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Abstract. The notion of quasi boundary triples and their Weyl functions
from extension theory of symmetric operators is extended to the general frame-

work of adjoint pairs of operators under minimal conditions on the bound-

ary maps. With the help of the corresponding abstract Titchmarsh-Weyl M -
functions sufficient conditions for the unique solvability of the related boundary

value problems are obtained and the solutions are expressed via Krein-type re-

solvent formulae. The abstract theory developed in this manuscript can be
applied to a large class of elliptic differential operators.

1. Introduction

Boundary value problems for elliptic partial differential operators are often treated
within the abstract framework of adjoint pairs of operators. This approach has its
roots in the works of M.I. Visik [74], M.S. Birman [24] and G. Grubb [49], and
has been further developed in the context of boundary triples and their Weyl func-
tions for adjoint pairs of abstract operators in, e.g., [25, 26, 27, 59]. The notion of
(ordinary) boundary triples for adjoint pairs of operators goes back to L.I. Vain-
erman [73] and the monograph [58] by V.E. Lyantse and O.G. Storozh; the cor-
responding Weyl functions and Krein-type resolvent formulae were provided later
by M.M. Malamud and V.I. Mogilevskii in [60, 61, 62, 65]; see also [14, 52, 53].
For the special case of symmetric operators and the spectral analysis of their self-
adjoint extensions the boundary triple technique is nowadays very well established
[15, 28, 29, 32, 36, 48, 51, 54, 72] and has been applied and extended in vari-
ous directions. Among many generalizations of the notion of ordinary boundary
triples for symmetric operators are the so-called quasi boundary triples, general-
ized boundary triples, and boundary relations for symmetric operators and relations
from [16, 33, 37], see [17, 20, 21, 22, 23, 30, 31, 34, 35] for subsequent developments
and in this context we also refer to [1, 2, 6, 7, 8, 9, 10, 11, 13, 18, 45, 46, 47, 50,
55, 56, 57, 63, 66, 67, 68, 69, 70, 71, 75, 76] for other closely related approaches
and typical applications. Extension theory problems for adjoint pairs of operators
are also connected to a class of (abstract) positive first order symmetric systems,
so-called Friedrichs systems [42, 43, 44], and in this context we also mention the
more recent operator theoretic treatment in [4, 5, 38, 39, 40] inspired by [3, 41].

The main objective of this paper is to extend the notion of quasi boundary
triples and their Weyl functions for symmetric operators from [16, 17, 20, 22] to
the general framework of adjoint pairs of operators, and to develop the abstract
theory around this concept; in particular, the aim is to provide sufficient conditions
for boundary parameters and boundary mappings to induce closed extensions with
nonempty resolvent sets, and to describe their resolvents via Krein-type resolvent
formulae. Here we shall work under minimal assumptions on the boundary opera-
tors in the triple, that is, we require an abstract version of Green’s second identity
(G), a weaker density condition (D) on the range of the boundary mappings than
usual, and a certain maximality condition (M). In our results we shall always state
explicitely which assumptions (G), (D), or (M) are needed for the actual statement.
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Let us briefly explain and motivate our approach and the main difference to
the concept of ordinary boundary triples for adjoint pairs of operators. For this,

consider two densely defined closed operators S and S̃ in a Hilbert space H such

that S̃ ⊂ S∗ (or, equivalently S ⊂ S̃∗). Assume that the operators T and T̃

are cores of S∗ and S̃∗, respectively, that is, their closures coincide with S∗ and

S̃∗. The key feature in our theory is the assumption that there exist an auxiliary
(boundary) Hilbert space G and boundary mappings Γ0,Γ1 : domT → G and

Γ̃0, Γ̃1 : dom T̃ → G such that an abstract Green’s identity

(G) (Tf, g)H − (f, T̃ g)H = (Γ1f, Γ̃0g)G − (Γ0f, Γ̃1g)G

holds for all f ∈ domT and g ∈ dom T̃ . We emphasize that (G) is not required on

the (full) domain of the adjoint operators S∗ and S̃∗ (as is the case for ordinary
boundary triples) and that (G) typically does not admit an extension onto domS∗

and dom S̃∗. We are mainly interested in the case dimG =∞ (as otherwise T = S∗

and T̃ = S̃∗, and hence ordinary boundary triples can be used). In addition to
Green’s identity (G) a density condition (D) or (DD) and a maximality condition
(M) in Definition 2.1 is often needed for a fruitful and functioning theory. We will

then study extensions of S̃ and S which are restrictions of T and T̃ , respectively,
of the form

ABf = Tf, domAB =
{
f ∈ domT : BΓ1f = Γ0f

}
,

ÃB̃g = T̃ g, dom ÃB̃ =
{
g ∈ dom T̃ : B̃Γ̃1g = Γ̃0g

}
,

where B and B̃ are linear operators in G. In the general abstract setting the goal

is to show that AB and ÃB̃ are closed operators in H with nonempty resolvent
sets, as this ensures unique solvability or well-posedness of the abstract Robin-type
boundary value problems

(T − λ)f = h, BΓ1f = Γ0f, or (T̃ − µ)g = k, B̃Γ̃1g = Γ̃0g,

whenever λ ∈ ρ(AB) and µ ∈ ρ(ÃB̃) and h, k ∈ H. After proving an abstract
Birman-Schwinger principle (in a symmetrized form) we find sufficient conditions
on the boundary parameter, the mapping properties of the boundary maps, and

the associated Weyl functions such that the resolvents AB and ÃB̃ can be explicitly
computed in terms of the resolvent of an underlying fixed extension and a pertur-
bation term in the boundary space G. We find it useful for reference purposes to
summarize our results for general adjoint pairs in Appendix A in the special case

that S = S̃ is a densely defined closed symmetric operator. In this situation our
results generalize those from [16, 17, 20, 23] in the sense that we impose a weaker
density condition (D) on the ranges of the boundary mappings than usual.

The present paper stays mostly on an abstract operator theory level and we have
decided to postpone the details of the diverse applications to future investigations
and projects (with the small exceptions Example 2.8 and Example 4.10, where
a strongly elliptic system on a Lipschitz domain following [64] is discussed). We
only indicate here briefly as a motivation, that in the most simple situation of a
Schrödinger operator −∆ + V on a bounded smooth domain Ω ⊂ Rn, n ≥ 2, with

a complex potential V ∈ L∞(Ω) a natural choice for the operators S, S̃ and T, T̃ in
H = L2(Ω) is

S = −∆ + V and S̃ = −∆ + V, domS = dom S̃ = H2
0 (Ω),

and

T = −∆ + V and T̃ = −∆ + V , domT = dom T̃ = H2(Ω),
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where H2(Ω) is the usual second order Sobolev spaces and H2
0 (Ω) denotes the

closure of C∞0 (Ω) in H2(Ω). It is easy to see that S and S̃ form an adjoint pair, that

is, S̃ ⊂ S∗, and that the closures of T and T̃ coincide with S∗ and S̃∗, respectively.

Furthermore, for f ∈ domT and g ∈ dom T̃ we have the classical Green’s second
identity

(Tf, g)L2(Ω) − (f, T̃ g)L2(Ω) =
(
(−∆ + V )f, g

)
L2(Ω)

−
(
f, (−∆ + V )g

)
L2(Ω)

= (−∆f, g)L2(Ω) − (f,−∆g)L2(Ω)

= (τDf, τNg)L2(∂Ω) − (τNf, τDg)L2(∂Ω),

where τD : H2(Ω) → H3/2(∂Ω) and τN : H2(Ω) → H1/2(∂Ω) denote the usual
Dirichlet and Neumann trace operators. Therefore, with G = L2(∂Ω) and the

boundary mappings Γ0 = Γ̃0 = τN and Γ1 = Γ̃1 = τD it is clear that the abstract
Green’s identity (G) is satisfied. Furthermore, with this choice also the density
condition (DD) and the maximality condition (M) in Definition 2.1 hold. Observe

that the operators AB and ÃB̃ above are realizations of the Schrödinger operator

−∆ + V and its formal adjoint −∆ + V subject to Robin boundary conditions of
the form

ABf = −∆f + V f, domAB =
{
f ∈ H2(Ω) : BτDf = τNf

}
,

ÃB̃g = −∆g + V g, dom ÃB̃ =
{
g ∈ H2(Ω) : B̃τDg = τNg

}
,

where B and B̃ are linear (possibly unbounded) operators in L2(∂Ω). We refer
the reader to the recent paper [12] for more details and generalizations of this
specific example. We also mention that, besides this simple standard situation
sketched here, many other applications to differential operators such as, e.g., Dirac
operators or 2m order elliptic differential operators with variable coefficients can
be explored.

Acknowledgements. The author is most grateful for the stimulating research stay
and the hospitality at the University of Auckland, where some parts of this paper
were written in 2023. The author also wishes to thank the anonymous referees for
the careful reading of the manuscript and their helpful suggestions. This research
was funded by the Austrian Science Fund (FWF) Grant-DOI: 10.55776/P33568.
This publication is also based upon work from COST Action CA 18232 MAT-DYN-
NET, supported by COST (European Cooperation in Science and Technology),
www.cost.eu.

2. Quasi boundary triples for adjoint pairs of operators

Let throughout this section S and S̃ be densely defined closed operators in a
separable Hilbert space H such that

(Sf, g) = (f, S̃g), f ∈ domS, g ∈ dom S̃, (2.1)

holds. Note that this is the same as requiring S̃ ⊂ S∗ or S ⊂ S̃∗. We shall call a pair

{S, S̃} of operators with this property an adjoint pair (sometimes also the notion
dual pair is used in the literature). In this manuscript we are mainly interested in
the situation

dim
(
domS∗/dom S̃

)
= dim

(
dom S̃∗/domS

)
=∞, (2.2)

although our results do not formally require this condition. Note that in the special

case S = S̃ the property (2.1) shows that S is a symmetric operator and (2.2) means
that at least one of the defect numbers of S is infinite. In the following we shall
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work with operators T ⊂ S∗ and T̃ ⊂ S̃∗ in H which (are typically not closed and)
satisfy

T = S∗ and T̃ = S̃∗,

or, equivalently T ∗ = S and T̃ ∗ = S̃. In this situation, we shall say that T and T̃

are cores of S∗ and S̃∗, respectively.
Inspired by the notion of quasi boundary triples for symmetric operators in

[16, 17] and typical applications in elliptic boundary value problems in the non-
symmetric situation (see, e.g., [64]), we extend the definition of boundary triples for
adjoint pairs in the abstract setting from [58, 73], see also [25, 26, 27, 53, 60, 61, 62].
At the same time we also formulate a slightly weaker density condition (D) than
usual (that is, (DD)) and it will turn out that for many situations this is sufficient
for a well functioning theory.

Definition 2.1. Let {S, S̃} be an adjoint pair of operators in H and assume T

and T̃ are cores of S∗ and S̃∗, respectively. We shall consider triples of the form

{G, (Γ0,Γ1), (Γ̃0, Γ̃1)} for the adjoint pair {S, S̃}, where G is a Hilbert space and

Γ0,Γ1 : domT → G, Γ̃0, Γ̃1 : dom T̃ → G,

are linear mappings. For such a triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} we define the additional
properties

(G) the abstract Green’s identity

(Tf, g)H − (f, T̃ g)H = (Γ1f, Γ̃0g)G − (Γ0f, Γ̃1g)G

holds for all f ∈ domT and g ∈ dom T̃ ,

(D) the ranges of Γ0 : domT → G and Γ̃0 : dom T̃ → G are dense,

(DD) the ranges of (Γ0,Γ1)> : domT → G × G and (Γ̃0, Γ̃1)> : dom T̃ → G × G
are dense,

(M) the operators A0 := T � ker Γ0 and Ã0 := T̃ � ker Γ̃0 satisfy

A∗0 = Ã0 and Ã∗0 = A0. (2.3)

If the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} is such that (G), (DD), and (M) hold, then

{G, (Γ0,Γ1), (Γ̃0, Γ̃1)} is said to be a quasi boundary triple for the adjoint pair {S, S̃}.

In the following, we shall formulate all results under minimal assumptions on

the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)}, tacitly assuming that {S, S̃} is an adjoint pair of

operators in H, and T and T̃ are cores of S∗ and S̃∗, respectively. We will refer to
condition (G) as abstract Green’s identity, condition (D) and the stronger condition
(DD) as density conditions, and (M) is a maximality condition. From now on we
shall also suppress the index H and G in the notation of the scalar products in H
and G, and simply use (·, ·).

Note that condition (DD) implies that ran Γ0, ran Γ1, ran Γ̃0, and ran Γ̃1 are
all dense in G individually and, in particular, condition (DD) implies condition
(D). Furthermore, it is clear from (M) that both restrictions A0 = T � ker Γ0 and

Ã0 = T̃ � ker Γ̃0 are closed operators in H. Note that, for A0 closed, the first

condition A∗0 = Ã0 in (2.3) already implies the second condition Ã∗0 = A0 and, in

the same way, Ã0 closed and Ã∗0 = A0 imply the first condition A∗0 = Ã0 in (2.3).
Later in Section 3 and Section 4 we will typically assume that the resolvent sets of

ρ(A0) and ρ(Ã0) are nonempty; cf. Lemma 3.1.

Remark 2.2. Note that if the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has property (G), then

for the operators A0 = T � ker Γ0 and Ã0 = T̃ � ker Γ̃0 one has

(A0f, g)− (f, Ã0g) = (Tf, g)− (f, T̃ g) = (Γ1f, Γ̃0g)− (Γ0f, Γ̃1g) = 0
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for f ∈ domA0 and g ∈ dom Ã0, and hence the inclusions

Ã0 ⊂ A∗0 and A0 ⊂ Ã∗0
hold without further assumptions; thus property (M) for a triple is only required

for the inclusions Ã0 ⊃ A∗0 and A0 ⊃ Ã∗0. Furthermore, if property (M) holds,

this implies that the cores T ⊂ S∗ and T̃ ⊂ S̃∗ are also extensions of S̃ and S,

respectively, since A0 ⊂ T , Ã0 ⊂ T̃ , lead to

S̃ = T̃ ∗ ⊂ Ã∗0 = A0 ⊂ T and S = T ∗ ⊂ A∗0 = Ã0 ⊂ T̃ . (2.4)

We point out that the operators T and T̃ in Definition 2.1 are not unique and

may also coincide with S∗ and S̃∗, respectively. However, in the special case

T = S∗ and T̃ = S̃∗ the situation simplifies and reduces to the notion of ordinary
boundary triples for adjoint pairs; cf. Proposition 2.6 and, e.g., [27, 62, 58, 73].

It is not difficult to see that the mappings Γ0,Γ1, Γ̃0, Γ̃1 are not unique, for in-

stance, if the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has the property (G), then also the triple

{G, (Γ1,−Γ0), (Γ̃1,−Γ̃0)} has the property (G). Therefore, by imposing condition

(D) for Γ1 and Γ̃1 and by requiring that the operators A1 := T � ker Γ1 and

Ã1 := T̃ � ker Γ̃1 satisfy the analogue of property (M), that is,

A∗1 = Ã1 and Ã∗1 = A1, (2.5)

the triple {G, (Γ1,−Γ0), (Γ̃1,−Γ̃0)} has the same properties (G), (D), and (M) as

the original triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)}. In particular, if {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} is a

quasi boundary triple and (2.5) holds, then {G, (Γ1,−Γ0), (Γ̃1,−Γ̃0)} is also a quasi
boundary triple.

The next lemma shows that the density condition (DD) in Definition 2.1 can be

concluded from the surjectivity of the maps Γ0 and Γ̃0.

Lemma 2.3. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} for the adjoint pair

{S, S̃} has properties (G) and (M). Then the following assertions hold.

(i) If ran Γ0 is dense in G and ran Γ̃0 = G, then ran (Γ0,Γ1)> is dense in
G × G;

(ii) If ran Γ̃0 is dense in G and ran Γ0 = G, then ran (Γ̃0, Γ̃1)> is dense in
G × G.

In particular, if ran Γ0 = ran Γ̃0 = G, then condition (DD) in Definition 2.1 is

satisfied and {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} is a quasi boundary triple for the adjoint pair

{S, S̃}.

Proof. (i) Assume that (ϕ,ϕ′)> ∈ G × G is orthogonal to the range of (Γ0,Γ1)> :

domT → G × G and choose g ∈ dom T̃ such that Γ̃0g = ϕ′. Then we have

0 = (Γ1f, ϕ
′)− (Γ0f,−ϕ) = (Γ1f, Γ̃0g)− (Γ0f,−ϕ) (2.6)

for all f ∈ domT , and hence the abstract Green’s identity (G) becomes

(Tf, g)− (f, T̃ g) = (Γ1f, Γ̃0g)− (Γ0f, Γ̃1g) = (Γ0f,−ϕ− Γ̃1g).

In particular, for f ∈ ker Γ0 = domA0 we have

(A0f, g)− (f, T̃ g) = (Tf, g)− (f, T̃ g) = 0

and therefore g ∈ domA∗0 = dom Ã0 = ker Γ̃0, that is, ϕ′ = Γ̃0g = 0. Now (2.6)
reduces to 0 = (Γ0f, ϕ) for all f ∈ domT and as ran Γ0 is dense in G we conclude
ϕ = 0. This shows that the range of (Γ0,Γ1)> is dense in G × G.

(ii) can be proved in the same way as (i). It is also clear from (i) and (ii)

that under the assumption ran Γ0 = ran Γ̃0 = G the ranges of both (Γ0,Γ1)> and
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(Γ̃0, Γ̃1)> are dense in G × G, that is, condition (DD) in Definition 2.1 holds, and

hence {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} is a quasi boundary triple. �

We note that, in the situation of Lemma 2.3 with ran Γ0 = ran Γ̃0 = G, the quasi

boundary triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} can be regarded as a generalized boundary
triple in the context of adjoint pairs; for the case of symmetric operators this
concept appeared already in [37] and we also refer to the more recent contributions
[21, 33, 35].

Lemma 2.4. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} for the adjoint pair

{S, S̃} has the properties (G), (D), and (M). Then

domS = ker Γ̃0 ∩ ker Γ̃1 and dom S̃ = ker Γ0 ∩ ker Γ1. (2.7)

Proof. We will verify the identity domS = ker Γ̃0 ∩ ker Γ̃1; the second identity in
(2.7) can be shown in the same way. For this, let us consider some fixed g ∈
domS = domT ∗. From A0 ⊂ T and the maximality condition (M) we obtain

T ∗ ⊂ A∗0 = Ã0 ⊂ T̃ (see (2.4)), and hence g ∈ dom Ã0 = ker Γ̃0 ⊂ dom T̃ . The
abstract Green’s identity (G) yields

0 = (Tf, g)− (f, T ∗g)

= (Tf, g)− (f, T̃ g)

= (Γ1f, Γ̃0g)− (Γ0f, Γ̃1g)

= −(Γ0f, Γ̃1g)

for all f ∈ domT and as ran Γ0 is dense in G by condition (D) it follows that also

g ∈ ker Γ̃1. Conversely, for g ∈ ker Γ̃0 ∩ ker Γ̃1 the abstract Green’s identity implies

(Tf, g)− (f, T̃ g) = (Γ1f, Γ̃0g)− (Γ0f, Γ̃1g) = 0

for all f ∈ domT . This shows g ∈ domT ∗ = domS. �

Lemma 2.5. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} for the adjoint pair

{S, S̃} has the properties (G) and (DD). Then the mappings(
Γ0

Γ1

)
: domT → G × G and

(
Γ̃0

Γ̃1

)
: dom T̃ → G × G (2.8)

are both closable with respect to the graph norm of T and T̃ , respectively. In par-

ticular, the individual mappings Γ0,Γ1 : domT → G and Γ̃0, Γ̃1 : dom T̃ → G are
closable.

Proof. Consider a sequence fn ∈ domT such that fn → 0 and Tfn → 0 as n→∞
and assume that Γ0fn → ϕ and Γ1fn → ϕ′, n→∞, for some ϕ,ϕ′ ∈ G. Using (G)
it follows that

0 = lim
n→∞

(
(Tfn, g)− (fn, T̃ g)

)
= lim
n→∞

(
(Γ1fn, Γ̃0g)− (Γ0fn, Γ̃1g)

)
= (ϕ′, Γ̃0g)− (ϕ, Γ̃1g)

and as ran (Γ̃0, Γ̃1)> is dense in G × G by (DD) we conclude ϕ = ϕ′ = 0. This
proves that the first mapping in (2.8) is closable and the same argument applies to
the second mapping in (2.8). �

Proposition 2.6. Let {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} be a quasi boundary triple for the ad-

joint pair {S, S̃}. Then the following are equivalent.
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(i) T = S∗ and T̃ = S̃∗;

(ii) ran (Γ0,Γ1)> = G × G and ran (Γ̃0, Γ̃1)> = G × G.

Proof. (i)⇒ (ii): Since ran (Γ0,Γ1)> and ran (Γ̃0, Γ̃1)> are both dense in G × G by
(DD) it remains to show that both ranges are closed. We will provide the argument

for ran (Γ0,Γ1)>; the same reasoning applies to ran (Γ̃0, Γ̃1)>. Consider a sequence
(Γ0fn,Γ1fn)>, where fn ∈ domT and assume that

Γ0fn → ϕ and Γ1fn → ϕ′ (2.9)

as n → ∞ for some ϕ,ϕ′ ∈ G. Now regard (the graphs) S̃ and T = S∗ as closed

subspaces of H× H and note first that by the inclusion S̃ ⊂ T = S∗ in (2.4) there

exists a closed subspace V ⊂ H× H such that T = S̃ ⊕ V; here V is the orthogonal

complement of S̃ regarded as a subspace of T with respect to the scalar product in

H×H restricted to T . Therefore, since dom S̃ = ker Γ0 ∩ ker Γ1 by Lemma 2.4 it is
no restriction to assume that fn ∈ domT satisfy((

fn
Tfn

)
,

(
k

S̃k

))
= 0, k ∈ dom S̃. (2.10)

Let (h, h′)> ∈ H × H be arbitrary and observe that there exist g̃ ∈ dom S̃∗ and

k ∈ dom S̃ such that (
h
h′

)
=

(
−S̃∗g̃
g̃

)
+

(
k

S̃k

)
.

Using (2.10), S̃∗ = T̃ , and the abtract Green’s identity (G) we compute((
fn
Tfn

)
,

(
h
h′

))
=

((
fn
Tfn

)
,

(
−S̃∗g̃
g̃

)
+

(
k

S̃k

))
= (Tfn, g̃)− (fn, S̃

∗g̃)

= (Tfn, g̃)− (fn, T̃ g̃)

= (Γ1fn, Γ̃0g̃)− (Γ0fn, Γ̃1g̃)→ (ϕ′, Γ̃0g̃)− (ϕ, Γ̃1g̃)

as n → ∞, where (2.9) entered in the last step. It follows that (fn, Tfn)> is a
weak Cauchy sequence in H × H and hence weakly bounded and thus bounded.
This implies that there exists a weakly convergent subsequence, again denoted by
(fn, T fn)> with weak limit (f, f ′)> ∈ T . By assumption T = S∗, and therefore T
is closed, so that necessarily f and f ′ satisfy f ′ = Tf . Now we conclude for any

g ∈ dom T̃

(Γ1f, Γ̃0g)− (Γ0f, Γ̃1g) = (Tf, g)− (f, T̃ g)

= lim
n→∞

(
(Tfn, g)− (fn, T̃ g)

)
= lim
n→∞

(
(Γ1fn, Γ̃0g)− (Γ0fn, Γ̃1g)

)
= (ϕ′, Γ̃0g)− (ϕ, Γ̃1g),

that is, ((
Γ1f − ϕ′
ϕ− Γ0f

)
,

(
Γ̃0g

Γ̃1g

))
= 0.

As ran (Γ̃0, Γ̃1)> is dense in G × G by (DD) we obtain ϕ = Γ0f and ϕ′ = Γ1f , in
particular, (ϕ,ϕ′)> ∈ ran (Γ0,Γ1)> and therefore ran (Γ0,Γ1)> is closed.

(ii)⇒ (i): Since T and T̃ are cores of S∗ and S̃∗, respectively, it suffices to verify

that T and T̃ are closed. We will provide the proof for T ; the same argument

can be used to show that T̃ is closed. Consider a sequence fn in domT such that
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fn → f and Tfn → f ′ as n → ∞ for some f, f ′ ∈ H. Let (ψ,ψ′)> ∈ G × G and

choose g ∈ dom T̃ such that Γ̃0g = ψ′ and Γ̃1g = −ψ, which is possible by our
assumptions. Using (G) we compute((

Γ0fn
Γ1fn

)
,

(
ψ
ψ′

))
= (Γ1fn, Γ̃0g)− (Γ0fn, Γ̃1g)

= (Tnf, g)− (fn, T̃ g)→ (f ′, g)− (f, T̃ g)

as n → ∞. This shows that (Γ0fn,Γ1fn)> is a weak Cauchy sequence in G × G
and thus weakly bounded, and hence bounded. Therefore, there exists a weakly
convergent subsequence, again denoted by (Γ0fn,Γ1fn)> with weak limit (ϕ,ϕ′)> ∈
G × G. By assumption there exists h ∈ domT such that Γ0h = ϕ and Γ1h = ϕ′.

Now it follows for g ∈ dom T̃ that

(f ′, g)− (f, T̃ g) = lim
n→∞

(
(Tfn, g)− (fn, T̃ g)

)
= lim
n→∞

(
(Γ1fn, Γ̃0g)− (Γ0fn, Γ̃1g)

)
= (ϕ′, Γ̃0g)− (ϕ, Γ̃1g)

= (Γ1h, Γ̃0g)− (Γ0h, Γ̃1g)

= (Th, g)− (h, T̃ g),

and hence (h−f, T̃ g) = (Th−f ′, g) for all g ∈ dom T̃ . This implies h−f ∈ dom T̃ ∗

and T̃ ∗(h − f) = Th − f ′. As T̃ ∗ = S̃ ⊂ T by (2.4) and h ∈ domT we conclude
f ∈ domT and Tf = f ′. We have shown that T is closed. �

The next result is of a slightly different nature: it provides a method to verify that

a pair of given operators T and T̃ form a core of the adjoints of certain (minimal)

operators S and S̃, respectively. To emphasize this different point of view we shall
denote the additional properties of the boundary maps here by (G’), (D’) or (DD’),
and (M’).

Theorem 2.7. Let H and G be Hilbert spaces and let T and T̃ be operators in H.
Assume that

Γ0,Γ1 : domT → G and Γ̃0, Γ̃1 : dom T̃ → G (2.11)

are linear mappings such that

(G’) the abstract Green’s identity

(Tf, g)− (f, T̃ g) = (Γ1f, Γ̃0g)− (Γ0f, Γ̃1g)

holds for all f ∈ domT and g ∈ dom T̃ ,

(D’) the ranges of Γ0 : domT → G and Γ̃0 : dom T̃ → G are dense,

(M’) the operators A0 := T � ker Γ0 and Ã0 := T̃ � ker Γ̃0 satisfy

A∗0 = Ã0 and Ã∗0 = A0.

If, in addition, ker Γ̃0∩ker Γ̃1 and ker Γ0∩ker Γ1 are dense in H, then the operators

Sf := T̃ f, f ∈ domS = ker Γ̃0 ∩ ker Γ̃1,

S̃g := Tg, g ∈ dom S̃ = ker Γ0 ∩ ker Γ1,

are closed and form an adjoint pair such that T and T̃ are cores of S∗ and S̃∗,
respectively. Furthermore, if the mappings in (2.11) satisfy the conditions (G’),

(DD’) the ranges of (Γ0,Γ1)> : domT → G × G and (Γ̃0, Γ̃1)> : dom T̃ → G × G
are dense,
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and (M’), then {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} is a quasi boundary triple for the adjoint pair

{S, S̃}.

Proof. Observe first that by (G’) and the definition of S and S̃ we have

(Sf, g)− (f, S̃g) = (Tf, g)− (f, T̃ g) = (Γ1f, Γ̃0g)− (Γ0f, Γ̃1g) = 0

for all f ∈ domS and g ∈ dom S̃, and hence {S, S̃} is an adjoint pair. We will
verify the identity

T ∗ = S (2.12)

and the same arguments can be used to prove the identity T̃ ∗ = S̃. Note first that

from A0 ⊂ T and (M’) it follows that T ∗ ⊂ A∗0 = Ã0 ⊂ T̃ . Therefore, if g ∈ domT ∗,

then g ∈ dom Ã0 = ker Γ̃0 ⊂ dom T̃ and (G’) implies

0 = (Tf, g)− (f, T ∗g)

= (Tf, g)− (f, T̃ g)

= (Γ1f, Γ̃0g)− (Γ0f, Γ̃1g)

= −(Γ0f, Γ̃1g)

for all f ∈ domT , and hence assumption (D’) shows Γ̃1g = 0. Now it follows that

T ∗g = T̃ g and g ∈ ker Γ̃0 ∩ ker Γ̃1, that is, T ∗ ⊂ S. For the reverse inclusion let

g ∈ ker Γ̃0 ∩ ker Γ̃1. Then it follows from (G’) that

(Tf, g)− (f, T̃ g) = 0

holds for all f ∈ domT . This implies g ∈ domT ∗ and T ∗g = T̃ g, and hence we
obtain S ⊂ T ∗. We have shown (2.12). It is also clear from (2.12) that the operator
S is closed and T = T ∗∗ = S∗ shows that T is a core for S∗. In the same way

T̃ ∗ = S̃ implies that S̃ is closed and that T̃ is a core for S̃∗. Finally, note that

{G, (Γ0,Γ1), (Γ̃0, Γ̃1)} is a quasi boundary triple for the adjoint pair {S, S̃} if the
conditions (G’), (DD’), and (M’) hold. �

We briefly illustrate the abstract theory developed in this section for the case of
strongly elliptic systems on Lipschitz domains following the presentation in [64].

Example 2.8. Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain with outward
unit normal ν and consider a linear second order partial differential expression

P = −
n∑

j,k=1

∂jAjk∂k +

n∑
j=1

Aj∂j +A

with matrix-valued coefficient functionsAjk, Aj , A ∈ L∞(Ω,Cm×m) such thatAjk, Aj ,
j, k = 1, . . . , n, are Lipschitz continuous, and its formal adjoint

P̃ = −
n∑

j,k=1

∂jA
∗
kj∂k −

n∑
j=1

∂jA
∗
j +A∗.

We define the operators T and T̃ in L2(Ω,Cm×m) by

Tf = Pf, domT =
{
f ∈ H1(Ω,Cm×m) : Pf ∈ L2(Ω,Cm×m)

}
,

T̃ g = P̃g, dom T̃ =
{
g ∈ H1(Ω,Cm×m) : P̃g ∈ L2(Ω,Cm×m)

}
.

Recall that the Dirichlet trace operator

τD : H1(Ω,Cm×m)→ H1/2(∂Ω,Cm×m) (2.13)
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is bounded and surjective. It follows from the considerations in [64, Lemma 4.3
and Theorem 4.4] that the conormal derivatives

f 7→
n∑
j=1

νjτD(Bjf) and g 7→
n∑
j=1

νjτD(B̃jg), f, g ∈ H2(Ω,Cm×m),

where Bjf =
∑n
k=1Ajk∂kf and B̃jg =

∑n
k=1A

∗
kj∂kg + A∗jg, can be extended by

continuity to mappings

τN : domT → H−1/2(∂Ω,Cm×m) and τ̃N : dom T̃ → H−1/2(∂Ω,Cm×m)

such that

(Tf, g)− (f, T̃ g) = 〈−τNf, τDg〉 − 〈τDf,−τ̃Ng〉 (2.14)

holds for all f ∈ domT and g ∈ dom T̃ ; here 〈·, ·〉 denotes the usual dual pairing
of H1/2(∂Ω,Cm×m) and H−1/2(∂Ω,Cm×m). Now choose isometric isomorphisms
ι± : H±1/2(∂Ω,Cm×m)→ L2(∂Ω,Cm×m) that are compatible with this pairing, so
that (2.14) turns into

(Tf, g)− (f, T̃ g) = (−ι−τNf, ι+τDg)− (ι+τDf,−ι−τ̃Ng). (2.15)

Next, define the operators S̃ and S as restrictions of T and T̃ onto ker τD ∩ ker τN
and ker τD ∩ ker τ̃N , respectively. In a more explicit form we have

S̃f = Pf,

dom S̃ =
{
f ∈ H1(Ω,Cm×m) : Pf ∈ L2(Ω,Cm×m), τDf = 0, τNf = 0

}
,

and

Sg = P̃g,

domS =
{
g ∈ H1(Ω,Cm×m) : P̃g ∈ L2(Ω,Cm×m), τDg = 0, τ̃Ng = 0

}
.

Let us now consider the triple{
L2(∂Ω,Cm×m), (ι+τD,−ι−τN ), (ι+τD,−ι−τ̃N )

}
. (2.16)

Observe that properties (D) and (G) hold by (2.13) and (2.15). Furthermore, in
the present situation we actually have ran ι+τD = L2(∂Ω,Cm×m). The operators

A0 = T � ker Γ0 and Ã0 = T̃ � ker Γ̃0 are given by the Dirichlet realizations

A0f = Pf, domA0 =
{
f ∈ H1(Ω,Cm×m) : Pf ∈ L2(Ω,Cm×m), τDf = 0

}
and

Ã0g = P̃g, dom Ã0 =
{
g ∈ H1(Ω,Cm×m) : P̃g ∈ L2(Ω,Cm×m), τDg = 0

}
;

they automatically satisfy Ã0 ⊂ A∗0 and A0 ⊂ Ã∗0 (see Remark 2.2). If, in addition,

there exists λ0 ∈ C such that λ0 ∈ ρ(A0) and λ0 ∈ ρ(Ã0), then one has A0 = Ã∗0 and

A∗0 = Ã0 (see Lemma 3.1 below), and hence condition (M) holds. Now Theorem 2.7

implies that {S, S̃} form an adjoint pair and that T = S∗ and T̃ = S̃∗. Note that by
Lemma 2.3 the stronger density condition (DD) holds, and hence the triple (2.16)

is a quasi boundary triple for the adjoint pair {S, S̃}.
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3. γ-fields and Weyl functions

In this section we introduce the notion of γ-fields and Weyl functions following
the ideas in [16, 37, 33] in the setting of adjoint pairs; cf. [60, 61, 62]. In the

following we consider an adjoint pair {S, S̃} in H, cores T and T̃ of S∗ and S̃∗,

respectively, and a triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} as in Definition 2.1. In addition, we

assume that the operators A0 = T � ker Γ0 and Ã0 = T̃ � ker Γ̃0 have nonempty

resolvent sets ρ(A0) and ρ(Ã0), respectively. Note that A∗0 = Ã0 and Ã∗0 = A0 in

condition (M) imply λ ∈ ρ(A0) if and only if λ ∈ ρ(Ã0).
We provide a simple criterion for condition (M) to hold in the case that ρ(A0)

and ρ̃(A0) are nonempty.

Lemma 3.1. Let {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} be a triple as in Definition 2.1 such that

the property (G) holds. Let A0 = T � ker Γ0 and Ã0 = T̃ � ker Γ̃0, and assume

that there exists λ0 ∈ C such that λ0 ∈ ρ(A0) and λ0 ∈ ρ(Ã0). Then A0 = Ã∗0 and

A∗0 = Ã0 and, in particular, condition (M) is satisfied.

Proof. Since (G) holds we have A0 ⊂ Ã∗0 by Remark 2.2. For λ0 as in the assump-

tions one also has λ0 ∈ ρ(Ã∗0), and hence it follows from A0 − λ0 ⊂ Ã∗0 − λ0 that

A0 = Ã∗0 and A∗0 = Ã0 (since Ã0 is closed). �

In the following we shall introduce and collect some properties of the so-called γ-

fields γ, γ̃ and Weyl functionsM, M̃ corresponding to the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)}.
Assume again that the resolvent sets of A0 = T � ker Γ0 and Ã0 = T̃ � ker Γ̃0 are
nonempty and recall first the direct sum decompositions

domT = domA0 +̇ ker(T − λ) = ker Γ0 +̇ ker(T − λ), λ ∈ ρ(A0),

dom T̃ = dom Ã0 +̇ ker(T̃ − µ) = ker Γ̃0 +̇ ker(T̃ − µ), µ ∈ ρ(Ã0).
(3.1)

In fact, since A0 ⊂ T it is clear that the inclusion domT ⊃ domA0 + ker(T − λ)
holds. To verify the inclusion domT ⊂ domA0 + ker(T − λ) consider f ∈ domT
and choose g ∈ domA0 such that (T − λ)f = (A0 − λ)g holds; here we have used
λ ∈ ρ(A0). Then h := f − g ∈ ker(T − λ), and hence f = g + h with f ∈ domT
and h ∈ ker(T − λ). Note also that the sum is direct as otherwise λ ∈ σp(A0). It

is clear that the direct sum decomposition of dom T̃ in (3.1) can be proved in the
same way.

Definition 3.2. Let {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} be a triple as in Definition 2.1 and as-

sume that the resolvent sets of A0 = T � ker Γ0 and Ã0 = T̃ � ker Γ̃0 are nonempty.

(i) The γ-fields γ and γ̃ associated with {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} are defined by

γ(λ) :=
(
Γ0 � ker(T − λ)

)−1
, λ ∈ ρ(A0),

γ̃(µ) :=
(
Γ̃0 � ker(T̃ − µ)

)−1
, µ ∈ ρ(Ã0),

where the inverses of Γ0 � ker(T − λ) of Γ̃0 � ker(T̃ − µ) are defined on

ran Γ0 and ran Γ̃0, respectively.

(ii) The Weyl functions M and M̃ associated with {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} are
defined by

M(λ) := Γ1

(
Γ0 � ker(T − λ)

)−1
= Γ1γ(λ), λ ∈ ρ(A0),

M̃(µ) := Γ̃1

(
Γ̃0 � ker(T̃ − µ)

)−1
= Γ̃1γ̃(µ), µ ∈ ρ(Ã0).

Observe that for fλ ∈ ker(T − λ), λ ∈ ρ(A0), and gµ ∈ ker(T̃ − µ), µ ∈ ρ(Ã0),
one has

M(λ)Γ0fλ = Γ1fλ and M̃(µ)Γ̃0gµ = Γ̃1gµ. (3.2)



12 JUSSI BEHRNDT

In the next proposition we collect some properties of the γ-fields.

Proposition 3.3. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has the properties
(G), (D), (M), and that the resolvent set of A0 or, equivalently, the resolvent set of

Ã0 is nonempty. Let γ and γ̃ be the γ-fields associated with {G, (Γ0,Γ1), (Γ̃0, Γ̃1)}.
Then the following assertions hold for all λ ∈ ρ(A0) and µ ∈ ρ(Ã0).

(i) γ(λ) and γ̃(µ) are bounded operators from G into H with dense domains

dom γ(λ) = ran Γ0 and dom γ̃(µ) = ran Γ̃0, and ran γ(λ) = ker(T −λ) and

ran γ̃(µ) = ker(T̃ − µ);

(ii) for ϕ ∈ ran Γ0 and ψ ∈ ran Γ̃0 the functions λ 7→ γ(λ)ϕ and µ 7→ γ̃(µ)ψ

are holomorphic on ρ(A0) and ρ(Ã0), respectively, and the relations

γ(λ) =
(
I + (λ− ν)(A0 − λ)−1

)
γ(ν), λ, ν ∈ ρ(A0),

γ̃(µ) =
(
I + (µ− ω)(Ã0 − µ)−1

)
γ̃(ω), µ, ω ∈ ρ(Ã0),

(3.3)

hold;
(iii) γ(λ)∗ and γ̃(µ)∗ are everywhere defined bounded operators from H to G

and for all f, g ∈ H one has

γ(λ)∗f = Γ̃1(Ã0 − λ)−1f and γ̃(µ)∗g = Γ1(A0 − µ)−1g,

in particular, ran γ(λ)∗ ⊂ ran Γ̃1 and ran γ̃(µ)∗ ⊂ ran Γ1.

Proof. (iii) Let λ ∈ ρ(A0), ϕ ∈ dom γ(λ) = ran Γ0, and f ∈ H. Making use of the

condition (M) we obtain λ ∈ ρ(Ã0), and hence there exists g ∈ dom Ã0 = ker Γ̃0

such that (Ã0−λ)g = f . By the definition of the γ-field we have Γ0γ(λ)ϕ = ϕ and

now it follows from Ã0 ⊂ T̃ and the abstract Green’s identity (G) that

(γ(λ)ϕ, f) =
(
γ(λ)ϕ, (Ã0 − λ)g

)
= −

(
(λγ(λ)ϕ, g)− (γ(λ)ϕ, Ã0g)

)
= −

(
(Tγ(λ)ϕ, g)− (γ(λ)ϕ, T̃ g)

)
= −

(
(Γ1γ(λ)ϕ, Γ̃0g)− (Γ0γ(λ)ϕ, Γ̃1g)

)
=
(
ϕ, Γ̃1(Ã0 − λ)−1f

)
.

Since this identity holds for all f ∈ H and ϕ ∈ ran Γ0 (the latter is a dense subspace

of G as we assume (D)) we conclude dom γ(λ)∗ = H and γ(λ)∗f = Γ̃1(Ã0 − λ)−1f
is valid for all f ∈ H. From the fact that the adjoint operator is automatically
closed it follows that γ(λ)∗ is bounded. A similar computation leads to the identity
γ̃(µ)∗g = Γ1(A0 − µ)−1g for all g ∈ H and implies that γ̃(µ)∗ is also bounded and
everywhere defined on H.
(i) It follows from (iii) that γ(λ)∗∗ = γ(λ) and γ̃(µ)∗∗ = γ̃(µ) are everywhere defined
and bounded operators from G to H, and hence also the operators γ(λ) and γ̃(µ)
are bounded. The remaining assertions in (i) are immediate from the definition of
the γ-fields.
(ii) For λ, ν ∈ ρ(A0) we use (iii) and compute

γ(λ)∗ − γ(ν)∗ = Γ̃1

(
(Ã0 − λ)−1 − (Ã0 − ν)−1

)
= (λ− ν)Γ̃1(Ã0 − ν)−1(Ã0 − λ)−1

= (λ− ν)γ(ν)∗(Ã0 − λ)−1.

Taking adjoints and using (M) leads to

γ(λ)− γ(ν) = (λ− ν)(A0 − λ)−1γ(ν),
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and this implies the first identity in (3.3). The second identity in (3.3) can be
proved in the same way. �

Now we turn to the properties of the Weyl functions.

Proposition 3.4. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has the properties
(G), (D), (M), and that the resolvent set of A0 or, equivalently, the resolvent set of

Ã0 is nonempty. Let γ, γ̃ and M,M̃ be the γ-fields and Weyl functions, respectively,

associated with {G, (Γ0,Γ1), (Γ̃0, Γ̃1)}. Then the following assertions hold for all

λ ∈ ρ(A0) and µ ∈ ρ(Ã0).

(i) M(λ) and M̃(µ) are operators in G with dense domains domM(λ) =

ran Γ0 and dom M̃(µ) = ran Γ̃0, and ranM(λ) ⊂ ran Γ1 and ran M̃(µ) ⊂
ran Γ̃1;

(ii) M(λ) ⊂ M̃(λ)∗ and M̃(λ) ⊂M(λ)∗ and one has the identities

M(λ)− M̃(µ)∗ = (λ− µ)γ̃(µ)∗γ(λ),

M(λ)∗ − M̃(µ) = (λ− µ)γ(λ)∗γ̃(µ);
(3.4)

(iii) The functions λ 7→M(λ) and µ 7→ M̃(µ) are holomorphic in the sense that
they can be written as the sum of the possibly unbounded closed operators

M̃(λ0)∗ and M(µ0)∗, respectively, where λ0, µ0 ∈ ρ(A0) ∩ ρ(Ã0) are fixed,
and a bounded holomorphic operator function:

M(λ) = M̃(λ0)∗ + γ̃(λ0)∗(λ− λ0)
(
I + (λ− λ0)(A0 − λ)−1

)
γ(λ0),

M̃(µ) = M(µ0)∗ + γ(µ0)∗(µ− µ0)
(
I + (µ− µ0)(Ã0 − µ)−1

)
γ̃(µ0).

Proof. (i) follows immediately from the definition of the Weyl functions M and M̃ .

(ii) Let ϕλ ∈ ran Γ0 and ψµ ∈ ran Γ̃0 and pick fλ ∈ ker(T − λ) and gµ ∈ ker(T̃ −µ)

such that Γ0fλ = ϕλ and Γ̃0gµ = ψµ. Then we have fλ = γ(λ)ϕλ and gµ = γ̃(µ)ψµ
and a straightforward computation leads to

(M(λ)ϕλ, ψµ)− (ϕλ, M̃(µ)ψµ) = (M(λ)Γ0fλ, Γ̃0gµ)− (Γ0fλ, M̃(µ)Γ̃0gµ)

= (Γ1fλ, Γ̃0gµ)− (Γ0fλ, Γ̃1gµ)

= (Tfλ, gµ)− (fλ, T̃ gµ)

= (λfλ, gµ)− (fλ, µgµ)

=
(
(λ− µ)γ(λ)ϕλ, γ̃(µ)ψµ

)
.

(3.5)

For µ = λ this reduces to (M(λ)ϕλ, ψλ) = (ϕλ, M̃(λ)ψλ), and hence M̃(λ) ⊂M(λ)∗

and M(λ) ⊂ M̃(λ)∗. Furthermore, (3.5) implies the identities (3.4).
(iii) This is an immediate consequence of the formulas (3.4) and Proposition 3.3 (ii).

�

4. Abstract boundary value problems

Next we introduce two families of operators in H as restrictions of T and T̃ via

abstract boundary conditions in G. Let {S, S̃} be an adjoint pair of operators in

H and let {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} be a triple for the adjoint pair {S, S̃} with linear

mappings Γ0,Γ1 : domT → G and Γ̃0, Γ̃1 : dom T̃ → G as in Definition 2.1, where

T and T̃ are cores of S∗ and S̃∗, respectively. For linear operators B and B̃ in G
we define

ABf := Tf, domAB :=
{
f ∈ domT : BΓ1f = Γ0f

}
,

ÃB̃g := T̃ g, dom ÃB̃ :=
{
g ∈ dom T̃ : B̃Γ̃1g = Γ̃0g

}
.

(4.1)
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Note that the operator B may only be defined on a subspace of G, and hence
f ∈ domAB means that Γ1f ∈ domB and BΓ1f = Γ0f ; the boundary condition

B̃Γ̃1g = Γ̃0g is understood in the same way. The goal of this section is to derive

conditions on the parameters B or B̃ and the mapping properties of Γ0,Γ1, Γ̃0, Γ̃1

or the corresponding Weyl functions such that AB or ÃB̃ have nonempty resolvent

sets, that is, for h, k ∈ H and λ ∈ ρ(AB) or µ ∈ ρ(ÃB̃) the boundary value problem

(T − λ)f = h, BΓ1f = Γ0f, or (T̃ − µ)g = k, B̃Γ̃1g = Γ̃0g,

admits a unique solution f = (AB − λ)−1h or g = (ÃB̃ − µ)−1k, which will be

expressed in a resolvent formula involving the resolvent of A0, Ã0 and a perturbation

term consiting of the γ-fields, Weyl functions and parameters B, B̃.
We start with a simple preparatory lemma that only makes use of Green’s iden-

tity (G).

Lemma 4.1. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} for the adjoint pair

{S, S̃} has the property (G). Let B,B′ be linear operators in G and assume that

(Bϕ,ψ) = (ϕ,B′ψ) (4.2)

holds for all ϕ ∈ domB and ψ ∈ domB′. Then the operators AB and ÃB′ in (4.1)
satisfy

AB ⊂ (ÃB′)
∗ and ÃB′ ⊂ (AB)∗. (4.3)

In particular, if B is densely defined, then

AB ⊂ (ÃB∗)
∗ and ÃB∗ ⊂ (AB)∗.

Proof. For f ∈ domAB ⊂ domT and g ∈ dom ÃB′ ⊂ dom T̃ it follows from Green’s
identity (G) that

(ABf, g)− (f, ÃB′g) = (Tf, g)− (f, T̃ g)

= (Γ1f, Γ̃0g)− (Γ0f, Γ̃1g)

= (Γ1f,B
′Γ̃1g)− (BΓ1f, Γ̃1g)

= 0,

where (4.2) was used in the last step. This implies both inclusions in (4.3). �

In the next theorem we provide an abstract Birman-Schwinger principle in a
symmetrized form for operators of the type

AB1B2
f := Tf, domAB1B2

:=
{
f ∈ domT : B1B2Γ1f = Γ0f

}
,

ÃB̃1B̃2
g := T̃ g, dom ÃB̃1B̃2

:=
{
g ∈ dom T̃ : B̃1B̃2Γ̃1g = Γ̃0g

}
,

(4.4)

where B1B2 and B̃1B̃2 are (products of) linear operators in G; cf. (4.1). The special

case B2 = B, B1 = I, or B̃2 = B̃, B̃1 = I, in which (4.4) reduces to (4.1) will be
mentioned separately.

Theorem 4.2. Consider a triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} as in Definition 2.1, as-

sume that the resolvent sets of A0 and Ã0 are nonempty, and let M and M̃ be
the associated Weyl functions. Then the following assertions hold for the operators

AB1B2 and ÃB̃1B̃2
in (4.4), and all λ ∈ ρ(A0) and µ ∈ ρ(Ã0):

(i) λ ∈ σp(AB1B2
) if and only if ker(I −B2M(λ)B1) 6= {0}, and in this case

ker(AB1B2−λ) =
{
fλ ∈ ker(T −λ) : Γ0fλ = B1ϕ,ϕ ∈ ker(I−B2M(λ)B1)

}
. (4.5)

(ii) µ ∈ σp(ÃB̃1B̃2
) if and only if ker(I − B̃2M̃(µ)B̃1) 6= {0}, and in this case

ker(ÃB̃1B̃2
− µ) =

{
gµ ∈ ker(T̃ − µ) : Γ̃0gµ = B̃1ψ,ψ ∈ ker(I − B̃2M̃(µ)B̃1)

}
.
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In the case B2 = B, B1 = I, or B̃2 = B̃, B̃1 = I, we have the following corollary.

Corollary 4.3. Consider a triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} as in Definition 2.1, as-

sume that the resolvent sets of A0 and Ã0 are nonempty, and let M and M̃ be the
associated Weyl functions. Then the following assertions hold for the operators AB
and ÃB̃ in (4.1), and all λ ∈ ρ(A0) and µ ∈ ρ(Ã0):

(i) λ ∈ σp(AB) if and only if ker(I −BM(λ)) 6= {0}, and in this case

ker(AB − λ) = γ(λ) ker(I −BM(λ)).

(ii) µ ∈ σp(ÃB̃) if and only if ker(I − B̃M̃(µ)) 6= {0}, and in this case

ker(ÃB̃ − µ) = γ̃(µ) ker(I − B̃M̃(µ)).

Proof of Theorem 4.2. (i) Assume first that λ ∈ σp(AB1B2
) and let fλ 6= 0 be a

corresponding eigenfunction. Then fλ ∈ ker(T −λ) and Γ0fλ 6= 0 as otherwise fλ ∈
domA0 ∩ ker(T − λ) = ker(A0 − λ) = {0}. Furthermore, fλ ∈ domAB1B2 satisfies
the boundary condition Γ0fλ = B1B2Γ1fλ, and hence we obtain B2Γ1fλ 6= 0 and
B1B2Γ1fλ ∈ ran Γ0 = domM(λ). From the definition of the Weyl function (see
(3.2)) we conclude

Γ1fλ = M(λ)Γ0fλ = M(λ)B1B2Γ1fλ

and therefore

0 = B2Γ1fλ −B2M(λ)B1B2Γ1fλ

=
(
I −B2M(λ)B1

)
B2Γ1fλ

that is, B2Γ1fλ ∈ ker(I−B2M(λ)B1) and, in particular, ker(I−B2M(λ)B1) 6= {0}.
For the converse let us fix some ϕ ∈ ker(I − B2M(λ)B1), ϕ 6= 0, and note

that ϕ = B2M(λ)B1ϕ implies, in particular, B1ϕ ∈ domM(λ) = ran Γ0 and
M(λ)B1ϕ ∈ domB2. Furthermore, we have B1ϕ 6= 0 and

B1ϕ = B1B2M(λ)B1ϕ. (4.6)

Next, we choose fλ ∈ ker(T − λ) such that Γ0fλ = B1ϕ. Since

Γ1fλ = M(λ)Γ0fλ = M(λ)B1ϕ ∈ domB2

we have B2Γ1fλ = B2M(λ)B1ϕ, and hence (4.6) implies

Γ0fλ = B1ϕ = B1B2Γ1fλ.

The identity (4.5) follows from the above considerations. �

In the next theorem we impose abstract conditions on f, g ∈ H, the γ-fields,

Weyl functions, and parameters B1, B2, B̃1, B̃2, such that a Krein-type formula for

the inverses of AB1B2
− λ and ÃB̃1B̃2

− µ applied to f and g, respectively, becomes
meaningful. These conditions will be made more explicit in Theorem 4.7 and the
subsequent corollaries.

Theorem 4.4. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has the properties (G),

(D), (M), and that the resolvent set of A0 or, equivalently, the resolvent set of Ã0

is nonempty. Let γ, γ̃ and M, M̃ be the associated γ-fields and Weyl functions,

respectively. Then the following assertions hold for the operators AB1B2
and ÃB̃1B̃2

in (4.4), and all λ ∈ ρ(A0) and µ ∈ ρ(Ã0):

(i) If λ 6∈ σp(AB1B2
) and f ∈ H is such that

γ̃(λ)∗f ∈ domB2 and B2γ̃(λ)∗f ∈ ran (I −B2M(λ)B1), (4.7)

then f ∈ ran (AB1B2
− λ) and the Krein-type formula

(AB1B2
− λ)−1f = (A0 − λ)−1f + γ(λ)B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f (4.8)
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holds. In particular, if (4.7) holds for all f ∈ H, that is, ran γ̃(λ)∗ ⊂
domB2 and ranB2γ̃(λ)∗ ⊂ ran (I − B2M(λ)B1), then AB1B2

− λ is a
bijective operator in H.

(ii) If µ 6∈ σp(ÃB̃1B̃2
) and g ∈ H is such that

γ(µ)∗g ∈ dom B̃2 and B̃2γ(µ)∗g ∈ ran (I − B̃2M̃(µ)B̃1), (4.9)

then g ∈ ran (ÃB̃1B̃2
− µ) and the Krein-type formula

(ÃB̃1B̃2
− µ)−1g = (Ã0 − µ)−1g + γ̃(µ)B̃1

(
I − B̃2M̃(µ)B̃1

)−1
B̃2γ(µ)∗g

holds. In particular, if (4.9) holds for all g ∈ H, that is, ran γ(µ)∗ ⊂
dom B̃2 and ran B̃2γ(µ)∗ ∈ ran (I − B̃2M̃(µ)B̃1), then ÃB̃1B̃2

− µ is a
bijective operator in H.

In the same spirit as in Corollary 4.3 we formulate the special case B2 = B,

B1 = I, or B̃2 = B̃, B̃1 = I, separately as a corollary.

Corollary 4.5. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has the properties
(G), (D), (M), and that the resolvent set of A0 or, equivalently, the resolvent set of

Ã0 is nonempty. Let γ, γ̃ and M,M̃ be the associated γ-fields and Weyl functions,

respectively. Then the following assertions hold for the operators AB and ÃB̃ in

(4.1), and all λ ∈ ρ(A0) and µ ∈ ρ(Ã0):

(i) If λ 6∈ σp(AB) and f ∈ H is such that γ̃(λ)∗f ∈ domB and Bγ̃(λ)∗f ∈
ran (I −BM(λ)), then f ∈ ran (AB − λ) and

(AB − λ)−1f = (A0 − λ)−1f + γ(λ)
(
I −BM(λ)

)−1
Bγ̃(λ)∗f.

(ii) If µ 6∈ σp(ÃB̃) and g ∈ H is such that γ(µ)∗g ∈ dom B̃ and B̃γ(µ)∗g ∈
ran (I − B̃M̃(µ)), then g ∈ ran (ÃB̃ − µ) and

(ÃB̃ − µ)−1g = (Ã0 − µ)−1g + γ̃(µ)
(
I − B̃M̃(µ)

)−1
B̃γ(µ)∗g.

Proof of Theorem 4.4. (i) Let f ∈ H and observe that by the assumptions the
element h ∈ H given by

h := (A0 − λ)−1f + γ(λ)B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f (4.10)

is well defined. In fact, the inverse (I−B2M(λ)B1)−1 exists as λ 6∈ σp(AB1B2
) (see

Theorem 4.2 (i)), and hence (4.7) ensures that(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f ∈ dom

(
I −B2M(λ)B1

)
⊂ domM(λ)B1.

Since domM(λ) = dom γ(λ) this together with the definition of the γ-field implies

γ(λ)B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f ∈ ker(T − λ)

and, in particular, all products on the right hand side are meaningful. We claim
that h ∈ domAB1B2

. First it is clear that h ∈ domT and domA0 = ker Γ0, the
definition of γ and M , and Proposition 3.3 (iii) imply

Γ0h = Γ0(A0 − λ)−1f + Γ0γ(λ)B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f

= B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f

(4.11)

and

Γ1h = Γ1(A0 − λ)−1f + Γ1γ(λ)B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f

= γ̃(λ)∗f +M(λ)B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f.

(4.12)
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Since γ̃(λ)∗f ∈ domB2 and (I − B2M(λ)B1)−1B2γ̃(λ)∗f ∈ domB2M(λ)B1 we
conclude from (4.12) that Γ1h ∈ domB2 and

B2Γ1h = B2γ̃(λ)∗f +B2M(λ)B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f

=
(
(I −B2M(λ)B1) +B2M(λ)B1

)(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f

=
(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f.

The above identity shows that B2Γ1h ∈ domB2M(λ)B1 ⊂ domB1, and hence

B1B2Γ1h = B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f = Γ0h,

where (4.11) was used in the last step. Therefore, h ∈ domAB1B2 and fromAB1B2 ⊂
T , A0 ⊂ T , and ran γ(λ) = ker(T − λ) we conclude

(AB1B2
− λ)h = (T − λ)h

= (T − λ)(A0 − λ)−1f + (T − λ)γ(λ)B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗f

= f,

that is, f ∈ ran (AB1B2
− λ). Now the Krein type formula (4.8) follows from (4.10)

and h = (AB1B2 − λ)−1f . �

Note that Theorem 4.4 provides criteria such that the extensions AB1B2 − λ or

ÃB̃1B̃2
− µ are bijective, but here their inverses are not necessarily bounded, and

hence it does not follow automatically that AB1B2
or ÃB̃1B̃2

are closed extensions
with a nonempty resolvent set. The next theorem is our first result in this direction;
it is an easy consequence of Theorem 4.4 and Lemma 4.1.

Theorem 4.6. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has the properties (G),

(D), (M), and that the resolvent set of A0 or, equivalently, the resolvent set of Ã0

is nonempty. Let B1, B2, B
′
1, B

′
2 be operators in G that satisfy

(B1B2ϕ,ψ) = (ϕ,B′1B
′
2ψ), ϕ ∈ domB1B2, ψ ∈ domB′1B

′
2,

and consider the operators AB1B2 and ÃB′1B′2 in (4.4). If there exists some λ ∈
ρ(A0) such that assumption (4.7) holds for λ and all f ∈ H and assumption (4.9)
holds for λ and all g ∈ H, then

AB1B2
= (ÃB′1B′2)∗ (4.13)

is a closed operator in H with nonempty resolvent set.

Proof. It follows from Theorem 4.4 that both operators AB1B2
− λ and ÃB′1B′2 − λ

are bijective. Moreover, Lemma 4.1 implies

AB1B2 − λ ⊂ (ÃB′1B′2)∗ − λ (4.14)

and it is clear that (ÃB′1B′2)∗ − λ is closed. Furthermore, (ÃB′1B′2)∗ − λ is injective,
since we have

ker
(
(ÃB′1B′2)∗ − λ

)
= ran

(
ÃB′1B′2 − λ

)⊥
= {0}.

Since AB1B2 − λ is bijective it follows that the operators in (4.14) coincide, and
hence we conclude (4.13). In particular, λ ∈ ρ(AB1B2). �

Now we provide more direct and explicit criteria on the Weyl function and the
parameter B1B2 such that AB1B2

becomes a closed operator with a nonempty
resolvent set. We do not formulate a variant of Theorem 4.7 for the operators

ÃB̃1B̃2
, and we also leave it to the reader to formulate the corresponding versions

of Corollary 4.8 and Corollary 4.9 below. In concrete applications for differential
operators the conditions (i)-(v) below reduce to properties of the trace maps Γ0
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and Γ1, the parameter B1B2 specifiying the corresponding boundary condition,
and properties of the Weyl function at some point λ0 ∈ ρ(A0).

Theorem 4.7. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has the properties (G),
(D), (M), and that the resolvent set of A0 is nonempty. Let γ, γ̃ and M be the
associated γ-fields and Weyl function, respectively. Assume that B1 and B2 are
closable operators in G and that for some λ0 ∈ ρ(A0) the following conditions hold:

(i) 1 ∈ ρ(B2M(λ0)B1);

(ii) ran (B2M(λ0)B1) ⊂ ran Γ0 ∩ domB1;
(iii) ran (B1 � ran Γ0) ⊂ ran Γ0;
(iv) ran (B2 � ran Γ1) ⊂ ran Γ0;
(v) ran (Γ1 � ker Γ0) ⊂ domB1B2.

Then AB1B2
in (4.4) is a closed operator with a nonempty resolvent set and for all

λ ∈ ρ(A0) ∩ ρ(AB1B2
) the Krein-type resolvent formula

(AB1B2
− λ)−1 = (A0 − λ)−1 + γ(λ)B1

(
I −B2M(λ)B1

)−1
B2γ̃(λ)∗ (4.15)

is valid.

Proof. We verify the inclusion

ran
(
B2γ̃(λ0)∗

)
⊂ ran

(
I −B2M(λ0)B1

)
. (4.16)

In fact, consider some ψ ∈ ran (B2γ̃(λ0)∗). Then

ψ = B2γ̃(λ0)∗f = B2Γ1(A0 − λ0)−1f

for some f ∈ H by Proposition 3.3 (iii) and from domA0 = ker Γ0 and conditions
(iv)–(v) we obtain ψ ∈ ran Γ0 ∩ domB1. By condition (i)

ϕ :=
(
I −B2M(λ0)B1

)−1
ψ (4.17)

is well defined and ϕ − ψ = B2M(λ0)B1ϕ ∈ ran Γ0 ∩ domB1 by (ii). Hence also
ϕ ∈ ran Γ0 ∩ domB1 and (iii) implies B1ϕ ∈ ran Γ0 = domM(λ0). Therefore,

B2M(λ0)B1ϕ = B2M(λ0)B1ϕ and together with (4.17) we conclude(
I −B2M(λ0)B1

)
ϕ = ψ,

which shows (4.16).
It is clear from condition (i) and Theorem 4.2 (i) that λ0 6∈ σp(AB1B2

) and by the
above observation we can apply Theorem 4.4 (i) for λ0 ∈ ρ(A0). More precisely,
for any f ∈ H we have γ̃(λ0)∗f ∈ domB2 by condition (v) and B2γ̃(λ0)∗f ∈
ran (I −B2M(λ0)B1) was shown in (4.16). Hence (4.7) is valid for all f ∈ H and

(AB1B2
−λ0)−1f = (A0−λ0)−1f +γ(λ0)B1

(
I−B2M(λ0)B1

)−1
B2γ̃(λ0)∗f (4.18)

holds. Moreover, as B2 is closable and γ̃(λ0)∗ is everywhere defined and bounded
(see Proposition 3.3 (iii)) it follows that B2γ̃(λ0)∗ is closable, and hence closed and
everywhere defined, and thus bounded. Similarly, condition (i) and the assumption

that B1 is closable imply that B1(I − B2M(λ0)B1)−1 is everywhere defined and
bounded, and hence the restriction B1(I − B2M(λ0)B1)−1 is also bounded. Fur-
thermore, γ(λ0) is a bounded operator by Proposition 3.3 (i). Summing up we have
shown that

γ(λ0)B1

(
I −B2M(λ0)B1

)−1
B2γ̃(λ0)∗

is a bounded and everywhere defined operator. The same is true for (A0−λ0)−1 and
from (4.18) we conclude that (AB1B2

−λ0)−1 is a bounded and everywhere defined
operator, and hence closed. This implies that AB1B2

is closed and λ0 ∈ ρ(AB1B2
).
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Now consider λ ∈ ρ(AB1B2
) ∩ ρ(A0). As above we have for any f ∈ H that

γ̃(λ)∗f ∈ domB2 by condition (v). We claim that

B2γ̃(λ)∗f ∈ ran
(
I −B2M(λ)B1

)
. (4.19)

For this we consider k = (AB1B2
− λ)−1f and h = (A0 − λ)−1f . Note that

B1B2Γ1k = Γ0k and, in particular, Γ1k ∈ domB2. Moreover, Γ0h = 0 and from
(T − λ)(k − h) = 0 we conclude M(λ)Γ0(k − h) = Γ1(k − h). Therefore,

M(λ)B1B2Γ1k = M(λ)Γ0k = M(λ)Γ0(k − h) = Γ1(k − h). (4.20)

As Γ1k ∈ domB2 and Γ1h = Γ1(A0−λ)−1f = γ̃(λ)∗f ∈ domB2 by (v) we see that
M(λ)B1B2Γ1k ∈ domB2, and hence the element

B2M(λ)B1B2Γ1k

is well defined. Now we use (4.20) and Γ1h = γ̃(λ)∗f and compute(
I −B2M(λ)B1

)
B2Γ1k = B2Γ1k −B2Γ1(k − h) = B2Γ1h = B2γ̃(λ)∗f,

which shows (4.19). Therefore, both conditions in (4.7) are satisfied for all λ ∈
ρ(AB1B2

) ∩ ρ(A0) and f ∈ H, and hence the Krein-type resolvent formula (4.15)
follows from Theorem 4.4. �

In the special case B1 = I and B2 = B one obtains the following statement.

Corollary 4.8. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has the properties
(G), (D), (M), and that the resolvent set of A0 or, equivalently, the resolvent set of

Ã0 is nonempty. Let γ, γ̃ and M,M̃ be the associated γ-fields and Weyl functions,
respectively. Assume that B is a closable operator in G and that for some λ0 ∈ ρ(A0)
the following conditions hold:

(i) 1 ∈ ρ(BM(λ0));

(ii) ran (BM(λ0)) ⊂ ran Γ0;
(iii) ran (B � ran Γ1) ⊂ ran Γ0;
(iv) ran (Γ1 � ker Γ0) ⊂ domB.

Then AB in (4.1) is a closed operator with a nonempty resolvent set and for all
λ ∈ ρ(A0) ∩ ρ(AB) the Krein-type resolvent formula

(AB − λ)−1 = (A0 − λ)−1 + γ(λ)
(
I −BM(λ)

)−1
Bγ̃(λ)∗ (4.21)

is valid.

In the next corollary the special case ran Γ0 = ran Γ̃0 = G is considered. Recall

from Lemma 2.3, that in this situation {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} is a quasi boundary
triple (or even generalized boundary triple) if also (G) and (M) are required.

Corollary 4.9. Assume that the triple {G, (Γ0,Γ1), (Γ̃0, Γ̃1)} has the properties

(G), ran Γ0 = ran Γ̃0 = G, (M), and that the resolvent set of A0 or, equivalently,

the resolvent set of Ã0 is nonempty. Assume that B1 and B2 are closable operators
in G and that for some λ0 ∈ ρ(A0) the following conditions hold:

(i) 1 ∈ ρ(B2M(λ0)B1);

(ii) ran (B2M(λ0)B1) ⊂ domB1;
(iii) ran (Γ1 � ker Γ0) ⊂ domB1B2.

Then AB1B2
in (4.4) is a closed operator with a nonempty resolvent set and for

all λ ∈ ρ(A0) ∩ ρ(AB1B2) the Krein-type resolvent formula (4.15) is valid. In the
special case B1 = I and B2 = B the conditions (i)–(iii) reduce to

(i) 1 ∈ ρ(BM(λ0));
(ii) ran (Γ1 � ker Γ0) ⊂ domB;
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and AB in (4.1) is a closed operator with a nonempty resolvent set and for all
λ ∈ ρ(A0) ∩ ρ(AB) the Krein-type resolvent formula (4.21) is valid.

We briefly return to the setting in Example 2.8 at the end of Section 2.

Example 4.10. Consider the triple in Example 2.8 and assume that the resolvent

sets of the Dirichlet realizations A0 and Ã0 are nonempty. Then (2.16) is a quasi

boundary triple for the adjoint pair {S, S̃} and the associated γ-fields and Weyl
functions are given by

γ(λ)ϕ = fλ(ϕ), ϕ ∈ L2(∂Ω,Cm×m), λ ∈ ρ(A0),

γ̃(µ)ψ = gµ(ψ), ψ ∈ L2(∂Ω,Cm×m), µ ∈ ρ(Ã0),

and

M(λ)ϕ = −ι−τNfλ(ϕ), ϕ ∈ L2(∂Ω,Cm×m), λ ∈ ρ(A0),

M̃(µ)ψ = −ι−τ̃Ngµ(ψ), ψ ∈ L2(∂Ω,Cm×m), µ ∈ ρ(Ã0),
(4.22)

where fλ(ϕ), gµ(ψ) ∈ H1(Ω,Cm×m) are the unique solutions of the boundary value
problems

Pfλ(ϕ) = λfλ(ϕ), ι+τDfλ(ϕ) = ϕ

and

P̃gµ(ψ) = µgµ(ψ), ι+τDgµ(ψ) = ψ,

respectively. Note that

−ι−1
− M(λ)ι+ : H1/2(∂Ω,Cm×m)→ H−1/2(∂Ω,Cm×m), λ ∈ ρ(A0),

−ι−1
− M̃(µ)ι+ : H1/2(∂Ω,Cm×m)→ H−1/2(∂Ω,Cm×m), µ ∈ ρ(Ã0),

are the Dirichlet-to-Neumann maps corresponding to the differential expressions

P −λ and P̃ −µ, respectively. Note also that M(λ) and M̃(µ) in (4.22) are defined

on L2(∂Ω,Cm×m), and hence Proposition 3.4 (ii) implies that M(λ) and M̃(µ) are

bounded operators in L2(∂Ω,Cm×m) for all λ ∈ ρ(A0) and µ ∈ ρ(Ã0), respectively.
It follows from Corollary 4.9 that if, for instance, B is an everywhere defined

bounded operator in L2(∂Ω,Cm×m) such that 1 ∈ ρ(BM(λ0)) for some λ0 ∈ ρ(A0)
(a situation that appears, e.g., when M(η) → 0 for η → −∞; cf. [19, 20] for
symmetric second order elliptic equations), then

ABf = Pf,
domAB =

{
f ∈ H1(Ω,Cm×m) : Pf ∈ L2(Ω,Cm×m), ι+τDf +Bι−τNf = 0

}
,

is a closed operator in L2(Ω,Cm×m) with a nonempty resolvent set; it is clear that
for λ ∈ ρ(AB) and h ∈ L2(Ω,Cm×m) the unique H1(Ω,Cm×m)-solution of the
boundary value problem

(P − λ)f = h, ι+τDf +Bι−τNf = 0,

is given by f = (AB −λ)−1h. Furthermore, if λ ∈ ρ(A0)∩ ρ(AB), then the solution
can be expressed via the Krein-type resolvent formula (4.21). We leave it to the
reader to formulate a variant of this observation for Robin-type realizations of the

adjoint differential expression P̃.

Appendix A. The special case S = S̃

We provide a summary of our results in the special situation that S is a densely
defined closed symmetric operator, that is, {S, S} is an adjoint pair. In this case

one can choose T = T̃ and Γ0 = Γ̃0, Γ1 = Γ̃1. The results below are known from
[16, 17, 20, 23] for the special case that {G,Γ0,Γ1} is a quasi boundary triple,
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but still remain valid under some of the weaker assumptions (G), (D), or (M); cf.
Definition 2.1, which reduces to the following:

Definition A.1. Let S be a densely defined closed symmetric operator in H and
assume that T is a core of S∗. We shall consider triples of the form {G,Γ0,Γ1} for
S, where G is a Hilbert space and

Γ0,Γ1 : domT → G
are linear mappings. For such a triple {G,Γ0,Γ1} we define the additional properties

(G) the abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

holds for all f, g ∈ domT ,
(D) the range of Γ0 : domT → G is dense,

(DD) the range of (Γ0,Γ1)> : domT → G × G is dense,
(M) the operator A0 := T � ker Γ0 is self-adjoint in H.

If {G,Γ0,Γ1} is such that (G), (DD), and (M) hold, then {G,Γ0,Γ1} is said to be
a quasi boundary triple for S.

Note, that in the present situation the natural counterpart of the maximality
condition (M) in Definition 2.1 is the requirement in (M) that A0 = T � ker Γ0 is
self-adjoint in H. We also mention that A0 is symmetric whenever (G) holds; cf.
Remark 2.2.

Lemma A.2. Assume that the triple {G,Γ0,Γ1} has the properties (G) and (M). If
ran Γ0 = G, then ran (Γ0,Γ1)> is dense in G×G and {G,Γ0,Γ1} is a quasi boundary
triple for S.

The statement in Lemma A.2 is known from [37, Lemma 6.1]; in this situation
the quasi boundary triple {G,Γ0,Γ1} is even a so-called generalized boundary triple
in the sense of [37, Section 6], see also [33, 35].

Lemma A.3. Assume that the triple {G,Γ0,Γ1} has the properties (G), (D), and
(M). Then

domS = ker Γ0 ∩ ker Γ1.

Lemma A.4. Assume that the triple {G,Γ0,Γ1} has the properties (G) and (DD).
Then the mapping (

Γ0

Γ1

)
: domT → G × G

is closable with respect to the graph norm of T . In particular, the individual map-
pings Γ0,Γ1 : domT → G are closable.

Proposition 2.6 is known for quasi boundary triples from [16, Theorem 2.3],
where also a variant of Theorem 2.7 is contained in the symmetric setting. Here
we only state the symmetric version of Proposition 2.6, which leads to an ordinary
boundary triple; cf. [15, 36]

Proposition A.5. Let {G,Γ0,Γ1} be a quasi boundary triple for S. Then the
following are equivalent.

(i) T = S∗,
(ii) ran (Γ0,Γ1)> = G × G.

The γ-field and Weyl function corresponding to a triple {G,Γ0,Γ1} are intro-
duced in the same way as in Section 3 using the decomposition

domT = domA0+̇ ker(T − λ) = ker Γ0+̇ ker(T − λ)
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for λ ∈ ρ(A0) as follows:

γ(λ) :=
(
Γ0 � ker(T − λ)

)−1
and M(λ) := Γ1

(
Γ0 � ker(T − λ)

)−1
.

In the symmetric situation Proposition 3.3 and Proposition 3.4 reduce to the
following statements.

Proposition A.6. Assume that the triple {G,Γ0,Γ1} has the properties (G), (D),
(M), and let γ be the corresponding γ-field. Then the following assertions hold for
all λ ∈ ρ(A0).

(i) γ(λ) is a bounded operator from G into H with dense domain dom γ(λ) =
ran Γ0 and ran γ(λ) = ker(T − λ);

(ii) for ϕ ∈ ran Γ0 the function λ 7→ γ(λ)ϕ is holomorphic on ρ(A0) and

γ(λ) =
(
I + (λ− ν)(A0 − λ)−1

)
γ(ν), λ, ν ∈ ρ(A0),

holds;
(iii) γ(λ)∗ is an everywhere defined bounded operator from H to G and for all

f ∈ H one has

γ(λ)∗f = Γ1(A0 − λ)−1f,

in particular, ran γ(λ)∗ ⊂ ran Γ1.

Proposition A.7. Assume that the triple {G,Γ0,Γ1} has the properties (G), (D),
(M), and let γ and M be the corresponding γ-field and Weyl function, respectively.
Then the following assertions hold for all λ, µ ∈ ρ(A0).

(i) M(λ) is an operator in G with dense domain domM(λ) = ran Γ0 and
ranM(λ) ⊂ ran Γ1;

(ii) M(λ) ⊂M(λ)∗ and one has the identities

M(λ)−M(µ)∗ = (λ− µ)γ(µ)∗γ(λ)

(iii) The function λ 7→M(λ) is holomorphic in the sense that it can be written
as the sum of the possibly unbounded closed operator M(λ0)∗, where λ0 ∈
ρ(A0) is fixed, and a bounded holomorphic operator function:

M(λ) = M(λ0)∗ + γ(λ0)∗(λ− λ0)
(
I + (λ− λ0)(A0 − λ)−1

)
γ(λ0).

Next we state the abstract Birman-Schwinger principle in Theorem 4.2 in a
symmetrized form for the operator

AB1B2
f := Tf, domAB1B2

:=
{
f ∈ domT : B1B2Γ1f = Γ0f

}
, (A.1)

where B1B2 is a (product of) linear operators in G. The special case B2 = B,
B1 = I is left to the reader.

Theorem A.8. Consider a triple {G,Γ0,Γ1} as in Definition A.1, assume that
the resolvent set of A0 is nonempty, and let M be the associated Weyl function.
Furthermore, let AB1B2

be the operator in (A.1) and let λ ∈ ρ(A0). Then λ ∈
σp(AB1B2

) if and only if ker(I −B2M(λ)B1) 6= {0}, and in this case

ker(AB1B2
− λ) =

{
fλ ∈ ker(T − λ) : Γ0fλ = B1ϕ,ϕ ∈ ker(I −B2M(λ)B1)

}
.

Theorem 4.4 has the following form in the symmetric case.

Theorem A.9. Assume that the triple {G,Γ0,Γ1} has the properties (G), (D),
(M), and let γ and M be the associated γ-field and Weyl function, respectively. Fur-
thermore, let AB1B2

be the operator in (A.1) and let λ ∈ ρ(A0). If λ 6∈ σp(AB1B2
)

and f ∈ H is such that

γ(λ)∗f ∈ domB2 and B2γ(λ)∗f ∈ ran (I −B2M(λ)B1), (A.2)
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then f ∈ ran (AB1B2
− λ) and the Krein-type formula

(AB1B2
− λ)−1f = (A0 − λ)−1f + γ(λ)B1

(
I −B2M(λ)B1

)−1
B2γ(λ)∗f

holds. In particular, if (A.2) holds for all f ∈ H, that is, ran γ(λ)∗ ⊂ domB2 and
ranB2γ(λ)∗ ⊂ ran (I −B2M(λ)B1), then AB1B2

− λ is a bijective operator in H.

In the special case that B1B2 is a symmetric operator and {G,Γ0,Γ1} is a quasi
boundary triple the next result is known from [23, Theorem 2.2 and Remark 2.5].

Theorem A.10. Assume that the triple {G,Γ0,Γ1} has the properties (G), (D),
(M), and let γ and M be the associated γ-field and Weyl function, respectively.
Assume that B1 and B2 are closable operators in G and that for some λ0 ∈ ρ(A0)
the following conditions hold:

(i) 1 ∈ ρ(B2M(λ0)B1);

(ii) ran (B2M(λ0)B1) ⊂ ran Γ0 ∩ domB1;
(iii) ran (B1 � ran Γ0) ⊂ ran Γ0;
(iv) ran (B2 � ran Γ1) ⊂ ran Γ0;
(v) ran (Γ1 � ker Γ0) ⊂ domB1B2.

Then AB1B2
in (A.1) is a closed operator with a nonempty resolvent set and for all

λ ∈ ρ(A0) ∩ ρ(AB1B2) the Krein-type resolvent formula

(AB1B2 − λ)−1 = (A0 − λ)−1 + γ(λ)B1

(
I −B2M(λ)B1

)−1
B2γ(λ)∗

is valid. If, in addition, the parameter B1B2 is a symmetric operator in G and the
conditions (i)-(v) hold for some λ0 ∈ ρ(A0) ∩ R or some λ± ∈ C±, then AB1B2

is
self-adjoint in H.
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