SCHRODINGER OPERATORS WITH § AND §-INTERACTIONS
ON LIPSCHITZ SURFACES AND CHROMATIC NUMBERS OF
ASSOCIATED PARTITIONS
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ABsTrACT. We investigate Schrédinger operators with § and §’-interactions
supported on hypersurfaces, which separate the Euclidean space into finitely
many bounded and unbounded Lipschitz domains. It turns out that the com-
binatorial properties of the partition and the spectral properties of the corre-
sponding operators are related. As the main result we prove an operator in-
equality for the Schrédinger operators with § and §’-interactions which is based
on an optimal colouring and involves the chromatic number of the partition.
This inequality implies various relations for the spectra of the Schrédinger op-
erators and, in particular, it allows to transform known results for Schréodinger
operators with d-interactions to Schrédinger operators with §’-interactions.

1. INTRODUCTION

Schrédinger operators with singular d-type interactions supported on discrete
sets, curves and surfaces are used for the description of quantum mechanical sys-
tems with a certain degree of idealization. The spectral properties of Schrédinger
operators with ¢ and d¢’-interactions were investigated in numerous mathematical
and physical articles in the recent past; we mention only [14, 37, 40, 46] for inter-
actions on point sets, [17, 21, 25, 26, 27, 34, 36] on curves, and [2, 9, 20, 23] for
interactions on surfaces. For a survey and further references we refer the reader to
[19] and to the standard monograph [1].

In this paper we investigate attractive § and ¢’-interactions supported on general
hypersurfaces, which separate the Euclidean space R? into finitely many bounded
and unbounded Lipschitz domains. We establish a connection between the com-
binatorial properties of these so-called Lipschitz partitions and the relation of the
Schrodinger operators with § and §’-interactions to each other. More precisely, sup-
pose that the Euclidean space R%, d > 2, is split into a finite number of Lipschitz
domains Q, k =1,...,n, and let ¥ be the union of the boundaries of all ;. The
chromatic number y of the partition is defined as the minimal number of colours,
which is sufficient to colour all domains 2 in such a way that any two neighbouring
domains have distinct colours. In the two dimensional case the famous four colour
theorem states that x < 4 for any Lipschitz partition of the plane. In the following
the strengths of the ¢ and ¢’-interactions are assumed to be constant along their
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support X, which simplifies the explanation of our results. Let o € R, 8 € R\ {0}
and define the quadratic forms

aé,a[f] = ||foi2(Rd;(Cd) - O‘HflEHiz(E)a domasq = Hl(Rd)y

and

n n—1 n
aé’,ﬁ[f] = Z vakuiz(szk;cd) - Z Z /8_1ka|zkl - fl|2kz HiZ(EM)’
k=1

k=11=k+1
n
dom as .p ‘= @ Hl(Qk),
k=1

where fi, = flao, and Zy = 0 N O, k # [ It turns out that a5, and asy g
are densely defined, closed, symmetric forms in the Hilbert space L?(RY) which
are semibounded from below, and hence a5, and as/ g induce self-adjoint operators
—As.o and —Ay 5 in L2(R?). It will be shown in Theorem 3.3 that these operators
act as minus Laplacians and the functions in their domains satisfy appropriate 0
and ¢’-boundary conditions on X.

Our main result, Theorem 3.6, is an inequality for the quadratic forms as,
and as g, or equivalently, for the Schrédinger operators —Aj, and —Ag g with
d-interaction of strength o and §’-interaction of strength 3, respectively. Namely,
if a, B and the chromatic number y of the partition satisfy

4
(1.1) 0< < —sin®(7/x)

o
then it will be shown that there exists an unitary operator U in L?(R%) such that
(1.2) U N ~Ap 5)U < —As4

holds. The operator U can be constructed explicitly as soon as an optimal colouring
of the partition is provided. The value 4sin®(7/x) in (1.1) pops up as the square of
the edge length of the equilateral polygon with x vertices, which is circumscribed in
the unit circle on the complex plane. We also discuss the sharpness of Theorem 3.6
for some cases. First of all it is shown in Example 3.10 that the assumption (1.1) is
sharp if x = 2. In Section 3.4 we then discuss the case x = 3. It turns out that the
weaker assumption 0 < 8 < % (corresponding to x = 2 in (1.1)) is not sufficient for
the existence of a unitary operator U such that (1.2) holds for every partition with
x = 3. This fact will be shown explicitly by considering a symmetric star-graph
with three leads as the support of the ¢ and ¢’-interaction.

The inequality (1.2) is particularly useful since it implies various relations of
the spectra of —A;, and —Ay 3, and it allows to transform known results for
Schrodinger operators with d-interactions to Schrodinger operators with §’-inter-
actions. We apply our main theorem and its consequences to Lipschitz partitions
with compact boundary and so-called locally deformed partitions, where also un-
bounded Lipschitz domains with unbounded boundaries appear. In these situations
we are able to determine or to describe the essential spectra of —Aj, and —Ay g,
and we derive some consequences on the spectral properties of —As/ g. In particu-
lar, it turns out that —As g has a non-empty discrete spectrum if the same holds
for —Aj o, and hence we conclude results on the existence of deformation-induced
bound states of —Ags 5 from the corresponding results in [21, 23| for the d-case.
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We mention that various results on the spectral properties of Schrodinger opera-
tors with d-interactions supported by locally or weakly deformed straight lines and
hyperplanes or under more general assumptions of asymptotic flatness exist in the
mathematical literature, see, e.g. [17, 21, 23, 24, 39]. We also point out that rela-
tions between spectra of adjacency matrices and chromatic numbers of underlying
graphs are discussed in, e.g. [32, 45, 52].

The structure of the paper is as follows. In Section 2 some preliminary facts
on the ordering of quadratic forms, Lipschitz partitions, and Sobolev spaces on
Lipschitz domains are provided. The quadratic forms as . and a5 g, and the corre-
sponding Schrédinger operators —As, and —As g are introduced and studied in
Section 3. This section contains also the main result, Theorem 3.6, and some ex-
amples. The more computational aspects in the example of a symmetric star-graph
with three leads were outsourced in an appendix. The essential spectra and bound
states of Schrodinger operators with § and ¢’-interactions on Lipschitz partitions
with compact boundary and locally deformed Lipschitz partitions are studied in
Section 4.

Acknowledgements. The authors gratefully acknowledge financial support by
the Austrian Science Fund (FWF), project P 25162-N26, Czech Science Foundation
(GACR), project P203/11/0701, and the Austria-Czech Republic cooperation grant
CZ01/2013.

2. PRELIMINARIES

In this paper we use mainly standard facts from operator theory in Hilbert spaces
and basic properties of Sobolev spaces on Lipschitz domains. In this section we
briefly recall and define some notions on semibounded sesquilinear forms, Lipschitz
partitions and Sobolev spaces.

2.1. Ordering of sesquilinear forms. The self-adjoint operators in this paper
are introduced with the help of closed, densely defined, semibounded, symmetric
sesquilinear forms via the first representation theorem [33, VI Theorem 2.1]. For
a comprehensive introduction into the theory of forms we refer the reader to [33,
Chapter VI|, [11, Chapter 10], [12, Chapter 4.6, and [48, Chapter 10].

First we recall the ordering of forms and associated self-adjoint operators.

Definition 2.1. Let a; and ay be closed, densely defined, symmetric sesquilinear
forms in a Hilbert space H and assume that a; and az are bounded from below.
Then we shall write as < ay if

doma; Cdomay and ao[f] <ai[f] forall f € domay.

If Hi and Hs denote the self-adjoint operators associated with ay and as in H,
respectively, then we write Ho < Hy if and only if as < ay.

We note that by [33, VI Theorem 2.21] two self-adjoint operators H; and Ho
which are semibounded from below by 1y and vy, respectively, satisfy Ho < Hy if
and only if for some, and hence for all, v < min{vy,v5}

(H2 — I/)i1 - (Hl - l/)i1 Z 0.

The essential spectrum of a self-adjoint operator H is denoted by oess(H). If
Oess(H) = @ we set min oess(H) = 400 in the following definition.
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Definition 2.2. Let H be a self-adjoint operator in an infinite dimensional Hilbert
space and assume that H is bounded from below. We set

N(H):=#{\ € (—oo,minoess(H)) : A € 0p(H)} € Ng U {oo}

and denote by {\,(H)}$2, the extended sequence of eigenvalues of H lying below
min oess(H), enumerated in non-decreasing order and repeated with multiplicities.
In the case N(H) < 0o we set An(my4x(H) = minoes(H), k € N.

The statements in the next theorem are consequences of the min-max principle,
see, e.g. [11, 10.2 Theorem 4] and [47, Theorem XIII.2].

Theorem 2.3. Let a; and as be closed, densely defined, symmetric sesquilinear
forms in H which are bounded from below and let Hy and Hy be the corresponding
self-adjoint operators. Assume that as < ay, or equivalenty that Hy < H;y. Let
{Me(H) I, and N(H;), i = 1,2, be as in Definition 2.2. Then the following
statements hold:

(i) M\e(Hz) < A\p(Hy) for all k € N;

(il) min oess(Ha) < minoess(Hy);
(iil) If min oess(H1) = min oess(Ho) then N(Hy) < N(Hs).

2.2. Lipschitz partitions of Euclidean spaces. In this short subsection we in-
troduce the notion of finite Lipschitz partitions and discuss a combinatorial property
of these partitions. For the definition and basic properties of Lipschitz domains we
refer the reader to [50, VL.3].

Definition 2.4. A finite family of connected Lipschitz domains P = {Qx}}_, is
called a Lipschitz partition of R?, d > 2, if

Rd:UQk and QN =2, k,Jd=1,2,...,n, k#I1.
k=1

The union U} _,08, =: X is the boundary of the Lipschitz partition P. For k # [ we
set Ngy = 00 NIy and we say that Qi and U, k # 1, are neighbouring domains
if ok(Xg1) > 0, where oy, denotes the Lebesgue measure on Q.

The chromatic number of a Lipschitz partition is defined with the help of colour-
ing mappings.

Definition 2.5. Let P = {Q4}?_, be a Lipschitz partition of RY, d > 2, with
Sk = 0 N O, k £ 1. Then a mapping ¢: {1,2,...,n} = {0,1,...,m — 1} is
called an m-colouring for P if

op(Bk) >0 = (k) # ()

forall k1 =1,2,...,n, k #1. The chromatic number x of the Lipschitz partition
P is defined as

X = min{m € N: dm-colouring mapping for 73}.

Thus the chromatic number x of a Lipschitz partition P = {Qx}}_, of R? is
the minimal number of colours, which is sufficient to colour all domains 2 such
that any two neighbouring domains have different colours; recall that ; and §2; are
regarded as neighbouring domains only if the Lebesgue measure of ¥j; = 0Q, NOY
is positive. As a famous example we mention the four colour theorem which states
that the chromatic number of any Lipschitz partition P of R? is y < 4.
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2.3. Sobolev spaces on arbitrary Lipschitz domains. For a Lipschitz domain
Q) we denote the standard L2-based Sobolev spaces on © and 952 by H*(f2), s € R,
and H!(0Q), t € [—1,1], respectively. For the definition and general properties of
Sobolev spaces on Lipschitz domains and their boundaries we refer the reader to
[42] and [50]. Recall that for a Lipschitz domain  C R? there exists an extension
operator

E: L?(Q) — L*(RY)
satisfying the following conditions:
(i) (Ef) Q= fforall fe L?*(Q);
(ii) E(H*(Q)) c H*(R?) for all k € Ny;
(iii) E: H*(Q) — H*(R?) is continuous for all k € Ny.
The useful estimate on the trace in the next lemma is essentially a consequence of

the continuity of the trace map and the above mentioned properties of the extension
operator. For the convenience of the reader we provide a short proof.

Lemma 2.6. Let Q C R? be a bounded or unbounded Lipschitz domain. Then for
any € > 0 there exists a constant C(e) > 0 such that

I floellF2a0) < ellVFlIZ2ca) + CENfIT2(0)
holds for all f € H'(Q).

Proof. Let f € H'(Q), fix some s € (3,1) and let Ef € H'(R?) be the extension of
f. The continuity of the trace [41, 44] and the properties of the extension operator
imply that there exists ¢ > 0 such that
Il floallz20) < cllfllas@) < cllEfllms®a)-
Hence for any €1 > 0 there exists a constant C(g1) > 0 such that
I floallLzo0) < cllEfll sy < el Eflmr@ay + Cr(eD)Efll L2 me),
see, e.g. [30, Theorem 3.30] or [51, Satz 11.18 (e)]. As E is continuous (see property

(iii) for k =0 and k = 1)) we conclude that for any 3 > 0 there exists Ca(g2) > 0
such that

[ floallzza0) < e2llfllai@) + C2(e2) I fllz2(0)-
Thus for any €3 > 0 there exists a constant C3(e3) > 0 such that
I floallZ200) < sl fll7m o) + Calea) I Fl172

and hence the assertion follows from Hf”%”(ﬂ) = HVfH%z(Q;(cd) + Hf||%2(ﬂ). O

For our purposes it is convenient to define the Laplacian and the Neumann trace
in a weak sense in L2.

Definition 2.7. Let Q be a Lipschitz domain and let u € H(Q).
(i) If there exists f € L?(Q) such that

(Vu, Vo) p2(q,cay) = (f,v)2()  for allv € H;(Q)

then we define —Au := f and say that Au € L?(Q).
(i) If Au € L?(Q) and there exists b € L?(0S) such that

(VU, V'U)LQ(Q;Cd) — (—Au, U)LQ(Q) = (b, ’U|aQ)L2(g)Q) fO?” allv € Hl(Q)
then we define O ulaq = b and say that d,ulpn € L*(09).
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We note that Au and 9,ulgq in the above definition (if they exist) are unique
since H}(€2) is dense in L?(Q) and the space {v|sq: v € H'(2)} is dense in L2(99),
respectively; cf. [42, Theorem 3.37].

Definition 2.8. Let P = {Q4}?_, be a Lipschitz partition of RY, d > 2, with
boundary . Let u € H'(R?), denote the restrictions of u onto Qi by uy and
assume that Auy, € L*(Q) for all k = 1,2,...,n. If there exists b € L*(X) such
that

(Vu7 VU)LQ(Rd;Cd) — (69221 (—Auk),v) L2(Rd) = (b,v|s)r2(zy forallv e HY(RY)
then we define Opuls, := b and say that Opuls € L?(2).

Let P = {Q}?_, be a Lipschitz partition with boundary ¥ and let u € H*(R?).
As {v|s: v € HY(R?)} is dense in L?(3) it follows that dpu|s (if it exists) is unique.

Remark 2.9. Let P = {Q;}7_, be a Lipschitz partition of R? and assume that
Opu|s € L?(X) exists for some u € H'(R?) in the sense of Definition 2.8. Let (),
and ; be neighbouring domains and assume that the Neumann traces 9, ux|aq, €
L2(09y) and 0,,u]aq, € L?(0€) exist in the sense of Definition 2.7 (ii). Let T be
a bounded open subset of 3j; which is part of a Lipschitz dissection in the sense
of [42, page 99| such that T N Xy, = @ for m = 1,...,n with m # I,k. Then it
follows that

(2.1) 87>u|p = &,kukh* + 8ylul|1‘

holds. In particular, if P = {Q;,Qs} with Qs = R?\ ©;, boundary ¥ = 99, and
the Neumann traces exist then

Opuly, = Oy, u1]x + Oy, usls.

3. SCHRODINGER OPERATORS WITH 6 AND ¢’-INTERACTIONS ASSOCIATED WITH
LIPSCHITZ PARTITIONS

In this section we define and study self-adjoint Schrédinger operators with ¢ and
¢’-interactions supported on the boundary ¥ of a Lipschitz partition P = {Q}}_,
of R%, d > 2. As the main result we prove an operator inequality between the § and
d’-operator, which implies a certain ordering of their spectra. The key assumption
for this inequality is expressed in terms of the chromatic number of the Lipschitz
partition.

3.1. Free and Neumann Laplacians. Let in the following P = {Qx}}_, be a
Lipschitz partition of R with the boundary ¥. The functions f € L2(R%) will be
decomposed in the form

f:@Z:lfkv fk = f|Qk ELQ(Q].C), ]{):1,2,...,’0.

The free Laplacian —Agee and the Neumann Laplacian —Ayn with Neumann
boundary conditions on ¥ are defined as the self-adjoint operators in L?(R9) asso-
ciated with the sesquilinear forms

afree[fa g] = (va v.g) L2(Rd;Cd)” dom OAfree += Hl (Rd)v

(3.1) n n
aN[fa g] = Z (vflm ng)LQ(Qk;Cd)’ dom aN ‘= @Hl(gk)a
k=1 k=1



§ AND §’-INTERACTIONS ON LIPSCHITZ PARTITIONS 7

which are symmetric, closed and semibounded from below, see, e.g. [18, §VII.1.1-2].
Note that dom (—Agee) = H2(RY) but the functions in dom (—Ay) have only local
H2-regularity, that is, dom (—Ax) C HZ . (R?\ ¥).

3.2. Definition of Schrédinger operators with § and ¢’-interactions via
sesquilinear forms. In this subsection we define Schrédinger operators with §
and ¢’-interactions supported on possibly non-compact boundaries of Lipschitz par-
titions with the help of corresponding sesquilinear forms; cf. [13] for the case of
d-interactions and [9] for the case of §’-interactions on smooth hypersurfaces. The
domains of these operators are characterized and, in particular, the boundary con-
ditions are given explicitly. For the special case of smooth domains with compact
boundaries the present description reduces to the one in [9], where a different ap-
proach via extension theory of symmetric operators and boundary triple techniques
from [7] was used. We also refer to [2, 3, 49| for an approach via separation of vari-
ables in the case of spherically symmetric supports of interactions.

Let P = {Q}7_, be a Lipschitz partition of R? with the boundary ¥, let o, 3 :
¥ — R be such that o, 37! € L>(X) and define the symmetric sesquilinear forms
as,o and as’.p by

(3.2) aé,a[fa g] = (vf Vg)Lz (R;Cd) — (af‘Eag‘E)Lz(Ey domasq 1= Hl(Rd)a

and

as’.g f7 Z kanvgk L2(£2,;C)

k=1
n—1 n
(3'3) - Z Z Blcl fk|2m - fl|2kl)’gk|2kl _gl|2kz)L2(Ekz)7
k=1I1=k+1

n

dom as g = @ Hl(Qk),

respectively; here Xp; = 9Q, N O for k,1 = 1,2,...,n, k # [, and By; denotes
the restrictions of 5 to Xg;. The traces fi|y,, are understood as restrictions of the
trace fr|aq, onto Xi;. Note that o (Zg) = 01(Zk) = 0 if the domains € and €
are not neighbouring and that

n

:@ @ LQ(EM) and L2(an)= @ L2(2k1)~

k=11l=k+1 =1, l#k

Proposition 3.1. The symmetric sesquilinear forms as . and as g are closed and
semibounded from below.

Proof. We verify the assertion for as, first. For this note that a5, = Ggee + @',
where agee is as in (3.1) and

Cl/[f7 g] = _(afa g)LQ(Z)v dom a/ = Hl(Rd)

We show that a’ is bounded with respect to agee with form bound < 1. In fact, for
f =, fr € H'(R?) we have

1 n
(3.4) (1] < lledloo [l 1511725y = oo 5 Y [l elon 7200,
k=1
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According to Lemma 2.6 for any € > 0 and k = 1,2, ..., n, there exists Cx(e) > 0
such that
2
(35) ka|3ﬂk ||L2(an) < EvakH%2(Qk;Cd) + Ck(E)ka?”%?(Qk)
Therefore (3.4) yields

€ n 1 n
(1] < lalloe 5 D IV il Z2(@icn) + lladloe 5 D Cr@ felli2on)
k=1 k=1

maxy C(g)
<llefloo 5 afree[ ]+ [lefloo -9 ||fH%2(JRd)

for all f € doma’ = dom Afree. Thus, for sufficiently small € the form o’ is form
bounded with respect to the form agee with form bound < 1. Then by [33, VI The-
orem 1.33] the form a; 4 is closed and semibounded from below.

Next we prove the statement for as g. As above we have as g = an + a”, where
ayn is as in (3.1) and

n—1 n
g] = Z Z Bkl fk|z,€l fl|2kl)7gk:|2kl _gl|zk1)L2(EM)’
k=1 l=k

doma” := @ H' ().

k=1
We show that a” is bounded with respect to ay with form bound < 1. In fact,

n—1 n
<187 Moo 30 30 el = filsull3assy,

k=11l=k+1

n—1 n

< 2”571”00 Z Z (kab"'lHiQ(EM) + ||fl|2kl ||ifz(zk1))

k=11l=k+1

=287 o Z || frlos Hiz(aak)
k=1

and with the help of (3.5) (see Lemma 2.6) we conclude that for any € > 0 and
k=1,2,...,n, there exists Cj(¢) > 0 such that

la”[f]] < 2¢ 18~ 1||OOZ||vfk”L2 amct) 21187 1||ooZCk @fr 7200

k=1 k=1
< 26|87 oo an[f] + 20187 loo max Ci(e) [|f172(ma)

for all f € doma” = dom ay. Hence for € > 0 sufficiently small a” is bounded with
respect to ay with form bound < 1. As above it follows from [33, VI Theorem 1.33]
that as/ g is closed and semibounded from below. O

It follows from Proposition 3.1 and the first representation theorem [33, VI The-
orem 2.1] that there are unique self-adjoint operators —A;, and —Ag 5 in L2(R%)
associated with the sesquilinear forms a5, and as g, respectively, such that

(—Asaf,9) 2@y = a5a[frg9] and  (=As sf,9)r2maey = a6 5[f 9]

for f € dom (—Aj4) C domase, g € domas,, and f € dom (—Ay g) C domay g,
g € dom asr g, respectively.
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Definition 3.2. The self-adjoint operator —As o (—Agsg) in L2(RY) is called
Schrodinger operator with 0-interaction of strength o« (§'-interaction of strength
B, respectively) supported on 3.

Observe that by the definition of the forms as. and as/ g the d-interaction is
strong if « is big, and the ¢’-interaction is strong if 3 is small.
In the next theorem we characterize the action and domain of —As o, and —Ay 3.

Theorem 3.3. Let P = {Q}}_, be a Lipschitz partition of R? with the boundary
¥, let a, B: X — R be such that a, =1 € L®°(X) and let —As,o and —Ag g be the
self-adjoint operators assoctated with as . and as g, respectively. Then the following
holds.

(i) —Asaf =% 1 (=Afr) and f = ®}_, fr € dom (—As ) if and only if
(a) f € H'(RT),
(b) Afr € L?(Q) for allk =1,2,...,n,
(c) Opfls € LA(X) exists in the sense of Definition 2.8 and
Opfls = afls.
(ii) —As gf =B 1 (—Afr) and f = &}_, fr € dom (—As g) if and only if
(') fr € HY(Q) for allk =1,2,...,n,
(b') Afx € L3(Q) for allk=1,2,...,n,
(c") Oy, frlon, € L?(0Q) for all k = 1,2,....n in the sense of Defini-
tion 2.7 (ii) and
Teloo, — @iz filsy = BuOuy frloa,, k=1,2,....n.

Proof. The proof of items (i) and (ii) consists of three steps each. First we show
that —As . and —As g act as minus Laplacians on each ;. In the second step
we verify that f € dom (—As ) (f € dom (—Ag g)) satisfies the conditions (a)—(c)
((a")—(c’), respectively), and in the last step we prove the converse implication.

(i) Step L. Let f € dom (—As.a), gr € H}(Q) for some k = 1,2,...,n, and extend
gr. by zero to gr, € H'(R?) = dom as 4. From gi|s = 0 and the first representation
theorem we obtain

((*A(s,af)kvgk)Lz(Qk) = (=Asaf 9k) 2Ry = A5.0[f, Gk]

= (V, V) L2wacay — (afls; grls) L2 (s)

= (Vf,Var) L2 @ecey = (Ve Vak) L2 (Quica)-
Therefore, by Definition 2.7 (i) we have (—=Asof)r = —Afir € L*(Q) for all
k=1,2,...,n, that is,

—Asaf =®p_ (-Af) € L*(RY).

Step II. Let f be a function in dom (—As ). Then f satisfies condition (a) since
dom (—As4) C domags, = HY(R?). Condition (b) is satisfied as we have shown in

Step I. Hence it remains to check condition (c). For this let h € domas,. From
Step I and the first representation theorem we conclude

(@Zzl(_Afk)a h) L2(R4) = (_Aé,ozfv h)Lz(]Rd) = aé,a[fv h}
= (Vf,Vh)2ra,ca) — (af]s, hls)r2(m)
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which yields
(V£,Vh) r2racay = (BF=1 (A fk) h) 1o gay = (@f 5, o) 12(s)-

Hence, by Definition 2.8 we have dp f|s € L?(X) and dpf|s = af|s, that is, f
satisfies condition (c).

Step III. Assume that f satisfies the conditions (a)-(c) and let h € domas . By
condition (a) we have f € domas  and hence

asalfs h] = (Vf,Vh)2macay — (afls, bls)r2(n)-
The conditions (b) and (c) together with Definition 2.8 imply that
(Vf,Vh) 2 macay = (8k=1 (= ASr); h) 2 gay = Op fls, hl)r2(s) = (af s, hle)12s)
and hence aso[f, h] = (DF_1(=Afr), h)r2(ray for all h € domas . The first repre-
sentation theorem yields f € dom (—As ).
(ii) Step I. The same reasoning as in (i) Step I yields —Ag gf = BF_(—Af) €
L2(R?) for all f € dom (—Ag ).

Step II. Let f be a function in dom (—As g). Then f satisfies condition (a') since
dom (—Ay/ g) C domay g and condition (b’) holds by Step I. We check condition
(¢"). For this let hy € H'(Qy) for some k = 1,2,...,n, and let ﬁk € domas g be its
extension by zero. From Step I and the first representation theorem we conclude

(—Afr, hr) 20 = (_Aé’,ﬁfaﬁk)Lz(Rd) = as glf, ha]

(3.6) - _
= (Vfi, Vhg) L2 (qp i) — Z (Bt (Frlsw — fl|2kl)»hk|2k1)L2(gkl)
1=1, 14k

where we used that Ek|2pq =0ifk #p,q. Fork=1,...,n we set

b= D (Bu'(rlsu — filsw) € B L*(Sw) = L*(0%).
I=1, 14k 1=1, 1%k

From (3.6) we then obtain
(Vi Vi) L2(0uicay — (A fk, hi) 2 (a,) = (bk, Prloo, ) L2 004)

for all hy € HY(Q) and k = 1,...,n. Hence, 0y, frlon, € L?(0Q4) exists in the
sense of Definition 2.7 (ii) and the boundary condition

BrOu, filoa, = Bibk = filoo, — € fils,  k=1,....n,

=1, I#k

holds, that is, condition (¢’) is valid for all f € dom (—Ay ).

Step III. Assume that f satisfies conditions (a')-(c¢’), and let h € domas g. Fix

some k =1,...,n and let i~zk be the extension of hj, € H'(y,) by zero. By condition
(a') f € domas g and hence

n

at;’ﬁ[fvﬁk] = (vfk7th)L2(Qk;Cd) - Z (ﬁI:ll (fk|2k1, - fl|2kl)7hk|2kl)L2(Ekz)'
I=1, I#k
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On the other hand Definition 2.7 (ii) and conditions (b") and (¢’) imply
(Vi Vi) L2apsca) — (A frs hi) L2y
= (Bk_l (fk|89k - @likfl|2kz)v hk|89k)L2(8Qk)

and hence a(s/’g[f,ﬁk] = (=Afr, h)r2(0, for & = 1,2,...,n. Summing up we

conclude
n

ag [0 = ag slf, hi] = > (=Afu i)z = (®Z:1(_Afk)7h)L2(Rd)
k=1 k=1
for any h € domas g. This implies f € dom (—Ay g). O

We remark that the condition 9p f|s; = af|y for the functions in dom (—Asq)
in Theorem 3.3 (i)-(c) reflects the classical é-jump boundary conditions on common
boundaries of the domains in the partition; cf. [1, I. Theorem 3.1.1] and Remark 2.9.
Similarly the condition

frloaw — Pk filsw = BrOuy, frloay k=12,...,n,

for the functions in dom (—As g) in Theorem 3.3 (ii)-(c¢’) corresponds to the classi-
cal ¢’-jump boundary conditions; cf. [1, I. equation (4.5)]. Note also that our sign
choice for o and § in the definition of the forms in (3.2)-(3.3) and the associated
operators is opposite with respect to [1].

Observe that for a function f in dom (—As,) or dom (—Ag ) it follows from
Theorem 3.3 (i)-(b), (ii)-(b’") and elliptic regularity that

kaleoc(Qk)v kil,...,n.

It is not surprising that additional assumptions on the smoothness of the boundary
(or parts of the boundary) and the coefficients o, 37! lead to H?-regularity of f up
to the boundary (or parts of it, respectively). We first recall a result from [9] for
a particular smooth partition and turn to a more general situation in the lemma
below.

Proposition 3.4. Let Q be a bounded domain with C'°°-boundary and consider the
partition P = {Q, R4\ Q} with boundary ¥ = 0Q. Then the following holds.
(i) If a, B~ € L*°(X) then both domains dom (—As,) and dom (—Ag g) are
contained in H3/?(Q) @ H3?2(R?\ Q).
(ii) If o, 871 € Who(Z) then both domains dom (—As,) and dom (—As g)
are contained in H?(Q) @ H2(RY\ Q).

In the next lemma we establish local H?2-regularity up to parts of the boundary ¥
of a Lipschitz partition P = {Q}}_, under the assumption that the corresponding
part of the boundary and a, 371 € L®(X) are locally C1'! and C*, respectively.
This observation, which is essentially a consequence of the boundary conditions in
Theorem 3.3 (i)-(c), (ii)-(¢’) and [42, Theorem 4.18, Theorem 4.20], will be used in
the proof of Theorem 4.7.

Lemma 3.5. Let Q. and §; be neighbouring domains of a Lipschitz partition P =
{u}e_, and let T be a bounded open subset of Ly = 0Qx N Oy which is CH' and
part of a Lipschitz dissection of OQy in the sense of [42, page 99]. Assume that
I'N¥gm =9 form=1,...,n with m # I, k. Then for any relatively open subset
v of I with ¥ C I there exists an open subset Gg; of QU UQ; UL such that 5 C Gy
and the following holds for j =k, 1.
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(i) ]f04|1'* S 01(1‘) and f € dom (—Ag,a) then fj|GM € HQ(Q]' N le),‘

(ii) Ifﬂ71|1‘ S C’l(F) and f € dom (7A5/’5) then fj|le S HQ(Q]‘ NGgl).
Proof. (i) For f € dom (—As) we have f, € H'() and hence fi|r € HY?(T).
Therefore a|r € CY(T) yields afy|r € H/?(T') by [42, Theorem 3.20]. The bound-
ary condition in Theorem 3.3 (i)-(c) and its local form in (2.1) (interpreted in
H~'2(T") if the Neumann traces 0,, ux|r and 9,,u|r do not exist in L?(T)) to-
gether with [42, Theorem 4.20] implies the statement.

(ii) As in the proof of (i) we have fi|r € H'/?(T) for f € dom (—As ) and
the assumption 8~ € C(T') together with Theorem 3.3 (ii)-(c¢’) and [42, Theo-
rem 3.20] implies 87! (fx|r — filr) = O, frlr € H/?(T'). Now the assertion follows
from [42, Theorem 4.18 (ii)]. O

3.3. An operator inequality for Schrédinger operators with § and §'-
interactions. Let again P = {Q}?_, be a Lipschitz partition of R? with boundary
¥, and let a, 3 : ¥ — R be such that a, 371 € L>°(X). In Theorem 3.6 below we
prove an operator inequality for the Schrédinger operators —As o and —Ass g which
is intimately related with the chromatic number x of the partition P.

Theorem 3.6. Let P = {Qx}?_, be a Lipschitz partition of R? with boundary
Y and chromatic number x. Let a,3: 3 — R be such that o, 3~ € L>®(X) and
assume that

4
(3.7) 0<f<— sin? (/x).
Then there exists a unitary operator U: L*(R?) — L?(R?) such that the self-adjoint
operators —As o and —Ag g satisfy the inequality
U (=As5 5)U < —Asq.

Proof. By the definition of the chromatic number (Definition 2.5) there exists an
optimal colouring mapping

o:{1,2,....,n} = {0,1,...,x — 1}
such that for any k,l =1,2,...,n, k # [, we have
ox(Zp) >0 = o(k) # o).
Next, we define n complex numbers Z := {z;}}_; on the unit circle by

z;@zexp(%(k)i), k=1,2,....n

Among the z there are only x distinct numbers. The points zx, k = 1,...,n, on
the unit circle form the vertices of an equilateral polygon with y edges. The square
of the length of these edges is

(3.8) 2 — 2cos (27/x) = 4sin® (7/x).
Observe that for any k,1 =1,2,...,n, k # [, with o(Zx;) > 0 we have

|z — 21)? = [cos (%W) — o8 (27"1’ l))} [sm (2”¢(k)> — sin (%ﬂ))r

=92 2cos (2 mp(k )) cos (27rd> l)) _ 9&in (27r¢ k)) sin (27rd>(l)>
X

X

_2—2005(2 ) 2 — 2cos (27/x),
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where we used standard trigonometric identities in the third equality and

p(k) — () e {=(x = 1),....,x =1} \ {0}
in the last estimate. Together with (3.8) we find 4sin?(7/x) < |zx — 2|? and hence
by the assumption (3.7)

4
(3.9) 0<a< —sin? (71'/)() <agzg,

B
where az(x) = |z — zl|2ﬁk_ll(x), zeXy,and k,1=1,2,...,n, k #I.
Define a unitary mapping Uz : L?(R%) — L?(R¢) by
(Uzf)(@) =2 fr(z), €%  k=1,...n,
and a corresponding sesquilinear form das g by
as glf, 9] == a5 p[Uzf,Uzg],  domay g :=domay g.

Observe that as g is a closed, densely defined, symmetric form which is semi-
bounded from below, and that the self-adjoint operator associated with as g is

Ugl(—Ag/,B)U;q dom (Ugl(—Ag/ﬁ)Uz) = Ugl(dom (—A(;/,g)).
We claim that the inequality a5 g < a5, holds. In fact,

domas,. = H'(R?) C @Hl(ﬂk) = domay
k=1
is clear and for f € domas o, we have f|s,, = frls,, = fils,,. Therefore we obtain

Ay s[f] = ay s[Uzf]

n n—1 n
= Z ”Zkvfk”iz(ﬂk;(cd) - Z Z |Zk - zl|2(ﬂl;l1f|2kl7lekZ)L2(EM)

k=1 k=11=k+1
= [IVflI72 acay — (@2 fl, fl2)L2s) = 05,02 [f]
for all f € domas,,, and hence ay g < as,,. Moreover, as & < az by (3.9) we
also have as o, < aso. This implies
s 3 < 5.0
and hence U;l(—Ayﬁ)Ug < —Ajq- O

As an immediate consequence of Theorem 3.6 and Theorem 2.3 we obtain the
following corollary on the relation of the spectra of —A;, and —Ay 3.

Corollary 3.7. Let P = {Q}7_, be a Lipschitz partition of R% with boundary X.
Let o, 3: ¥ — R be such that a, 371 € L>®(X) and assume that

0<p< %sin2 (m/x)-

Denote by {Ai(—Asa)}i2, and {A(—As )}, the extended sequences of the
eigenvalues of the operators —As . and —As g, respectively, below the bottom of
their essential spectra, enumerated in non-decreasing order and repeated with mul-
tiplicities, and let N(—Asqo) and N(—As g) be as in Definition 2.2. Then the
following holds.

(1) Me(=Ag ) < A(—=As0) for all k € N;

(i) mincess(—Agr,3) < Min Cess(—As.a);
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(ill) If min oegs(—As o) = Min ess(—Agr g) then N(—Asq) < N(—Ag ).
According to the four colour theorem the chromatic number of a Lipschitz par-

tition P of R? is x < 4; cf. [4, 5] or [43, §8.2]. This implies the following corollary
in the case d = 2.

Corollary 3.8. Let P = {Q}7_, be a Lipschitz partition of R? with boundary
Y and chromatic number x. Let a,3: ¥ — R be such that o, 3~ € L>(X) and
assume that

2
0<p<—.
[0

Then there exists a unitary operator U: L?(R?) — L?(R?) such that the self-adjoint
operators —As o and —Ag g satisfy the inequality

Uﬁl(_Aé’,B)U < _A(S,om
and hence the assertions in Corollary 3.7 hold.

For the case of a Lipschitz partition with chromatic number y = 2 Theorem 3.6
reads as follows.

Corollary 3.9. Let P = {Q4}}_, be a Lipschitz partition of RY with boundary ¥
and chromatic number x = 2. Let o, 3: ¥ — R be such that o, 371 € L>(X) and

assume that

4
0<B<—.
o

Then there exists a unitary operator U: L*(R?) — L?(R?) such that the self-adjoint
operators —As o, and —Ag g satisfy the operator inequality

U™ (~A5,5)U < —Asa,
and hence the assertions in Corollary 3.7 hold.
The following example shows that Corollary 3.9 is sharp.

Example 3.10. Consider the Lipschitz partition P = {Ri, R%} of R? in the upper
and lower half plane with boundary % = R. For constants a, 8 > 0 the spectra of
the operators —As o and —As g can be computed via separation of variables; they
are given by

U(_Aé,a) = Uess(_Aé,oz) = [—042/4, OO)
and

0(=As,5) = Oess(—As,5) = [~4/%, 00),
respectively. Hence if 8 > 4/« then

() = g >~ = min o~
M1 Oegg | — ’ =7 ——— = ININ Oggs( — a
0, & 1/8 52 4 o 6a
and it follows from Corollary 3.7 (i) that there exists no unitary operator U in
L2(R?) for which the operator inequality U~ (—As g)U < —As o holds.

Another situation which is worth to mention is the case of a Lipschitz partition of
R? which consists of a bounded domain and its complement, so that the chromatic
number y is again 2.
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Example 3.11. Consider the partition P = {Q, R*\Q}, where Q C R? is a bounded
domain with smooth boundary %, and let a, § > 0 be constant. In this case

Uess(_Aé,a) = O'ess(_AtS/,,ﬁ) = [0,00)

and N(—Asq) = +00 as & — +0oo according to [29, Theorem 1]. On the other
hand we have N(—Ay g) < oo for any fized 5 > 0 by [9, Theorem 3.14 (ii)]. Hence
it follows from Corollary 3.7 (iii) and Theorem 3.6 that for 5 > 0 there exists a
sufficiently large o > 0 such that the inequality U~ (—=Ag g)U < —As o fails for
any unitary operator in L?(R?).

In the next example, which forms a separate subsection, we discuss a particular
situation with chromatic number y = 3.

3.4. An example: A symmetric star graph with three leads in R2. We
consider a symmetric star graph in R? with three leads such that any two leads
form an angle of degree 27/3, see Figure 3.1.

il

FiGURE 3.1. The star-graph > = Y15 U o3 U 313 separates the
Euclidean space R? into three congruent domains ©;, Qs and Q3
with bisector leads X7, Yo and X3, respectively.

Let in the following «, 8 > 0 be real constants, and let —A;, and —As g be
the corresponding self-adjoint operators with § and ¢’-interactions, respectively,
supported on the star graph. Then we have

a2
(3.10) mino(—As ) = —3
and
2
_ 12/3-2\ 1
(3.11) mino(—Ag g) > — (9) 7

Whereas (3.10) is essentially a consequence of [38, Lemma 2.6] (and can be viewed
as a strengthening of [15, Theorem 3.2] in the present situation) the proof of (3.11)
is of more computational nature. Both proofs are outsourced in the appendix.

Clearly the chromatic number of the partition of R? corresponding to the star
graph in Figure 3.1 is x = 3 and hence the operator inequality

U N ~Ap )U < —As 0
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for the corresponding Laplacians in Theorem 3.6 is valid under the condition
4 3

3.12 0< B < —sin?(n/3) = =.

(3.12) B8 < - sin (7/3) -

We point out that the assumption (3.12) can not be replaced by the weaker as-
sumption

4 o 0 4
0<ﬁ§asm (7r/2)—a,

which corresponds to the case y = 2 in Theorem 3.6. In fact, for ¢* :=4 — % we

have 3 < ¢* < 4, and if we choose a, 8 > 0 such that 8 > c*i then we conclude
mino(—Ase) < mino(—Ag g) from (3.10) and (3.11). This yields the following
corollary.

Corollary 3.12. Let a, 8 > 0 and g > c*é, where ¢* = 4 — %. Then there exists

no unitary operator U in L*(R?) such that

Uﬁl(*A(s/,g)U < fA(s’a.

4. ESSENTIAL SPECTRA AND BOUND STATES OF SCHRODINGER OPERATORS
WITH 6 AND §’-INTERACTIONS

In this section we discuss some spectral properties of the Schrodinger operators
—As o and —Ag g, where the ¢ and ¢’-interaction, respectively, is supported on
the boundaries of certain Lipschitz partitions of R?. We are mainly interested
in the following two situations: Lipschitz partitions with compact boundaries in
Section 4.1 and Lipschitz partitions which are deformed on a compact subset of R?
in Section 4.2. Special attention is paid to bound states in the cases d = 2 and
d = 3 in Section 4.3.

4.1. Lipschitz partitions with compact boundary. Throughout this subsec-
tion we assume that the following hypothesis is satisfied.

Hypothesis 4.1. Let P = {Q;}7_, be a Lipschitz partition of R?, d > 2, such that
the boundary ¥ = UZ_,08 is compact.

By Hypothesis 4.1 the partition P = {4 }}_, consists of (n—1) bounded domains
and one unbounded domain; cf. Figure 4.1. We shall call these type of partitions
sometimes compact Lipschitz partitions.
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R? R?

Qg QS

P={N%}_, x=3 P={ U}y, x=4

FIGURE 4.1. Examples of compact Lipschitz partitions with chro-
matic numbers 3 and 4.

In the next theorem we show that under Hypothesis 4.1 the operators —As,
and —Aj 3 are compact perturbations of the free Laplacian —Age. defined on
H?(RY). A variant of Theorem 4.2 (i) is also contained in [31, Theorem 4| and
in [13, Theorem 3.1]; cf. [6] for a detailed proof in the present situation. We
also mention that for a compact partition consisting of C'°°-smooth domains it
can be shown that the resolvent differences below belong to certain Schatten-von

Neumann ideals depending on the space dimension d. We refer the reader to [9] for
more details.

Theorem 4.2. Let P = {Q4}7_, be a compact Lipschitz partition of R¢ with
boundary ¥ as in Hypothesis 4.1, let a, 3 : ¥ — R be such that a, 371 € L>=(X),
and let —As o, and —Asr g be the self-adjoint operators associated with P. Then the
following statements hold.

(1) For all A € p(—Apee) N p(—As,o) the resolvent difference
<_Afree - )\)_1 - (_Aﬁ,oz - )\)_1

is a compact operator in L*(R?).
(ii) For all A € p(—Apee) N p(—Asr ) the resolvent difference

(*Afree - A)71 - (7A5’,B - A)il
is a compact operator in L*(R?).
In particular, Oess(—As o) = Tess(—As7 3) = [0, 00).

Proof. We shall only prove item (ii). The proof of item (i) is along the same lines
and can also be found in the note [6]. Let us fix \g < mino(—Ay g) and set

W = (_Afree - >\0)_1 - (_AJ/A,B - )\O)_1~
For f,g € L*(RY) we define the functions
U= (—Apee — No) 'f and wvi=(=As s —No) g
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Then we compute
(Wfa )L2 Rd) = (( Atree — >\0)71fa g)L2(Rd) - (fv (_Aé’,ﬁ - )\O)ilg)Lz(Rd)
(4'1) = (u, (_Aé’,ﬁ - >\0)’U)L2(Rd) - (<_Afree - )\O)ua U)LQ(]Rd)
= (u, —Ag/wg’u)[g(Rd) - (—Afreeu, 'U)L2(Rd).

Observe that u € H?(R?) C dom a5 and that for any common boundary Xy, with
k,l=1,2,...,n and k # [ the condition ux|x,, = w|x,, holds. Hence we have

(42) ( —Ay [ﬂ) L2(R4) Z Vukavvk L2(Q4;C4)
k=1

where we used the definition of a5 g from (3.3). Furthermore, we obtain with the
help of Green’s first identity (see e.g. [42, Lemma 4.1])
(4.3)

(—Afreett, V) p2(Ra) = Z (Vug, Vo) L2(Qp:CY) Z (O uklony, vkloay ) L2 (00,);
k=1 k=1
here we also used that the restrictions uy, vy, satisfy up € H2(Q), vi € HY(Q4)
and, hence, 9, ur|sq,., Vklog, € Hl/Q(an) C LQ(an). Combining (4.1) with (4.2)
and (4.3) we obtain
(Wfa g) L2(Rd) = Z (avkuk‘anavk‘aﬂk)[g(an)'
k=1

Let G := @)_, L*(0Q) and G'/2 := @} _, H'/?(0%,), and define the operators

T, Ts: LQ(Rd) -G by

1 f =@ 0 [(~Btree = 20) ™ 1|, @%wf\fmw

n

Tog =€ [(-25.5 = 20) 79, |o, @U’“bﬂk
k=1
As (—Apee — Ao) "1 is continuous from L2(R?) into H2(RY) and (—As 5 — Ao)~*
is continuous from L?(R?) into domags g it follows from the continuity of the
trace maps that both operators Ty and T, are continuous from L?(R%) into G'/2;
[42, Theorem 3.37]. Since G'/? is compactly embedded in G both operators
Ty, Ty: L?*(RY) — G are compact. From (W f, 9)r2(rd) = (Tlf, ng)g we conclude
that
TQ*Tl =W = (*Afree - )\0)71 - (*Azs/,ﬂ - )‘0)71
is a compact operator in L?(R?). Now a standard argument shows that the resolvent
difference is compact for all A € p(—Agee) N p(—Ag g), see, e.g., 8, Lemma 2.2|.
Finally, note that o(—Afee) = Tess(—Afree) = [0,00) and hence the assertion
on the essential spectra of —As, and —As: g follows from the compactness of the
resolvent differences in (i) and (ii). O

The next statement on the negative eigenvalues of —Aj, and —As g is an
immediate consequence of Corollary 3.7 and the fact that the essential spectra
of —As . and —Ay g coincide.
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Corollary 4.3. Let the assumptions be as in Theorem 4.2 and assume, in addition,
that

4 2
O<B§abln (7T/X),

where x is the chromatic number of the partition P. Let {A\e(—Asa)}7>, and
{M(—As ) }72, be the extended sequences of negative eigenvalues of —As o and
—Aysr g, respectively, and let N(—As,o) and N(—As g) be as in Definition 2.2.
Then the following statements hold:

(1) Me(—As ) < Ap(—As,a) for all k € N;
(ii) N(*A(;’a) < N(*Ag/ﬁ).

Finally we show that the Schrodinger operator with a ¢’-interaction of strength
B > 0 has at least one negative eigenvalue.

Theorem 4.4. Let P = {Qx}?_, be a compact Lipschitz partition of R with
boundary X as in Hypothesis 4.1, let 71 € L>°(X) be real, and let —As 5 be the
self-adjoint operator with ¢ -interaction supported on X. If

B~ (z)doy(x) > 0
O,

holds for some bounded Q, k € 1,...,n, then N(—As g) > 1. In particular, if
B >0 is a real constant then —As g has at least one negative eigenvalue.

Proof. Let f = xq, be the characteristic function of Q. Then f € domas g,
Vf =0, and hence

as p[f] = — ” B~ (w)do(x) < 0.

This implies inf o(—Ag g) < 0. O

Remark 4.5. There is no general analog of Theorem 4.4 for é-interactions. In space
dimensions d > 3 it follows implicitly from the Birman-Schwinger-type estimate
in [13, Theorem 4.2 (iii)] that for |||/ sufficiently small the operator —As , has
no bound states. The existence of eigenvalues depends not only on «, but also on
the geometry of the support of the interaction; an example in the case d = 3 is
discussed in [20]. The picture is different in space dimension d = 2. In the simple
case of a constant strength o > 0 along the support of the interaction at least one
bound state always exists, see [28, 35].

4.2. Locally deformed partitions of R?. In this section we consider non-compact
partitions consisting of finitely many Lipschitz domains.
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PZ{Qk}Z:1»X:4 ,P/:{Q;g 2:1,X=3

Qo
=

FIGURE 4.2. A non-compact Lipschitz partition P = {Q;}7_,
R? with chromatic number Y = 4 and a local deformation P’ =
{Q}}$_, with chromatic number x = 3.

Let in the following P = {Qx}7_, and P’ = {Q;C}Z/:l be Lipschitz partitions
of R? with boundaries ¥ and ¥, respectively. We say that P and P’ are local
deformations of each other if there exists a bounded domain B such that

(4.4) Y\ B=Y\B,
see Figure 4.2. In addition it will be assumed that there exist C*' components in

the boundary ¥ (and ') and that B can be chosen in such a way that 90BN X is
contained in these components. The following hypothesis makes this more precise.

Hypothesis 4.6. Let P = {Q.}7_, and P’ = {Q,}7_, be locally deformed Lips-
chitz partitions and let B be a bounded domain with smooth boundary OB such that
(4.4) holds. Let By and By be bounded domains such that By C B, B C By, and
assume that

I':.= (Bl \B{)) ny= (81 \BO) ny

consists of C%' components of a Lipschitz dissection of X, or equivalently, of ¥'.

In the next theorem we prove that the essential spectra of the Schrédinger op-
erators —Aj, and —As g do not change under local deformations of Lipschitz
partitions. Our proof is partly inspired by [10, Theorem 6.1 in English translation],
where similar arguments were used for elliptic operators with Robin and mixed
boundary conditions under local deformations of the boundary and local variations
of the Robin coefficient.

Theorem 4.7. Let P = {Q}}7_, and P’ = {Q;}Z;l be Lipschitz partitions of
R? which are local deformations of each other such that Hypothesis .6 holds. Let
o, € L®(2) and o/, 71 € L=(X') be real and assume that

s\, = &'|sn\ By Bls\s, = B'|x1\s5, and  ofr, B |r € CH(D).
Let —Aso, —As g, and —Af ., —Af 5 be the Schrodinger associated with the
partitions P and P’, respectively. Then the following statements hold.
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(i) For all X € p(—=Asa) N p(=Af /) the resolvent difference
(—Asa = A)7" = (=050 =N

is a compact operator in L?(R®). In particular, Oess(—As,a) = O’ess(ng,a,).
(ii) For all X € p(—=As 5) N p(=Af 5i) the resolvent difference

(=855 =N = (=05 5 =N
is a compact operator in L*(R?). In particular, oess(—Ds: ) = Oess(— A% 5/).

Proof. The proof of Theorem 4.7 will be given only for the simple case that both
Lipschitz partitions consist of two domains only, that is, n = n’ = 2. The general
case requires more notation but follows the same strategy. We verify (ii), the proof
of (i) is similar. The fact that the essential spectra of —Ajs, and —Aj ., and
—Ag 5 and —A}, 5 coincide is a direct consequence of the compactness of their
resolvent differences in (i) and (ii).

Let us fix some notation; cf. Figure 4.3. Set

Qi = N8B, Q= Qlﬁ(Rd\E), 1 =1,2,
denote the restrictions of functions fi on Q onto Qi by fr, k,l = 1,2, and let

Y :=%NNB, ¥p:=3%n(RY\B).

Q22

FIGURE 4.3. The hypersurface 0B splits the domain ; into the
parts €11 and Q15, and the domain €25 into the parts Qo7 and Q95.
The hypersurface ¥ splits into ¥; and Xs.

We denote the restriction of 8 onto 3; by 3;, i = 1,2. In the present situation the
sesquilinear form as g in (3.3) is given by

2
as’,p fa Z vfkank L2(Q;Cd) (ﬁ_l(fllZ - f2|2)7.91|2 - gQ‘Z)Lz(E)
k=1
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with domag 5 = H' (1) & H' (). Observe that the right hand side can also be
written in the form
2

Z (V fx1s Vi) L2 (usct) — Z (8; M (frsls; — fails,)s g15ls, — 92j|zj)Lz(Zj)-
k,l=1 Jj=1

Step I. We introduce an auxiliary sesquilinear form by

2
ag s nlfsgli= > (Ve Vo) p2 e
k=1
2
Z flg|2J f2j|zj)791j|2j —92j\2j)Lz(Ej)’
j=1
2
dom as’ 3N = @ Hl(le).
k=1

As in the proof of Proposition 3.1 one verifies that as g~ is a closed, densely
defined form which is semibounded from below, and hence gives rise to a self-adjoint
operator —Ag g in L%(R?). Note that the functions in the domain of —Ag g
satisfy Neumann boundary conditions on 0B N ;, ¢ = 1,2, and the same §’-type
boundary conditions at X;, ¢ = 1,2, as the functions in the domain of —As 5. In
this step we show that

(4.5) (A5 = A" = (—Asan—A)!

is a compact operator in L?(R?) for all A € p(—Ag ) N p(—As g N)-
In fact, choose Ao < min{mino(—Ay g),mino(—As gn)} and let W be the
resolvent difference in (4.5) with A = \g. For f,g € L?(R?) define

wi=(—As g — o) 'f and wv:i=(—-AssN— o) g
A straightforward computation as in (4.1) yields
(4.6) W[, 9)r2®a) = (u, —As g NV) L2(Re) — (—As7,5U, V) [2(R4)-

As u € dom (—Ay g) C domay g C domas gn we have for the first term on the
right hand side

(u, —Agl’g,N’U)[g(Rd)
2 2

= D (Vur, Vow) 2qayen = Y (85 (ungls, —uzgle,) vijle, = v2gle,) s -
k=1 j=1

In order to rewrite the second term on the right hand side of (4.6) note first that
for u € dom (—Ags g) we have

v, ujilosne, + Ou,uj2loBne; = 0, J=12

here the Neumann traces exist in H'/2(0B N Q;) due to the H?-regularity of the
functions in dom (—Ag g) near B N Q; (which follows from u; € HE (Q;) and
Lemma 3.5 (ii)). Moreover u € dom (—Ay g) satisfies the boundary conditions

Oy ujls, = ﬁj_l(ulﬂzj —ugjly;) = =0y, uzjls;, Jj=12,
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by Theorem 3.3 (ii)-(c’). Hence we obtain for the second term on the right hand
side of (4.6) when integrating by parts,
(7A5/75’LL, ’U)Lz(Rd)

2 2

= (Vuurs, Vor) 2 oice) — 3 (85 (s, — uzjls,), vijls, — v241%;) 12 (s,
k=1 j=1

2
- Z (0v, uj1loBne, vitlosna, — Uj2|aBmQj)L2(aij)-

j=1

Thus (4.6) has the form

2
W f,9) 2wy = Z (O, ujtlosne, vitlesna, — Uj2|aBﬁQj)L2(agnQ7.)
=1 ’

J
= (T f,T29)12(08)
where the operators 71, Ty: L?(RY) — L?(0B) are defined by

(4.7)

2 2
Tlf = @811]‘1 [(_AE’,B - )\0>_1f]j1|8309_7‘: @ayjlujl|aBﬁQj
j=1 j=1

2
Tag := @ [[(—A&,B,N - )\o)_lg]jlbgmj - [(-As N — Ao)_lg]ﬂmei}

j=1
2
= @ [vj1]oBne; — vi2loBne, |-
j=1
Since (—Ags N — Ao) ! is bounded from L?(R?) into domas g it follows from
[42, Theorem 3.37] that the operator 75 maps L?(R?) boundedly into
HY2(0BN ) @ HY?(0BNQy),
which is compactly embedded in L?(0B N Q) @ L2(0B N Qz) = L*(0B). Hence
Ty: L?(R?) — L2(0B) is compact. We shall show below in Step II that the operator
Ty: L?(R?) — L2(0B) is bounded, so that by (4.7)
T;Tl =W = (7A5/7B — )\0)71 — (7A5/,5,N — )\0)71
is a compact operator in L?(R?). It then follows that the resolvent difference in
(4.5) is compact for all A € p(—As g) N p(—As g N), see, e.g. [8, Lemma 2.2].
Step II. We verify that Ty : L?(R?) — L?(0B) is bounded, which is essentially a
consequence of [42, Theorem 4.18 (ii)] and the H?-regularity of the functions in
dom (—Ay/ g) near OB N Q;; cf. Lemma 3.5 (ii). More precisely, let 0 < s <t < 1
and let B, and B; be bounded domains with smooth boundaries such that
BocBsCcB,cBcBcC B, CB:C B.
Set Rj = (Bt \Eg) ﬂQj and Sj = (Bl \Eo) ﬂQj, ] = 1,2 Since I' = (Bl \Bo) nx
is C1! we conclude for u = (—Ay 5 — A\g) "' f from [42, Theorem 4.18 (ii)] that
48)  lujlr, l2(r,) < Ci(lusls, s,y + 100, uslella/zey + 1fils, lz2cs,)

holds for some constants Cj, j = 1,2. The continuity of (—As 5 — Ag) ™! from
L?(RY) into domag g yields ||lu;ls, ||z (s,) < C'|lfIlp2(ray with some constant C”.
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Furthermore, the boundary conditions 8,,u;|r = 8~ (u1|r — uz2|r) = —0,,u2|r, the
continuity of the trace and of (—Ag 5 — Ag) ™! from L?(R?) into dom as 5 yields

10, uslr g2y < D(llualell gz ey + luelell gz ay)
< D' (Jluals, a1 syy + luals, a1 s,)) < DI fIlp2ra

with some constants D, D', D”. If P; denotes the orthogonal projection in L?(R%)
onto L?*(R;) then we conclude together with (4.8) that

ran (Pj(—As g — o)™ ") C H*(R;)

and that the operator P;j(—Ags 5 — Ao) ™! 1s bounded from L?(R%) into Hz(R]) for
j =1,2. Hence f — 0,,,[(=As',5 — Xo) " flj1loBng, is bounded from L?*(R?) into
Hl/Q(aBﬂQj),j = 1,2, and, in particular, 7} is bounded from L?(R%) into L?(9B).

Step III. As in Step I we introduce an auxiliary sesquilinear form by

2
/ } :
Cl(;/”@, ththkl LQ(Q’ ;C4)
k=1
2
> (8, (s — h2j|z;),k1j|zg—k‘2j|2;.)L2(E;)7
Jj=1
2
/ 10/
dOmﬂcS/}B/’N = @ H ( k:l)7
k=1

where Q) := Q/NB, Uy := AN (RI\B), i = 1,2, hyj, k;j denote the corresponding
restrictions of functions h, k, and X} := X' N B, ¥} := X' N(R?\ B) = Xy. The form
as,. g7 N is closed, densely defined and semibounded from below, and hence gives rise
to a self-adjoint operator —Aj, 5  in L?(R?). In the same way as in Step I and II
one verifies that

(4.9) (A5 5 =X = (A gy — A
is compact for all A € (=Ay, 5) N (=A% g n)-
Step IV. Since the Lipschitz partitions P and P’ are local deformations of each

other and Hypothesis 4.6 holds the self-adjoint operators —As g and —Ag, 5
from Steps I-III admit the direct sum decompositions

_Aé/,B,N:Hl@HZ and 5/ ﬁ/N*Hl@HQ

with respect to the decomposition L?(R¢) = L%(R4\ B) @ L?(B). The operators Hj
and HJ acting in L?(B) have compact resolvents in view of the compact embeddings
of the spaces HY(BN Q1) ® HY (BN Q) and HY(BN Q) @ HY(BN Q) into L(B).
This implies the compactness of

(A5 N —A) = (A5 g — A7

for all A € p(—As 5,8) N p(—Af 5 n) and hence assertion (ii) follows together with
the compactness of the resolvent differences in (4.5) and (4.9). O

The following corollary is an immediate consequence of Theorem 4.7 and the fact
that for the Lipschitz partition P’ = {Ri, R?} and constants «, 3 > 0 the essential
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spectra of —Aj ~and —Aj, 5 can be computed by separation of variables:

o(— :5,04) = UeSS(_AZS,a) = [—a2/4,oo),
U(_Ag’,ﬂ) = UeSS(_Ag’,ﬂ) = [_4/ﬂ2700)~
Corollary 4.8. Let P = {Q}7_, be a local deformation of the Lipschitz partition

P = {R4, R} of R? and let o, 3 > 0 be constant. Then the essential spectra of
—As.o and —As g are given by

Oess(—Ds.0) = [—a2/4,oo) and  Oess(—Asr g) = [—4/62,00).

The next corollary is a consequence of Theorem 2.3, Corollary 3.7 and Corol-
lary 4.8.

Corollary 4.9. Let P = {Q}7_, be a local deformation of the Lipschitz partition
P’ = {R% R4}, assume that the chromatic number of P is x = 2 and that the
constants a, 5 > 0 satisfy

4
B=—, andhence Oess(—Ns,0) = Oess(—As.5) = [—a2/47oo).
o

Let { i (—As.0) 372 and {\e(—As g)}72, be the extended sequences of eigenvalues
of —=As o and —As g below —a? /4, respectively, and let N(—As.o) and N(=As p)
be as in Definition 2.2. Then the following statements hold:

(1) Me(—Ag ) < A(—=Asq) for all k € N;
(ii) N(—=As,q) < N(—A(;/’ﬁ).

4.3. Locally deformed partitions of R? and R3. In this subsection special at-
tention is paid to bound states of —As, and —Ajs g induced by local deformations
of certain Lipschitz partitions of R? and R3. We first characterize the essential spec-
tra of —As . and —As g associated with partitions, which are local deformations
of a partition {Q,R? \ Q} with Q being a wedge, see Figure 4.4.

T2

<o

2

T1

FIGURE 4.4. A wedge Q C R? with angle ¢ € (0, 7] and boundary
consisting of the two rays ¥; and Ys; the axis x; coincides with
the ray 3.

Theorem 4.10. Let P = {Q}}_, be a local deformation of the Lipschitz partition
P = {Q,R2\ Q} of R%, where Q is a wedge in R? and let a, 3 > 0 be constant.
Then the essential spectra of —As o and —As g are given by

Oess(—As.0) = [fa2/4,oo) and  Oess(—Asr g) = [—4/52,00).
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Proof. According to Theorem 4.7 it suffices to show the statements for the operators
—Ajf,, and —Aj, 5 associated with the Lipschitz partition P’ = {€2, R2\Q}. In fact,
the assertion for —Aj , can be found in [26, Proposition 5.4], and hence we verify
Oess (=A% 5) = [—4/32%,00) only.

Step I. Decompose R? into eight domains as in Figure 4.5, where Q1, Qf, Qq, Q)
coincide (up to rotations and translations) with [0,{] x R4 for some I > 0; Qg
Q2% are bounded Lipschitz domains, and Q4 and Q5 are wedges with angles ¢ and
2w — ¢, respectively. We choose this partition in such a way that Q coincides with
Q1 UQ UQ3UQ, up to a set of Lebesgue measure zero.

FIGURE 4.5. A partition of R? into eight domains. The wedge Q
coincides with Q1 U Qo U Q3 U Q4 up to a set of Lebesgue measure
ZEro.

Let P be the corresponding partition and set Xj := 9Q; N Q) for k = 1,2,3.
Clearly, 02 = X1 UX5UX3. Observe that such a decomposition can be constructed
for any [ > 0. We use the notation fq := f|q. Consider the quadratic form

3
a5 s nlf] = D IVfalliz e — O B ifauls, — forlslliz,)
k=1

QeP
dom a:;/”&N = @erHl(Q)

Similarly as in the proof of Proposition 3.1 one verifies that the form ag,’ N s closed,
densely defined, symmetric and semibounded from below. The corresponding self-
adjoint operator ng,’ s can be decomposed into the orthogonal sum of five self-
adjoint operators

5

(410) - A/,sB:N = @Hk,

k=1
where H; acts in L?(Q;) & L?(Q}), i = 1,2,3, and Hy and H; are the self-adjoint
Neumann Laplacians on the wedges Q4 and Q5 in L?(€) and L?(Q5), respectively.
Hence we have

(411) chs(H4) = JCSS(H5) = [Ov +OO).
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The operator Hs acts on a bounded domain and in view of the compact embedding
of the space H'(Q3) @ H' () into L?(Q3) @ L?(%) we obtain

(4.12) Goss(H3) = 2.

Separation of variables shows that the essential spectra of the operators H; and Ha
have the form

(4.13) Oess(H1) = 0ess(Ha) = [(8,1), +00),

where ¢(f8,1) is the principal eigenvalue of the self-adjoint one-dimensional Schro-
dinger operator on the interval (—I,1) with Neumann boundary conditions at the
endpoints —[ and [, and a ¢’-interaction of strength § at the origin. According to
[22, Lemma 3.3]

(4.14) e(B,l) < f% and liiglooe(ﬁ,l) = f%.
From the decomposition (4.10) and the characterizations (4.11), (4.12), (4.13) we
conclude
Tess(—A% s n) = [e(B,1), +00).
Clearly, ag, 5 < @ 5 holds in the sense of Definition 2.1 and hence

min gess (=A% 5) > €(6,1)

by Theorem 2.3 (ii). As we noted above, the construction in the proof can be
realized for any { > 0. Thus by (4.14)

4

~ 5

Step II. In view of Step I it suffices to show that for any A € [—4/32, +00) there
exists a singular sequence for the operator —Af% s corresponding to A. Let us fix
the axes (21, 22) such that the axis z; coincides with the side ¥; of the wedge €,
see Figure 4.4. Let us fix two functions ¢1,p2 € C§°([0,00)) with supp ¢; and
supp 1 in [0, 2) such that ¢1(x) = p2(z) = 1 in the vicinity of the point z = 0 and
0 < pa(x) < 1. Consider the sequence of functions

Min Cegs(— S',ﬂ) >

1 1 1 . _ :
Ynp(21,22) := %‘Pl(ﬁ‘xl - xg")l)cpz(glwzl)&gn (zg)e 2lm2l/Beiper e N,

where p > 0 is arbitrary and the sequence {x&”)} tends to 400 sufficiently fast, so
that the sequence of the supports supp vy, does not intersect the ray ¥, of the
wedge. We denote by ¢ p.0 and ¢, , g» \a the restriction of ¢, , onto  and R?\ Q,
respectively. Computing the traces of 1,, , from both sides of ¥; we find
2 1 1 . 2 2
Obnpals, = B%% (ﬁ|5171 - Ign)|)6lm1 = EwnvaQ'El = —B@[’mpmz\ﬁ‘&
with the normal v pointing outwards of Q. Thus we conclude from Theorem 3.3 (ii)
that the functions v, , are in dom (—Ag,’ ﬂ). Obviously, the sequence of the func-

tions {¢,,,} converges weakly to zero. Moreover, with the help of the dominated
convergence theorem we get

. e p
Jim gl = o1 ey [ e™4/7dn = Clon ey 0.
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One can check via direct computation that
A; = Do o2
- 5’,ﬁ¢n,p— (_@J’_p )wn,p'i' (H)7 n — 090,

which yields

(415) H(_ :5/,,8 + 4/62 _p2)¢n,p”L2(R2) — 0, n— +oo.
Therefore, the sequence
i '¢n D
w D= : y nE Na
P Wl
is a singular sequence for the operator —Aj, ; corresponding to the point —4/5%4p?.
Since the choice of p is arbitrary, the claim is proven. O

The next corollary is a consequence of Theorems 2.3 and 4.10.

Corollary 4.11. Let P = {Q}}7_, be a local deformation of the Lipschitz partition
P = {Q,R?\ Q) with Q being a wedge, assume that the chromatic number of P is
X = 2 and that the constants o, B > 0 satisfy

4
8= o and hence Tess(—As,0) = Tess(—As/ ) = [—a2/4,oo).

Let {M\p(—As,0)}32, and { A (—As 5) 132, be the extended sequences of the eigen-
values of —As o and —Agy 5 below —a?/4, respectively, and let N(—As) and
N(—Ays ) be as in Definition 2.2. Then the following statements hold:

(1) Me(—As ) < Ap(—As.a) for all k € N;

(ii) N(—Asa) < N(—As p).

The following corollary shows the existence of negative bound states of —Ags g
for locally deformed broken lines in R?. The assertion follows directly from [21,
Theorem 5.2] and Corollary 4.11. We mention that in [21] more general weakly
deformed curves were considered.

Corollary 4.12. Let P = {Q,R?\ Q} be a local deformation of the Lipschitz
partition P’ = {0, R?\ '}, where ' is a wedge with angle ¢ € (0,7]. In the case
o =7 let P # P'. Assume, in addition, that 0K is piecewise C-smooth. Then
N(=As.g) > 1 holds for any 5 > 0.

In the next proposition we show the existence of bound states for § and ¢’-
operators for special local deformations of the partition {R2 ,R? }.

Proposition 4.13. Let )y C R%r be a bounded Lipschitz domain and consider the
Lipschitz partition P = {Q}3_, of R?, where Qp = R\ Q) and Q5 = R% as in
Figure 4.6. Let o, B > 0 be constant and let the Schrédinger operators —As o and
—Asr g be associated with P. Then the following statements hold.

(1) Oess(—As.0) = [—a?/4,+0) and N(—=Asq) > 1;

(ll) Uess(*Aé’,ﬁ) = [74/ﬂ2, +OO) and N(*Ag/wg) > 1.
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R2

Q

Q3

FIGURE 4.6. The partition of R? via a straight line and a compact
Lipschitz contour, which consists of a bounded domain €27 and two
unbounded domains 5 and 3.

Proof. The characterization of the essential spectra in (i) and (ii) is a direct con-
sequence of Corollary 4.8. We shall show the assertion N(—As,) > 1 in (i) first.
For this we can assume that o3 is the straight line defined by zo = 0, where
r = (z1,22) € R% Let p € C°(R) be equal to one in the neighbourhood of the
origin and consider the sequence of functions

1
fn(x1,m2) := @(gm)e_(a/m“‘ € H'(R?), neN,

and the sequence of real values
a? 9
Ly = as5.0[fn] + Z”fn”L?(RZ)a neN.
From the definition of the form as, in (3.2),

2n
1 fall7emey = = lelZ2(w),
«

2 an
2 _ 12 2
19 fulBence) = — 19/ I3 + S Iol3eeys

and ||fn|223||2L2(223) = ”||80||2L2(1R) we obtain
2 2 2 a? 2
In = |V fallz2@eic2) = @llfalzillieais,) = allfalealliew,) + 7 1 fallzee)

2
= %”90,”%2(11&) - a||fn|212||2L2(212)~

Let D > 0 be the distance from Y53 to the farthest point of ¥15. For large n € N
2 —«
In < %”@/H%?(]R) — ae”*P|%,],

and hence for sufficiently large n € N we obtain that I, < 0, which proves the
existence of at least one bound state for the operator —A; 4.

In order to show that —As g has at least one bound state we note that —Aj 451
has at least one bound state by the considerations above. Hence Corollary 4.11
implies N(—As 5) > 1. O

The next result shows the existence of negative bound states of —Aj g for certain
hypersurfaces in R%. The assertion follows directly from and [23, Theorem 4.3] and
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Corollary 4.9. We mention that in [23] more general weakly deformed planes were
considered.

Corollary 4.14. Let P = {Q,R3\ Q} be a local deformation of the Lipschitz
partition P' = {R3,R3} such that P # P'. If, in addition, 9Q is C*-smooth and
admits a global natural parametrization in the sense of [16, §2-3, Definition 2| then
N(=Ay g) > 1 for all sufficiently small 5 > 0.

5. APPENDIX: SOBOLEV SPACES ON WEDGES AND A SYMMETRIC STAR GRAPH
WITH THREE LEADS IN R?2

In this appendix we verify the statements

2

12v3-2)" 1
min(—As4) = —% and min(—Ay g) > — <_>

9 7
from (3.10) and (3.11), where a, > 0 are real constants and the § and ¢’-interaction
is supported on the symmetric star graph with three leads in Figure 3.1. We first

provide some useful estimates and decompositions for H!-functions on wedges.

5.1. Sobolev spaces on wedges in R?. Let Q be a wedge with angle ¢ € (0, 7]
as in the figure below. The estimates for functions f € H*(2) in Lemma 5.1 and
Lemma 5.2 below will be used in the proofs of (3.10) and (3.11).

<2

2

FIGURE 5.1. A wedge 2 C R? with angle ¢ € (0, 7] and boundary
consisting of the two rays ¥; and Yo; the ray ¥ separates 2 into
two wedges 2 and 2s.

The first lemma is a reformulation of [38, Lemma 2.6].

Lemma 5.1. Let Q C R? be a wedge with angle o € (0, 7] and boundary 0. Then
for every f € HY () and all y > 0 the estimate

,YQ

2 2 2
(5.1) IV £llz2 02y — Y flocllzz00) = _WWHH(Q)
holds. For all ¢ € (0,7) and v > 0 there exists non-trivial f € H'(Q) such that the
left and right hand sides in (5.1) are equal.

We provide a variant of Lemma 5.1 which will be useful in the proof of (3.11).

Lemma 5.2. Let Q C R? be a wedge with angle o € (0, 7] and boundary 0S). Let ¥
be a ray separating Q into two wedges as in Figure 5.1. Then for every f € H(£2)
with fls =0 and all v > 0 the estimate

IVFlZ2c2) — Y FfloallF200) = =721 F 1720
holds.
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Proof. Let f € HY(Q) with f|s = 0 and denote the restrictions of f to the wedges
Q; and Q9 by f; and fa, respectively. Extend the wedge €23 with degree 1 < ¢ to
the half-plane Ri by gluing the wedge 2} with the angle 7 — ¢ as in Figure 5.2.

94 W
2

FIGURE 5.2. Extension of the wedge €27 to the half-plane Rf_ via
the wedge Q.

As fi € HY(Q) and fi|s, = 0 we can extend f; by zero to f € H*(R%). Then
fory>0

||Vf1||%2(ﬂl;tc2) —”Y||f1|21||%2(21) = ||Vf||2L2(R1;cz) - 7||f|8R3_H%2(a]Ri)

%

*’72Hf||%2(1gi) = *’YQHleQL?(Ql)

holds by Lemma 5.1. The same argument shows that for v > 0 the function
f2 € H(€y) satisfies

||Vf2||2L2(522;<(:2) - 7||f2|22||2L2(22) 2 —’Y2||f2\|%2(92)'

Summing up the above estimates we obtain the estimate in the lemma. ([

It turns out to be useful in the proof of (3.11) to decompose functions in H!()
as sums of even and odd functions with respect to the angle bisector of the wedge
Q.

Lemma 5.3. Let Q C R? be a wedge with angle ¢ € (0,7 and let X be the angle
bisector which separates Q into two wedges with angles ¢/2 € (0,7/2]. Then every
f € HY(Q) can be decomposed into the sum fo+ fo such that the following conditions
(a)-(e) hold:

(a) Jo, fe eHl(Q);

(b) (f07 fe)L?‘(Q) =0;
<C> (me er)LQ(Q;Cz) =0;
(d) fe|21 = fe|22 and fo|21 = _fo|22;'
(e) fo|2 =0.

Proof. Fix the Cartesian coordinate system such that the vertex of the wedge € is
the origin and the angle bisector is the ordinate axis as in Figure 5.3.
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O0————

F1GURE 5.3. The wedge 2 in the Cartesian coordinate system.

Let C5°(Q) == {fla: f € C5°(R?)} and note that for hy, hy € C§°(Q) with
hi(z,y) = hi(—z,y) and ha(z,y) = —hao(-2,y)
the equality
(5.2) (h1,h2)r20) =0
holds. Let us introduce the mappings
f(z,y) + f(=z,y)
9 )

Poaao: C°(Q) — C°(Q), (Pogaof)(z,y) = f(z,y) _2f(—x,y)7

and define fo := Peven,of and fo := Pogqa,0f. Then obviously, f = f. + f,, and
fe and f, satisfy (d) and (e) by their definition. Condition (b) holds according to
(5.2). Computing partial derivatives we get

(alf)(x’y) — (81f)(—x,y)

Peven,O: Cgo (ﬁ) — Ogo(ﬁ)’ (Peven,Of)(xay) =

(alf)(x7y) + (81f)(—a:,y)

orf. = . Ofe= } ,
ane _ (82f)(x’ y) +2(62f)(—1', y) 7 82fo _ (an)(‘r7 y) _2(62f)(_x> y) .

Hence, according to (5.2) we conclude

(81fe781f0)L2(Q) =0 and (62fe,62f0)L2(Q) =0.
Therefore, condition (c) holds as well. Note that

[ Peven,oflar) < Ifllar@  and  [[Podaofllmr@) < I flla @),

where ||f\|%11(9) = ”fH%Z(Q) + ||Vf||2L2(Q;C2). Hence, the operators Peyen,o and
Poaq,0 can be extended by continuity to operators Peyen: Hl(Q) — HI(Q) and
Poga: HY(Q) — HY(Q) with dom Peyep, = dom Pogq = HY(Q). For f € H'(Q)
define fo := Poyenf and f, := Poqqf. Clearly, f = fo + f, holds, and the conditions
(a), (b), (¢), (d) and (e) are satisfied. This completes the proof of the lemma. O
5.2. Proof of (3.10). The assertion mino(—As,) = —%2 is essentially a conse-
quence of Lemma 5.1. In fact, recall first that the operator —As , corresponds to
the quadratic form

Galfl = [V flTe@ece) — alflslliz), domase = H'(R?).
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Let f € dom as o such that || f| 122y = 1, and denote the restrictions by fi. := fla,,
k =1,2,3. From Lemma 5.1 with v = /2 and ¢ = 27/3 we obtain the estimates
2
o o'
IV fill72 02y — §ka|aszk||%2(a§zk) > *g”fk”%%gk)

for k =1,2,3. Since

(5.3)

3 3
(0%
W.alf] =D IV Il 2o — 3 > I feloelZ2 00,
k=1 k=1

and Zz=1 ||ka%2(Qk) = 1 we conclude from (5.3) that

o)
asalf] 2 ——
salf12 -5
and hence mino(—As,q) > 7%2. Furthermore, according to Lemma 5.1 there exist

fr. € HY() such that equality holds in (5.3). This yields

a2

mino(—Asq) = —5
and completes the proof of (3.10). We remark that the estimate mino(—As4) <

—%2 follows also from [15, Theorem 3.2].

5.3. Proof of (3.11). The proof of the estimate

2
min(—Ay g) > —<12\[9_2> %

is carried out in three steps, followed by a separate proof of the inequality (5.4)
below.

Step I. Recall first that —Aj;s 3 corresponds to the quadratic form

3
a5',3[f] = Z ”vka%Z(Qk;CQ) - B_1||f1|212 - f2|212‘|%2(212)
k=1

- 571||f2|223 - f3‘223||%2(223) - ﬂ71|‘f3‘213 - f1|213||2L2(213)7

3
dom as . = @ Hl(Qk),
k=1
where fr = fla., kK = 1,2,3. We split the problem into two separate problems for
odd and even components. For f € domas g with |[f||z2r2) = 1 we decompose
the restrictions fr = f|q, as in Lemma 5.3. Let {fr.c}3_; and {fr.o}i_; be the
corresponding even and odd components, and let

01 := fiels, = fieloiss M = fiol2 = —fi0/50s)
02 := foelsas = foeloias N2 = fa,050s = —f2,0/510>
03 = f3elnis = f3,0]50s5 N3 1= f3,0l21 = —f3,0[%0s-

Using Lemma 5.3 we obtain

3 3

1

05,8111 = D IV frelizucn + D IV kol fauic) — B 5
k=1 k=1
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where the value S is given by
162 = 62 +m1 + 12 oy + 1102 = O3+ 12+l ge )+ (165 = 00 41+ o

here we have identified L*(¥;;) = L?(R4), 4,7 = 1,2,3. We shall show later that
the above term can be estimated by

3 3
(5.4) S<(d-w(l-1) Z 1050172, ) + (4 + 3wt ™) Z 1172 .
k=1 k=1
for all t > 0 and all w € [0,1]. With the help of this inequality we find
(5.5) as g[f] = Ce + Co,

where C, and C,, are given by

3
Ce = Z ||ka:,e| 2
k=1

3
1
2(Q45C2) ~ 5(4 —w(d=1)) > 10:l72.)
k=1

and
3 1 3
=) IViroliz o) — 3(4 + 3wt )Y k32 -
k=1 k=1

Step II. In this step we estimate C, and C,. We start with C.. Applying
Lemma 5.1 with v = ?(4 —w(1—1)) and ¢ = 27/3 to the functions {fxc}i_, we
get

1 2
IV frellie(uce) — 5(4 —w(l - t))”@k”%Z(ﬂh) > = 352 (4—w(@=1))" [ frell iz

for k =1,2,3. Summing up these three inequahtles we find

(5.6) C, >

1

(Qk)

for all t > 0 and all w € [0,1]. Next we estimate CO. Note that fi |y, = 0 for
k = 1,2,3, and hence we can apply Lemma 5.2 with v = %(4 + 3wt™1) to the
functions {fxo}3_,. This yields

1 _ _
||ka,o||iz(nk;c2)—5(44‘30”5 el Z2 e,y > 4+3wt™)’ 1 fr0ll 720

~

for £k =1,2,3. Summing up these three inequahtles gives

(5.7) Co > — 4ﬂ2 (44 3wt™1) ZIIfkolle (@)

for all t > 0 and all w € [0, 1].
Step III. Note that

Z ”fke
k=1
Thus, (5.5), (5.6) and (5.7) imply

(5.8) as g[f] > —inf min max {;(4 —w(l- t))Q’ i (4 + 3w> } 1

>0 wel0,1]

)+ ||fk0||L2(Qk ) = HfH%Q(RQ) =1
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and for (3.11) to hold it remains to show that the value on the right hand side is

equal to 7(%)2#. For this consider the functions

1 3w)®
(4—w(1—t))2 and My (w,t) ::4<4—|—> .

Ml(w,t) = n

Wl =

We have
16 16
M;(0,1) = 3 M5(0,1) =4, and M;(w,t) > 3 t>1,wel0,1],
and therefore
16

5.9 i i Mi(w,t), Ma(w,t)} = —.
(59) i) i, max {M (@, 1), Ma(w, D)} = 5

Suppose now that ¢t € (0,1) is fixed. Then M;(-,t) is continuous and decreasing,
whereas My (-, t) is continuous and increasing, and a straightforward computation
shows that for

8 —4v/3)t

— _(B-avB)t € [0, 1]
3vV3 21 —t)t

we have My (wy,t) = Ma(ws,t). Hence for ¢ € (0, 1) fixed we find

min_max { M (w,t), Ma(w,t)} = M (w.,t) = Ma(ws, )

w€el0,1]
2
1 3(8 — 4v/3)
=4+ ——"] .
4 3v3+2(1 —t)t
Next, we minimize with respect to ¢ € (0,1). Clearly, the above value is minimal
in ¢t € (0,1) if t = 1/2. Therefore we obtain

*

2
12v/3 -2
(5.10) min  min max{Mj(w,t), Ma(w,t)} = Ma(w«,1/2) = <\f> ]

te(0,1) wel0,1] 9

Now (5.9) and (5.10) together imply
2 2
16 [ 12v/3 -2 12/3 -2
Er;igwrél[g{llﬁax{Ml(w,t),Mg(w,t)}:min {3, (g) }: <\/g;> ,

and hence the assertion (3.11) on the minimum of the spectrum of —Ay g follows
from (5.8).

Proof of the estimate (5.4). Let 01,0,,03 € L*(Ry) and ny,n2,73 € L*(Ry). We
shall not use an index for the norm in L?(R,) in this proof. From

161 — 02 + m1 +m2l> < 2161 + m||? + 2]162 — n2]?,
162 — 63 + 12 + n3ll” < 2(|62 + n2|* + 2/|65 — n31?,
05 — 01 + 03 + 1|1 < 2/|05 + n3]|* + 2[|61 — m %,

and the parallelogram identity we conclude

3 3
(5.11) S <2 ([16k = mell® + 110x +mell?) <43 (10l + o ®)-
k=1 k=1
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On the other hand we have
(5.12)

S =101 = Oaf|* + 1602 — O3]1* + (165 — 111 + [l + m2l® + Iz + m3]1% + 13 + m|?
+2Re [(61 — 02,11 +12)] + 2Re [(02 — 03,12 + 13) ] + 2Re [(03 — 01,13 + m) |
= (161 = 021> + (|62 — 051 + 115 — O1[1* + Il + n2ll* + ln2 + nsll* + l1ns + m[|®
+2Re (01,72 — n3)]| + 2Re [(02,7m3 — m1) ] + 2Re [(3,m1 — 12)]

and the Cauchy-Schwarz inequality together with the inequality 2ab < ta? + %b2,
a,b> 0,1 >0, yields

‘QRQ [((93, m — 7]2)

Combining the latter with
1,5 = 1,2,3, we arrive at

S <161 — 02| + 1162 — O5]|* + (1605 — 611> + 4llm1[|* + 4llmall* + 4llms ]|
(513) 2 2 2 1 2 2 2
+ (0111 + 10207 + 110311%) + +(llm — n2ll* + [Im2 — nsl1* + lIns — m||?)
for all ¢ > 0. Moreover, as
161 — 6| + (|62 — O5])> + (|65 — 61]> = 3]|61]|> + 3]|62]% + 3]|63]|% — [|61 + 62 + 652
< 3(161]” + 31621 + 3]|65]1°,

]
[2Re [(62,m5 = m)]
]
(5.12

| < 206301l — o]l < 10311 + Lo — ol
5.12)

and making use of [|n; +1;(|* < 2[[n:[|* + 2[ln;1|*,

and analogously

= n2ll + lnz = nsll® + llms = ma1* < 3lmu 1> + 3]Im2)1* + 3[Ima 1%,
we can further estimate (5.13) by

3 3
(5.14) S<B+) D 10ul”+ D (4+ Dllmel>
k=1 k=1
In order to obtain the estimate (5.4) let w € [0, 1], consider S = wS + (1 —w)S and
estimate wS as in (5.14) and (1 — w)S as in (5.11). O
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