σπ+(MA). Thus we have (3.4) and therefore also
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ΦM−1(σπ+(MA)) ⊂ σπ+(A). This implies

σπ+(MA) = (ΦM ◦ ΦM−1)(σπ+(MA)) ⊂ ΦM (σπ+(A)),

so that σπ+(MA) = ΦM (σπ+(A)) holds.

The next result parallels Lemma 3.1.

Proposition 3.5. Let A be a closed linear relation in H and let F ⊂ C be a compact set
with F ⊂ σπ+(A) ∪ r̃(A) (F ⊂ σπ−(A) ∪ r̃(A)). Then there exists an open neighbourhood U in
C of F such that the following holds.

(i) There exists a closed linear relation S ⊂ A with codimAS < ∞ and numbers ε > 0,
δ > 0 such that

λ ∈ U\{∞},
(

x
x̃

)
∈ S, ‖x‖ = 1, and ‖x̃− λx‖ ≤ ε

imply

[x, x] ≥ δ (resp. [x, x] ≤ −δ).

(ii) U ⊂ σπ+(A) ∪ r̃(A) (resp. U ⊂ σπ−(A) ∪ r̃(A))

Proof. We prove the statements for F ⊂ σπ+(A) ∪ r̃(A). If F ⊂ σπ−(A) ∪ r̃(A) the proof is
completely analogous.

Either λ0 ∈ F belongs to r̃(A), then there exist an open neighbourhood Uλ0 in C of λ0 and
kλ0 > 0 such that for all λ ∈ Uλ0 \ {∞} and all

(
x
x̃

) ∈ A

‖x̃− λx‖ ≥ kλ0‖x‖
holds, cf. Lemma 2.2. Or λ0 ∈ F belongs to σπ+(A), then we choose a closed linear relation
Sλ0 ⊂ A with codimASλ0 < ∞ such that λ0 belongs to σ++(Sλ0) or to r̃(Sλ0), see Corollary
3.3. In the latter case there exist an open neighbourhood Uλ0 in C of λ0 and kλ0 > 0 such that
for all λ ∈ Uλ0 \ {∞} and all

(
x
x̃

) ∈ Sλ0

‖x̃− λx‖ ≥ kλ0‖x‖
holds. If λ0 belongs to σ++(Sλ0), then, by Theorem 3.1, there exist an open neighbourhood
Uλ0 of λ0 in C and numbers ελ0 , δλ0 > 0 such that

λ ∈ Uλ0\{∞},
(

x
x̃

)
∈ Sλ0 , ‖x‖ = 1, ‖x̃− λx‖ ≤ ελ0

implies
[x, x] ≥ δλ0 .

Therefore, for each λ ∈ F there exist an open neighbourhood Uλ in C of λ, a closed linear
relation Sλ ⊂ A with codimASλ < ∞ and numbers ελ, δλ > 0 such that λ′ ∈ Uλ\{∞},

(
x
x̃

) ∈
Sλ, ‖x‖ = 1 and ‖x̃− λ′x‖ ≤ ελ implies

[x, x] ≥ δλ.

Since F is a compact set, there exist finitely many points λ1, . . . , λk ∈ F such that F ⊂ ⋃k
j=1 Uλj .

With
ε := min

j=1,...,k
ελj , δ := min

j=1,...,k
δλj and S :=

⋂

j=1,...,k

Sλj

statement (i) in Proposition 3.5 is valid. Assertion (ii) is a direct consequence of (i) and the
definition of spectral points of type π+.
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In the next theorem we find a useful criterion for spectral points not belonging to σπ+(A)
or σπ−(A). For selfadjoint operators Theorem 3.6 reduces to [4, Theorem 13].

Theorem 3.6. Let A be a closed linear relation in H and let λ0 ∈ σ̃ap(A).
(i) If λ0 6= ∞, then λ0 6∈ σπ+(A) (λ0 6∈ σπ−(A)) if and only if there exists a sequence

( xn
x̃n

) ∈
A, n = 1, 2 . . . , with ‖xn‖ = 1, limn→∞ ‖x̃n − λ0xn‖ = 0 such that (xn) converges
weakly to zero and

lim inf
n→∞

[xn, xn] ≤ 0 (resp. lim sup
n→∞

[xn, xn] ≥ 0).

(ii) If λ0 = ∞, then λ0 6∈ σπ+(A) (λ0 6∈ σπ−(A)) if and only if there exists a sequence
( xn

x̃n

) ∈
A, n = 1, 2 . . . , with ‖x̃n‖ = 1, limn→∞ ‖xn‖ = 0 such that (x̃n) converges weakly to
zero and

lim inf
n→∞

[x̃n, x̃n] ≤ 0 (resp. lim sup
n→∞

[x̃n, x̃n] ≥ 0).

Proof. We prove the assertions only for λ0 ∈ σπ+(A). A similar reasoning applies for λ0 ∈
σπ−(A).

We will prove assertion (i) first, therefore we assume λ0 6= ∞ and λ0 6∈ σπ+(A). Then for any
closed linear relation S ⊂ A with codimAS < ∞ there exists a sequence

( xn
x̃n

) ∈ S such that
‖xn‖ = 1, ‖x̃n − λ0xn‖ → 0 as n →∞ and lim infn→∞[xn, xn] ≤ 0. Let us choose(

x1

x̃1

)
∈ A, ‖x1‖ = 1 with ‖x̃1 − λ0x1‖ ≤ 1 and [x1, x1] ≤ 1,

and denote by ⊥A the orthogonal complement in A with respect to the usual Hilbert scalar
product in H⊕H. Then there exists an element

(
x2

x̃2

)
∈

{(
x1

x̃1

)}⊥A

such that ‖x2‖ = 1, ‖x̃2 − λ0x2‖ ≤ 1
2 and [x2, x2] ≤ 1

2 . Next we choose
(

x3

x̃3

)
∈

{(
x1

x̃1

)
,

(
x2

x̃2

)}⊥A

, ‖x3‖ = 1, ‖x̃3 − λ0x3‖ ≤ 1
3 and [x3, x3] ≤ 1

3 .

Repeating this consideration we find a sequence
( xn

x̃n

) ∈ A with ‖xn‖ = 1, ‖x̃n − λ0xn‖ → 0 as
n →∞, lim infn→∞[xn, xn] ≤ 0 and(

xn

x̃n

)
⊥A

(
xm

x̃m

)
, n 6= m.

Therefore the sequences
( xn

x̃n

)
and (xn) converge weakly to zero.

For the converse, let
( xn

x̃n

) ∈ A, n = 1, 2 . . . , be a sequence with ‖xn‖ = 1, limn→∞ ‖x̃n −
λ0xn‖ = 0 such that (xn) converges weakly to zero and

lim inf
n→∞

[xn, xn] ≤ 0. (3.5)

Let S ⊂ A be a closed linear relation with codimAS < ∞ and let F be some finite dimensional
subspace F ⊂ A such that A = S+̂F , direct sum. We write(

xn

x̃n

)
=

(
yn

ỹn

)
+

(
zn

z̃n

)
, where

(
yn

ỹn

)
∈ S and

(
zn

z̃n

)
∈ F.

As
( xn

x̃n−λ0xn

) ∈ A− λ0 converges weakly to zero
( zn

z̃n−λ0zn

) ∈ F − λ0 satisfies

lim
n→∞

∥∥∥∥
(

zn

z̃n − λ0zn

)∥∥∥∥ = 0.
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Hence limn→∞ ‖yn‖ = 1, limn→∞ ‖ỹn − λ0yn‖ = 0 and from (3.5) we obtain

lim inf
n→∞

[yn, yn] ≤ 0. (3.6)

We have shown that for every closed linear relation S ⊂ A there exists a sequence
( yn

ỹn

) ∈ S
with limn→∞ ‖yn‖ = 1, limn→∞ ‖ỹn − λ0yn‖ = 0 and (3.6), i.e., λ0 6∈ σπ+(A), cf. Definition 2
and Proposition 3.2.

Let λ0 = ∞ and assume ∞ ∈ σ̃ap(A). Then 0 ∈ σap(A−1). We have, by assertion (i), that
0 /∈ σπ+(A−1) if and only if there is a sequence

(
x̃n
xn

) ∈ A−1, n = 1, 2 . . . , with ‖x̃n‖ = 1,
limn→∞ ‖xn‖ = 0 such that (x̃n) converges weakly to zero and

lim inf
n→∞

[x̃n, x̃n] ≤ 0.

As
( xn

x̃n

) ∈ A, n = 1, 2 . . . , assertion (ii) is true.

With the help of Theorem 3.6 we describe the spectral points belonging to σπ+(A)\σ++(A)
and σπ−(A)\σ−−(A) in the next theorem.

Theorem 3.7. Let A be a closed linear relation in H and let λ0 ∈ C. If λ0 ∈
σπ+(A)\σ++(A) (λ0 ∈ σπ−(A)\σ−−(A)), then λ0 is an eigenvalue of A with a corresponding
nonpositive (resp. nonnegative) eigenvector. If ∞ ∈ σπ+(A)\σ++(A) (∞ ∈ σπ−(A)\σ−−(A)),
then the multivalued part of A contains a nonpositive (resp. nonnegative) vector.

Proof. Let λ0 ∈ σπ+(A)\σ++(A) and assume that λ0 6= ∞. Then there exists a sequence( xn
x̃n

) ∈ A, ‖xn‖ = 1, ‖x̃n − λ0xn‖ → 0 and lim infn→∞[xn, xn] ≤ 0. Moreover, there exists a
subsequence (xnk

) of (xn) which converges weakly to some x0 and by Theorem 3.6 we have
x0 6= 0. As A is assumed to be closed A and A− λ0 are also closed in the weak topology, see,
e.g. [47, §V.1 Theorem 10]. Therefore we have

(
x0
0

) ∈ A− λ0 and it remains to show

[x0, x0] ≤ 0. (3.7)

Let yk := xnk
− x0 and ỹk := x̃nk

− λ0x0, k = 1, 2, . . . . If (yk) contains a subsequence con-
verging to zero, then [x0, x0] ≤ 0 follows from limn→∞[xn, xn] ≤ 0. Assume therefore that
lim infk→∞ ‖yk‖ > 0. As

( yk

ỹk

) ∈ A,

‖ỹk − λ0yk‖ = ‖x̃nk
− λ0xnk

‖ → 0 as k →∞
and since the sequence (yk) converges weakly to zero, Theorem 3.6 implies lim infk→∞[yk, yk] >
0. From

lim inf
k→∞

[yk, yk] = lim inf
k→∞

[xnk
, xnk

]− [x0, x0]

and lim infk→∞[xk, xk] ≤ 0 we obtain (3.7). A similar reasoning applies in the case λ0 ∈
σπ−(A)\σ−−(A). The case λ0 = ∞ follows from Lemma 3.4 with M =

(
0 1
1 0

)
in (2.1).

For selfadjoint operators the next corollary reduces to [4, Lemma 10].

Corollary 3.8. Let A be a closed linear operator in H with ∞ ∈ σ̃ap(A). Then ∞ ∈
σπ+(A) (∞ ∈ σπ−(A)) implies ∞ ∈ σ++(A) (resp. ∞ ∈ σ−−(A)).

Proof. Assume that ∞ ∈ σπ+(A) \ σ++(A). Then, with M =
(

0 1
1 0

)
in (2.1) and Lemma 3.4

we have
0 ∈ σπ+(A−1) \ σ++(A−1).
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Theorem 3.7 implies 0 ∈ σp(A−1), a contradiction to the assumption that A is an operator.

4. Stability properties of spectral points of definite type and type π under perturbations

In this section we consider the behaviour of spectral points of positive and negative type, and
type π+ and type π− of closed linear relations in Krein spaces under different perturbations.

4.1. Compact and finite rank perturbations

Let A and B be closed linear relations in the Krein space (H, [·, ·]) and let PA and PB be
the orthogonal projections in the Hilbert space H⊕H onto A and B, respectively. We shall
say that A is a compact (finite rank) perturbation of B if the difference PA − PB ∈ L(H⊕H)
is a compact (resp. finite rank) operator on H⊕H. These notions are natural generalizations
of the notions of compact and finite rank perturbations of bounded operators or unbounded
operators with common points in their resolvent sets, cf. [5]. We remark, that the projections
PA and PB can be expressed as block operator matrices in terms of A and B with the so-called
Stone-de Snoo formula, see, e.g., [22, 26, 46].

Theorem 4.1. Let A and B be closed linear relations inH and suppose that A is a compact
perturbation of B. Then we have

σπ+(A) ∪ r̃(A) = σπ+(B) ∪ r̃(B) and σπ−(A) ∪ r̃(A) = σπ−(B) ∪ r̃(B). (4.1)

Proof. For the first assertion in (4.1) it is sufficient to verify the inclusion σπ+(A) ∪ r̃(A) ⊂
σπ+(B) ∪ r̃(B). The proof of the second equality in (4.1) is completely analogous and will
therefore be omitted.

Let λ0 6= ∞ and let λ0 ∈ σπ+(A) ∪ r(A). Assume λ0 ∈ σap(B) \ σπ+(B). By Theorem 3.6
there exists a sequence

( xn
x̃n

)
in B with ‖xn‖ = 1, n = 1, 2 . . . , and limn→∞ ‖x̃n − λ0xn‖ = 0

such that (xn) converges weakly to zero and

lim inf
n→∞

[xn, xn] ≤ 0.

Therefore
( xn

x̃n

)
converges in H×H weakly to zero and since PA − PB is compact this implies

lim
n→∞

∥∥(PB − PA)
( xn

x̃n

)∥∥ = 0.

We set
( yn

ỹn

)
:= PA

( xn
x̃n

)
, n = 1, 2 . . . . As PB

( xn
x̃n

)
=

( xn
x̃n

)
, n = 1, 2 . . . , we have

(
xn

x̃n

)
=

(
yn

ỹn

)
+ (PB − PA)

(
xn

x̃n

)

and hence limn→∞ ‖xn − yn‖ = limn→∞ ‖x̃n − ỹn‖ = 0. Therefore, (yn) converges weakly to
zero,

lim
n→∞

‖yn‖ = 1, lim
n→∞

‖ỹn − λ0yn‖ = 0 and lim inf
n→∞

[yn, yn] ≤ 0.

Then λ0 /∈ r(A) follows and Theorem 3.6 gives λ0 /∈ σπ+(A), a contradiction. Hence, λ0 belongs
to σπ+(B) ∪ r(B).

Let ∞ ∈ σπ+(A) ∪ r̃(A). Then Lemma 2.1 and Lemma 3.4 imply 0 ∈ σπ+(A−1) ∪ r̃(A−1).
Denote by PA−1 and PB−1 the orthogonal projections inH⊕H onto A−1 and B−1, respectively.
Observe that PA is connected with the orthogonal projection PA−1 onto A−1 in the following
manner: For h, h̃ ∈ H we have

PA

(
h

h̃

)
=

(
x
x̃

)
∈ A if and only if PA−1

(
h̃
h

)
=

(
x̃
x

)
∈ A−1.
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The projections PB and PB−1 are connected in the same way. Therefore, since the compact
operator PA − PB maps bounded sequences onto sequences with a convergent subsequence, the
same is true for PA−1 − PB−1 , and hence also this operator is compact. The reasoning above
implies 0 ∈ σπ+(B−1) ∪ r̃(B−1), hence, by Lemma 2.1 and Lemma 3.4, ∞ ∈ σπ+(B) ∪ r̃(B).

Remark 2. We mention that the sets σπ+(A) and σπ−(A) in Theorem 4.1 can not be
replaced by σ++(A) and σ−−(A), so that, roughly speaking, spectral points of type π are
stable under compact perturbations (and, in particular, finite rank perturbations) but spectral
points of definite type are not, see also [39, Theorem 5.1] and [11, Theorem 5.1].

If A and B are closed linear relations in H with ρ(A) ∩ ρ(B) 6= ∅, then according to [5,
Corollary 4.5] A is a compact perturbation of B if and only if (A− λ)−1 − (B − λ)−1 is a
compact operator for some, and hence for all, λ ∈ ρ(A) ∩ ρ(B). Together with Theorem 4.1
this implies the following corollary.

Corollary 4.2. Let A and B be closed linear relations in H with ρ(A) ∩ ρ(B) 6= ∅ and
assume that

(A− λ)−1 − (B − λ)−1, λ ∈ ρ(A) ∩ ρ(B),

is compact. Then

σπ+(A) ∪ r̃(A) = σπ+(B) ∪ r̃(B) and σπ−(A) ∪ r̃(A) = σπ−(B) ∪ r̃(B).

In the following proposition we consider a special case of finite rank perturbations. Recall
that +̂ stands for the sum of linear manifolds and subspaces.

Proposition 4.3. Let A be a closed linear relation in H and let F be a finite dimensional
subspace of H×H. Then

σπ+(A) = σπ+(A+̂F ) ∩ σ̃ap(A), σπ−(A) = σπ−(A+̂F ) ∩ σ̃ap(A) (4.2)

and

r̃(A) ⊂ r̃(A+̂F ) ∪ (
σπ+(A+̂F ) ∩ σπ−(A+̂F )

)
. (4.3)

Proof. As A is closed also the linear relation A+̂F is a closed. Denote by PA and PAb+F the
orthogonal projections in H⊕H onto A and A+̂F , respectively. The operator PAb+F − PA is
finite rank and hence, in particular, compact. Then (4.2) follows from (4.1) and the fact that
r̃(A+̂F ) ⊂ r̃(A).

In order to prove (4.3) let λ0 6= ∞ be a point in r(A) \ r(A+̂F ) and assume λ0 /∈ σπ+(A+̂F ) ∩
σπ−(A+̂F ). Then λ0 /∈ σπ+(A+̂F ) or λ0 /∈ σπ−(A+̂F ). According to Theorem 3.6 in both cases
there exists a sequence

( xn
x̃n

) ∈ A+̂F , n = 1, 2 . . . , with ‖xn‖ = 1, limn→∞ ‖x̃n − λ0xn‖ = 0
such that (xn) converges weakly to zero. We choose a finite dimensional subspace F ′ ⊂ F such
that A ∩ F ′ = {0} and A+̂F coincides with A+̂F ′, i.e. the sum in A+̂F ′ is direct. Denote the
projections in H⊕H on A− λ0 and F ′ − λ0 corresponding to the decomposition

(A +̂ F )− λ0 = (A− λ0) +̂ (F ′ − λ0)

by P0 and P1, respectively. Then, by dim (F ′ − λ0) < ∞, P1

( xn

x̃n−λ0xn

)
converges strongly to

zero. If
( x′n

x̃′n−λ0x′n

)
:= P0

( xn

x̃n−λ0xn

)
, where

( x′n
x̃′n

) ∈ A, n = 1, 2 . . . , then limn→∞ ‖x′n‖ = 1 and
limn→∞ ‖x̃′n − λ0x

′
n‖ = 0 which implies λ0 /∈ r(A), a contradiction.
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It remains to consider λ0 = ∞. Let ∞ ∈ r̃(A), that is 0 ∈ r(A−1). Then, by the reasoning
above, we have

0 ∈ r(A−1 +̂ F−1) ∪ (
σπ+(A−1 +̂ F−1) ∩ σπ−(A−1 +̂ F−1)

)
,

as F−1 is finite dimensional. Moreover, we have A−1+̂F−1 = (A+̂F )−1 and (4.3) follows from
Lemma 2.1 and Lemma 3.4.

Proposition 3.5 and Proposition 4.3 imply the following corollary.

Corollary 4.4. Let A be a closed linear relation in H and let Let F ⊂ C be a compact
set. Then F ⊂ σπ+(A) ∪ r̃(A) (F ⊂ σπ−(A) ∪ r̃(A)) if and only if there exists a closed linear
relation S ⊂ A with codimAS < ∞ and

F ⊂ σ++(S) ∪ r̃(S) (resp. F ⊂ σ−−(S) ∪ r̃(S)).

4.2. Perturbations small in gap

We consider now the behaviour of spectral points of definite type and type π under
perturbations which are small with respect to the gap metric. The gap between two subspaces
L and M of some Hilbert space G is defined by

δ̂(L,M) := max
{

sup
u∈L,‖u‖=1

dist (u,M), sup
v∈M,‖v‖=1

dist (v,L)
}

,

cf. [31]. Recall that a subspace is always assumed to be a closed linear manifold. If PL and PM
denote the orthogonal projections in G ⊕ G onto L and M, respectively, then the gap between
L and M is

δ̂(L,M) = ‖PL − PM‖.
In the next theorem we show, roughly speaking, that spectral points of positive and negative

type are stable under perturbations small in the gap metric.

Theorem 4.5. Let A be a closed linear relation in H and let F ⊂ C be a compact set with
F ⊂ σ++(A) ∪ r̃(A) (F ⊂ σ−−(A) ∪ r̃(A)). Then there exists a constant γ ∈ (0, 1) such that for
all closed linear relations B with δ̂(A,B) < γ we have

F ⊂ σ++(B) ∪ r̃(B) (resp. F ⊂ σ−−(B) ∪ r̃(B)). (4.4)

Proof. Assume first that ∞ /∈ F and let F ⊂ σ++(A) ∪ r(A). We choose ε and δ as in
Lemma 3.1. It is no restriction to assume ε < 1 and δ < 1. We set

M := 1 + ε + max
λ∈F

|λ| and γ :=
min{ε, δ}

6M2
.

Let B be a closed linear relation with δ̂(A,B) < γ. For λ ∈ F \ r(B) choose
(
y
ỹ

) ∈ B with
‖y‖ = 1 and ‖ỹ − λy‖ < 5

6ε. Then it follows
∥∥∥∥
(

y

ỹ

)∥∥∥∥ ≤ M and dist
((

y

ỹ

)
, A

)
< Mγ,

and there exists
(
x
x̃

) ∈ A with

‖x− y‖ ≤ Mγ and ‖x̃− ỹ‖ ≤ Mγ.
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This implies 1−Mγ ≤ ‖x‖ ≤ 1 + Mγ and
∥∥∥∥

x̃

‖x‖ − λ
x

‖x‖

∥∥∥∥ ≤
‖ỹ − λy‖+ ‖x̃− ỹ‖+ ‖λy − λx‖

‖x‖ ≤

≤
5
6ε + Mγ(1 + maxλ∈F |λ|)

1−Mγ
≤

≤
5
6ε + Mγ(M − ε)

1−Mγ
≤ ε−Mγε

1−Mγ
= ε,

hence

[x, x] ≥ δ‖x‖2.
Moreover, we have

[y, y] = [x, x] + [y − x, x] + [x, y − x] + [y − x, y − x]

and therefore

[y, y] ≥ δ‖x‖2 − 2Mγ‖x‖ −M2γ2 ≥
≥ δ(1−Mγ)2 − 2Mγ(1 + Mγ)−M2γ2 ≥ δ − 4Mγ − 3M2γ2 ≥ δ

4
.

This implies F ⊂ σ++(B) ∪ r(B).
If ∞ ∈ F ⊂ σ++(A) ∪ r(A) we choose two closed subsets F1 and F2 of C with ∞ /∈ F1, ∞ ∈

F2, 0 /∈ F2 and F = F1 ∪ F2. It follows from above that there exists a constant γ1 ∈ (0, 1)
such that for all closed linear relations B with δ̂(A,B) < γ1 we have F1 ∩ σap(B) ⊂ σ++(B).
Moreover, the set {λ−1 : λ ∈ F2 \ {∞}} ∪ {0} is a subset of σ++(A−1) ∪ r(A−1), cf. Lemma 3.4,
and by the first part of the proof there is a γ2 ∈ (0, 1) with

{
λ−1 : λ ∈ F2 \ {∞}

} ∪ {0} ⊂ σ++(B−1) ∪ r(B−1)

for all closed linear relations B with δ̂(A−1, B−1) < γ2. Another application of Lemma 3.4 gives
F2 ⊂ σ++(B) ∪ r̃(B) and, as δ̂(A,B) = δ̂(A−1, B−1), we have F ⊂ σ++(B) ∪ r̃(B) for all closed
linear relations B with δ̂(A,B) < min{γ1, γ2}. Thus, the first inclusion in (4.4) is proved.

The proof of the inclusion F ⊂ σ−−(B) ∪ r̃(B) is completely analogous and will therefore be
omitted.

In order to prove a stability result for spectral points of type π+ and type π− under
perturbations small in the gap metric we prove the following statement first.

Proposition 4.6. Let L and M be subspaces of some Hilbert space G with δ̂(L,M) < 1
and let PL be the orthogonal projection in G ⊕ G onto L. Let M1 be a subspace of M with
codimMM1 < ∞. Then the subspace L1 = PLM1 of L satisfies codimL L1 = codimMM1 and

δ̂(L1,M1) ≤ δ̂(L,M).

Proof. We denote by PM the orthogonal projection on M. For z ∈M we have

‖PLz‖ ≥ ‖z‖ − ‖(I − PL)z‖ ≥ (1− ‖PM − PL‖)‖z‖.
The gap between L andM is smaller than one, hence the restriction PL|M of the projection PL
to the subspace M, considered as a mapping from M into L, is a bounded, injective operator
with a closed range. Moreover, an element of L orthogonal to the range of PL|M belongs to
M⊥, therefore, by M⊥ ∩ L = {0}, the operator PL : M→ L is an isomorphism.
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We define a linear bounded operator D : L → L⊥ by

D = (I − PL)(PL|M)−1.

For z ∈M we set x := PL|M z. Then we have

z = (I − PL)(PL|M)−1x + PL|M(PL|M)−1x = Dx + x

and, as PL|M is an isomorphism,

M =
{(

x
Dx

)
: x ∈ L

}
and M⊥ =

{( −D∗w
w

)
: w ∈ L⊥

}

with respect to the decomposition G = L ⊕ L⊥. Moreover, see e.g. [43] or [46],

PM =
[

(I + D∗D)−1 D∗(I + DD∗)−1

D(I + D∗D)−1 DD∗(I + DD∗)−1

]
.

Then, by D∗(I + DD∗)−1 = (I + D∗D)−1D∗ and D(I + D∗D)−1 = (I + DD∗)−1D we obtain

(PM − PL)2 =
[

D∗D(I + D∗D)−1 0
0 DD∗(I + DD∗)−1

]
.

Making use of the functional calculi of the bounded selfadjoint operators D∗D and DD∗ in L
and L⊥, respectively, we find that

δ̂(L,M) = ‖PL − PM‖ =
‖D‖√

1 + ‖D‖2 (4.5)

holds. Let
L1 = PLM1.

As PL|M is an isomorphism, codimL L1 = codimMM1 < ∞ follows. We choose a finite
dimensional subspace L′1 of L such that

G = L1 ⊕ L′1 ⊕ L⊥. (4.6)

We denote by D1, D1 : L1 → L⊥, the restriction of D to L1, D1 = D|L1. Then, with respect
to the decomposition (4.6), we have

M1 =








x
0

D1x


 : x ∈ L1



 and M⊥

1 =







−D∗

1w
u
w


 : w ∈ L⊥, u ∈ L′1





and the orthogonal projection PM1 on M1 satisfies

PM1 =




(I + D∗
1D1)−1 0 D∗

1(I + D1D
∗
1)−1

0 0 0
D1(I + D∗

1D1)−1 0 D1D
∗
1(I + D1D

∗
1)−1


 .

Similar as in (4.5) we have

‖PL1 − PM1‖ =
‖D1‖√

1 + ‖D1‖2
.

Together with (4.5) and the fact that the function t 7→ t√
1+t2

, t ≥ 0, is increasing, we conclude

δ̂(L1,M1) = ‖PL1 − PM1‖ =
‖D1‖√

1 + ‖D1‖2
≤ ‖D‖√

1 + ‖D‖2 = δ̂(L,M).

This completes the proof of Proposition 4.6.

With the help of Proposition 4.6 we are now able to prove a variant of Theorem 4.5 for
spectral points of type π+ and type π−.
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Theorem 4.7. Let A be a closed linear relation in H and let F ⊂ C be a compact set with
F ⊂ σπ+(A) ∪ r̃(A) (F ⊂ σπ−(A) ∪ r̃(A)). Then there exists a constant γ ∈ (0, 1) such that for

all closed linear relations B with δ̂(A,B) < γ we have

F ⊂ σπ+(B) ∪ r̃(B) (resp. F ⊂ σπ−(B) ∪ r̃(B)). (4.7)

Proof. We verify only the first inclusion in (4.7). Let F ⊂ C be a compact set with
F ⊂ σπ+(A) ∪ r̃(A). In order to prove (4.7) we choose S as in Corollary 4.4. According to
Theorem 4.5 there exists a constant γ ∈ (0, 1) such that for all closed linear relations S′ with
δ̂(S, S′) < γ we have

F ⊂ σ++(S′) ∪ r̃(S′). (4.8)

Let B be a closed linear relation with δ̂(A, B) < γ and let PB be the orthogonal projection in
H⊕H onto B. It follows from Proposition 4.6 that the closed linear relation S̃ := PBS ⊂ B
satisfies

codimB S̃ = codimA S < ∞
and δ̂(S, S̃) ≤ δ̂(A,B) < γ, hence, by (4.8),

F ⊂ σ++(S̃) ∪ r̃(S̃).

Then Corollary 4.4 implies F ⊂ σπ+(B) ∪ r̃(B).

For a closed linear relation the intersection of the set of all spectral points of positive type
with the set of all spectral points of negative type is void. This implies the following corollary.

Corollary 4.8. Let A be a closed linear relation and let F ⊂ C be a compact set with
F ⊂ r̃(A). Then there exists a constant γ ∈ (0, 1) such that for all closed linear relations B
with δ̂(A, B) < γ we have

F ⊂ r̃(B).

4.3. Perturbations of fundamentally reducible relations

In this subsection we prove a result on small perturbations in the gap metric for
fundamentally reducible closed linear relations in Krein spaces. Let

H = H+ [+̂]H−, direct sum, (4.9)

be a fundamental decomposition of the Krein space (H, [., .]), see e.g. [14]. A relation A is said
to be fundamentally reducible if A can be written as

A = A+ +̂ A−, direct sum, (4.10)

where A+ := A ∩H2
+ and A− := A ∩H2

− are closed linear relations in the Hilbert spaces
(H+, [., .]) and (H−,−[., .]). Recall that according to Lemma 2.2 for a point λ of regular type
of A− the estimate

‖ỹ− − λy−‖ ≥ kλ,−‖y−‖ (4.11)

holds for some kλ,− > 0 and all
( y−

ỹ−
) ∈ A−. Analogously, for a point λ of regular type of A+

the estimate
‖ỹ+ − λy+‖ ≥ kλ,+‖y+‖ (4.12)

holds for some kλ,+ > 0 and all
( y+

ỹ+

) ∈ A+.
The following theorem can be viewed as a generalization of [39, Theorem 4.2].
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Theorem 4.9. Let A be a fundamentally reducible closed linear relation in H as in (4.10)
and let B be a closed linear relation in H. Then the following holds.

(i) If for some λ ∈ r(A−), kλ,− > 0 as in (4.11) and γ > 0

δ̂(A− λ, B − λ) < γ and γ2

(
1 +

1
k2

λ,−

)
<

1
4

hold, then

λ ∈ σ++(B) ∪ r(B).

(ii) If for some λ ∈ r(A+), kλ,+ > 0 as in (4.12) and γ > 0

δ̂(A− λ,B − λ) < γ and γ2

(
1 +

1
k2

λ,+

)
<

1
4

hold, then

λ ∈ σ−−(B) ∪ r(B).

Proof. We prove only assertion (i). The proof of (ii) is analogous. Suppose that λ ∈ σap(B)
and let

( x+
n +x−n

x̃+
n +x̃−n

) ∈ B, n = 1, 2 . . . , x+
n , x̃+

n ∈ H+, x−n , x̃−n ∈ H−, be a sequence with

‖x+
n ‖2 + ‖x−n ‖2 = 1 and lim

n→∞
‖x̃+

n − λx+
n ‖2 + ‖x̃−n − λx−n ‖2 = 0. (4.13)

We have

dist
((

x+
n + x−n

x̃+
n + x̃−n − λx+

n − λx−n

)
, A− λ

)
< γ

∥∥∥∥
(

x+
n + x−n

x̃+
n + x̃−n − λx+

n − λx−n

)∥∥∥∥ .

Hence, there exist
( y+

n

ỹ+
n

) ∈ A+ and
( y−n

ỹ−n

) ∈ A− with

‖x+
n − y+

n ‖2 + ‖x̃+
n − λx+

n − (ỹ+
n − λy+

n )‖2
+ ‖x−n − y−n ‖2 + ‖x̃−n − λx−n − (ỹ−n − λy−n )‖2

< γ2

∥∥∥∥
(

x+
n + x−n

x̃+
n + x̃−n − λx+

n − λx−n

)∥∥∥∥
2

.

In particular,

‖x−n − y−n ‖2 + ‖x̃−n − λx−n − (ỹ−n − λy−n )‖2 < γ2

∥∥∥∥
(

x+
n + x−n

x̃+
n + x̃−n − λx+

n − λx−n

)∥∥∥∥
2

and together with (4.13) we have

lim sup
n→∞

(‖x−n − y−n ‖2 + ‖ỹ−n − λy−n ‖2
)

< γ2. (4.14)
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With (4.13), (4.14) and ‖ỹ−n − λy−n ‖ ≥ kλ,−‖y−n ‖ we obtain

lim inf
n→∞

[
x+

n + x−n , x+
n + x−n

]
=

= lim inf
n→∞

(‖x+
n ‖2 − ‖x−n ‖2) = lim inf

n→∞
(1− 2‖x−n ‖2)

= 1− 2 lim sup
n→∞

‖x−n − y−n + y−n ‖2

≥ 1− 2 lim sup
n→∞

(
2‖x−n − y−n ‖2 + 2‖y−n ‖2

)

≥ 1− 4 lim sup
n→∞

(
1 +

1
k2

λ,−

)
(‖x−n − y−n ‖2 + ‖ỹ−n − λy−n ‖2

)

≥ 1− 4γ2

(
1 +

1
k2

λ,−

)
> 0.

This implies λ ∈ σ++(B).

5. Spectral points of type π for selfadjoint operators and relations in Krein spaces

In this section we study the properties of spectral points of type π+ and type π− for selfadjoint
relations in Krein spaces. In particular it will turn out in Theorem 5.2 below that selfadjoint
relations are locally definitizable in the sense of [29, 30] (or even definitizable, cf. [19, 37])
over subintervals of R which consist of spectral points of type π+, type π− and regular points
only.

Recall first that the adjoint A+ of a linear relation A in the Krein space H is defined as

A+ =
{(

y
ỹ

)
: [x̃, y] = [x, ỹ] for all

(
x
x̃

)
∈ A

}
.

It is clear that A+ is a closed linear relation in H and that this definition generalizes the usual
definition of the adjoint of a densely defined operator. The relation A is said to be selfadjoint
if A = A+ holds. We mention that every real point in the spectrum of a selfadjoint relation A
belongs to σ̃ap(A) and that σ++(A) ∪ σ−−(A) ⊂ R holds.

For the operator case Theorem 5.1 below coincides with [4, Theorem 18] and [11, Theorem
4.1]. The idea of the proof is the same as part (ii) of the proof of [39, Theorem 5.1].

Theorem 5.1. Let A be a selfadjoint relation in H with ρ(A) 6= ∅ and let ∆ be a compact
subset of R such that

∆ ∩ σ̃(A) ⊂ σπ+(A) (resp. ∆ ∩ σ̃(A) ⊂ σπ−(A))

holds. Assume, in addition, that each point of ∆ is an accumulation point of ρ(A), i.e. ∆ ⊂ ρ(A).
Then there exists an open neighbourhood U in C of ∆ such that the following holds.

(i) U \ R ⊂ ρ̃(A).
(ii) Either U ∩ σ(A) ∩ R ⊂ σ++(A) (resp. U ∩ σ(A) ∩ R ⊂ σ−−(A)) or there exists a finite

number of points λ1, . . . , λn in σπ+(A) (resp. σπ−(A)) such that

(U ∩ σ̃(A) ∩ R) \ {λ1, . . . , λn} ⊂ σ++(A)(
resp. (U ∩ σ̃(A) ∩ R) \ {λ1, . . . , λn} ⊂ σ−−(A)

)
.

(5.1)

Proof. We prove the statements only for ∆ ∩ σ̃(A) ⊂ σπ+(A). Assume first that ∞ /∈ ∆. As
a consequence of Proposition 3.5 there is a bounded open neighbourhood U in C of ∆ such that
U ∩ σap(A) ⊂ σπ+(A). If a nonreal λ ∈ U ∩ σ(A) does not belong to σap(A) then λ ∈ σap(A).
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Suppose the assertion of the theorem is not true. Then, cf. Lemma 2.2, there exists a sequence
(µn) ⊂ σap(A) ∩ U, (µn) ⊂ σπ+(A) \ σ++(A), such that µn 6= µm, µn 6= µm for n 6= m and (µn)
converges to some µ0 ∈ ∆. By Lemma 3.1, µ0 ∈ σπ+(A) \ σ++(A). By Theorem 3.7, for every
n ∈ N, we have µn ∈ σp(A) and there exists an eigenvector xn of A corresponding to µn which
is nonpositive, [xn, xn] ≤ 0. We have [xn, xm] = 0 for n 6= m.

Let L0 be the linear span of the elements
( xn

µnxn

) ∈ H ×H, n ∈ N. Then L := L0 is a
nonpositive subspace of H×H. Let AL := A ∩ L. There are two possibilities.

a) AL − µ0 has closed range with dim ker (AL − µ0) < ∞. As all µn, n ∈ N, are eigenvalues
of AL there exists a neighbourhood in C of µ0 which consists only of eigenvalues of A,
cf. [18, Theorem 2.4]. This contradicts the fact that µ0 is an accumulation point of
ρ(A).

b) It is not true that AL − µ0 has a closed range with dim ker (AL − µ0) < ∞. Then
for any ε > 0 and an arbitrary subspace N of AL with codimAL N < ∞ there exists an( f
ef
) ∈ N such that ‖f‖ = 1 and ‖f̃ − µ0f‖ < ε. The same construction as in the proof of

Theorem 3.6 shows that there exists a sequence
( fn

efn

) ∈ AL, n = 1, 2, . . ., with ‖fn‖ = 1

and ‖f̃n − µ0fn‖ → 0 as n →∞ such that (fn) converges weakly to zero. Since
( fn

efn

) ∈ L
we have [fn, fn] ≤ 0, n ∈ N. By Theorem 3.6 this contradicts µ0 ∈ σπ+(A) \ σ++(A).

If ∞ ∈ ∆ we choose two closed subsets ∆1 and ∆2 of R with ∞ /∈ ∆1, ∞ ∈ ∆2, 0 /∈ ∆2

and ∆ = ∆1 ∪∆2. The relation A−1 is selfadjoint and each point of the set {λ−1 : λ ∈ ∆2 \
{∞}} ∪ {0} is an accumulation point of ρ(A−1). Moreover, each point of that set belongs to
σπ+(A−1) ∪ ρ(A−1), cf. Lemma 3.4. By the first part of this proof and Lemma 3.4 the assertion
of Theorem 5.1 follows.

Next we recall the notion of locally definitizable selfadjoint relations, see, e.g. [30]. For this
let Ω be some domain in C symmetric with respect to the real axis such that Ω ∩ R 6= ∅ and
the intersections of Ω with the upper and lower open half-planes are simply connected.

Definition 3. Let A be a selfadjoint relation in the Krein space H such that σ(A) ∩ (Ω\R)
consists of isolated points which are poles of the resolvent of A, and no point of Ω ∩ R is an
accumulation point of the non-real spectrum of A in Ω. The relation A is said to be definitizable
over Ω, if the following holds.

(i) Every point µ ∈ Ω ∩ R has an open connected neighbourhood Iµ in R such that each
component of Iµ\{µ} belongs either to σ++(A) ∪ ρ̃(A) or to σ−−(A) ∪ ρ̃(A).

(ii) For every finite union ∆ of open connected subsets of R, ∆ ⊂ Ω ∩ R, there exists m ≥ 1,
M > 0 and an open neighbourhood U of ∆ in C such that

‖(A− λ)−1‖ ≤ M
(1 + |λ|)2m−2

|Im λ|m

holds for all λ ∈ U\R.

By [30, Theorem 4.7] a selfadjoint relation A in H is definitizable over C if and only if A
is definitizable, that is, the resolvent set of A is nonempty and there exists a rational function
r 6= 0 with poles only in ρ(A) such that r(A) ∈ L(H) is a nonnegative operator in K, that is

[r(A)x, x] ≥ 0

holds for all x ∈ H (see [37] and [19, §4 and §5]).
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Theorem 5.2. Let A be a selfadjoint relation in H and let ∆ be a closed connected subset
of R such that

∆ ∩ σ̃(A) ⊂ σπ+(A) ∪ σπ−(A)

holds. Assume that each point of ∆ is an accumulation point of ρ(A), i.e. ∆ ⊂ ρ(A). Then there
exists a domain Ω ⊂ C symmetric with respect to real line with Ω ∩ C+ and Ω ∩ C− simply
connected such that ∆ ⊂ Ω and A is definitizable over Ω.

Proof. Assume first ∞ /∈ ∆. Then ∆ is a closed bounded interval, ∆ = [a, b]. By Theorem
5.1 we find real numbers a0, a

′
0, b0, b

′
0 with a0 < a′0 < a < b < b′0 < b0 such that either [a0, a) ⊂

σ++(A) ∪ ρ(A) or [a0, a) ⊂ σ−−(A) ∪ ρ(A) and such that either (b, b0] ⊂ σ++(A) ∪ ρ(A) or
(b, b0] ⊂ σ−−(A) ∪ ρ(A). Moreover, we choose a0 and b0 in such a way that no point of [a0, b0] is
an accumulation point of the non-real spectrum of A, see Theorem 5.1. Then [30, Theorem 3.18]
implies the existence of a (local) spectral function of A on (a0, a

′
0) and on (b′0, b0). Therefore,

the Krein space H can be written as the direct orthogonal sum

H = E((a0, a
′
0) ∪ (b′0, b0))H [+̂]

(
I − E((a0, a

′
0) ∪ (b′0, b0))

)H
and with respect to this decomposition the selfadjoint relation A becomes the direct orthogonal
sum of the selfadjoint relations

A1 := A ∩ (
E((a0, a

′
0) ∪ (b′0, b0))H

)2

and
A2 := A ∩ ((

I − E((a0, a
′
0) ∪ (b′0, b0))

)H)2
,

A = A1 [+̂] A2, where the spectrum of A2 is a subset of [a0, a
′
0] ∪ [b′0, b0] and the spectrum of A2

belongs to C \ {(a0, a
′
0) ∪ (b′0, b0)}. Then, with Theorem 5.1, the interval (a′0, b

′
0) is a spectral

set for the operator A2, hence the Riesz-Dunford projection E(a′0,b′0) corresponding to (a′0, b
′
0)

and A2 is defined. Now, by [4, Theorem 23], there exists a domain Ω in C with the properties
stated in Theorem 5.2 such that A2E(a′0,b′0) is definitizable over Ω. Thus, A is definitizable over
Ω.

If ∞ ∈ ∆ we choose two closed connected subsets ∆1 and ∆2 of R with ∞ /∈ ∆1, ∞ ∈ ∆2,
0 /∈ ∆2 and ∆ = ∆1 ∪∆2. Then by the first part of this proof and by Lemma 3.4 there exist
domains Ω1 and Ω2, ∆1 ⊂ Ω1, ∆2 ⊂ Ω2, with the properties stated in the Theorem 5.2 such
that A is definitizable over Ω1 and A−1 is definitizable over {λ−1 : λ ∈ Ω2 \ {∞}} ∪ {0}. Then
it follows that A is definitizable over Ω = Ω1 ∪ Ω2.

Theorem 5.2 together with Corollary 4.2 now implies a result on compact perturbations
which is well-known, see [9]. We mention that it was proved for bounded operators in [39] and
in [29] for unbounded operators under some additional assumptions.

Theorem 5.3. Let A be a selfadjoint relation in H which is definitizable over some domain
Ω ⊂ C and let Ω \ R ⊂ ρ(A).† Assume that ∆ = Ω ∩ R is an open connected set such that

∆ ∩ σ̃(A) ⊂ σπ+(A) (∆ ∩ σ̃(A) ⊂ σπ−(A))

holds. If B is a selfadjoint relation in H, ρ(B) ∩ Ω 6= ∅ and (A− µ)−1 − (B − µ)−1 is a compact
operator for some, and hence for all, µ ∈ ρ(A) ∩ ρ(B), then B is also definitizable over Ω and

∆ ∩ σ̃(B) ⊂ σπ+(B) (resp. ∆ ∩ σ̃(B) ⊂ σπ−(B)).

†We remark that in the formulation of Theorem 29 in [4] the assumption Ω \ R ⊂ ρ(A) is missing.
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