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Abstract
In this paper, the approximation of Dirac operators with general 𝛿-shell poten-
tials supported on 𝐶2-curves inℝ2 or 𝐶2-surfaces inℝ3, which may be bounded
or unbounded, is studied. It is shown under suitable conditions on the weight
of the 𝛿-interaction that a family of Dirac operators with regular, squeezed
potentials converges in the norm resolvent sense to the Dirac operator with the
𝛿-shell interaction.
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1 INTRODUCTION

In mathematical physics, singular potentials supported on a set Σ of measure zero are often used as replacements of
potentials that have large values in a vicinity of Σ and small values elsewhere, assuming that such idealized models have
similar (spectral) properties as the original ones. Nonrelativistic Schrödinger operators with 𝛿-potentials supported on
points were already considered in the early days of quantum mechanics [39, 55], see also the monograph [1], and then
later also Schrödinger operators with 𝛿-potentials supported on curves inℝ2 orℝ3, surfaces inℝ3, and similar structures
in higher dimensions were investigated, see, for example, [15, 19, 32], and the references therein. Concerning relativistic
Dirac operators with a singular 𝛿-potential, the one-dimensional case was first studied in the 1980s [1, 33], and further
investigated in [18, 22, 23, 36, 47]. Recently also two- and three-dimensional Dirac operators coupledwith 𝛿-shell potentials
supported on general curves in ℝ2 and surfaces in ℝ3 were treated; cf. [2, 3, 10, 11, 24] and the discussion below.
In all of the above situations, it is necessary to justify that the differential operators with the singular interactions have

indeed similar properties as the original models with regular potentials. One way to do this is to prove suitable approx-
imation results: one constructs a family of potentials that converge to the idealized singular interaction and shows that
the associated differential operators also converge in the norm resolvent sense to the idealized operator—then also the
spectral properties of the approximating and the idealized models are approximately the same [38, 50]. For Schrödinger
operators with singular potentials this approximation problem has been solved under the assumption that the interaction
support is a sufficiently smooth hypersurface in ℝ𝜃, 𝜃 ≥ 1; cf. [4], and references therein.
The literature on the approximation of Dirac operators with singular potentials is less complete than for their nonrela-

tivistic counterparts. Choose units such that the speed of light 𝑐 and the reduced Planck constant ℏ are both equal to one.
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Then, the Dirac operator with a singular 𝛿-potential in ℝ𝜃, 𝜃 ∈ {1, 2, 3}, is formally given by

−i
𝜃∑

𝑗=1

𝛼𝑗𝜕𝑗 + 𝑚𝛽 + 𝑉𝛿Σ, (1.1)

where 𝛿Σ denotes the 𝛿-distribution supported on a point inℝ or the boundaryΣ of a bounded or unbounded domain inℝ2

orℝ3,𝑉 is amatrix-valued function onΣmodeling the position-dependent strength of the singular interaction,𝑚 ∈ ℝ, and
𝛼1, … , 𝛼𝜃, and𝛽 denote theDiracmatrices defined in (1.15)–(1.16) below (in dimension 𝜃 = 1 one canuse the same choice as
for 𝜃 = 2). The first approximation result in dimension one goes back to Šeba [51], where the norm resolvent convergence
for so-called electrostatic (i.e., 𝑉 = 𝜂𝐼2) and Lorentz scalar (i.e., 𝑉 = �̃�𝛽) interactions supported on a point was proved.
In [51], it already turned out that one has to renormalize the interaction strength in order to obtain convergence, that is,
when 𝑣𝜀 → 𝜂𝛿Σ in the distributional sense, then −i𝛼1𝜕𝑥 + 𝑚𝛽 + 𝑣𝜀𝐼2 does not converge to −i𝛼1𝜕𝑥 + 𝑚𝛽 + 𝜂𝐼2𝛿Σ, but to
a similar operator, where the coefficient of 𝛿Σ depends in a nonlinear way on 𝜂; for Lorentz scalar potentials a similar
effect appears as well. Šeba suggested that this renormalization is related to Klein’s paradox for the Dirac equation. Later
Hughes proved in [35, 36] strong resolvent convergence for general point interactions and also determined the exact form
of the renormalization in the one-dimensional situation. Recently, Tušek proved norm resolvent convergence in the one-
dimensional case for Dirac operators with general point interactions in [56]. In the two- and three-dimensional setting, the
approximation problem is not as well-studied as in dimension one and so far there exist only results on strong resolvent
convergence. In dimension three, the approximation of Dirac operators with purely electrostatic or Lorentz scalar 𝛿-shell
potentials that fulfill a certain smallness condition supported on boundaries of bounded domains was investigated in [42,
43]. The approximation of two-dimensional Dirac operators with electrostatic, Lorentz scalar, and anomalous magnetic
𝛿-shell potentials supported on closed bounded curves and on a straight line was considered in [24] and [12], respectively.
We note that also in the two and three-dimensional setting a renormalization of the interaction strength was observed in
[12, 24, 43].
In this paper, we study the approximation problem for two- and three-dimensional Dirac operators with 𝛿-shell poten-

tials and improve the present state of art in the following three ways: under suitable conditions we show (i) norm resolvent
convergence on (ii) bounded and unbounded supports Σ with (iii) general position-dependent interaction strengths 𝑉.
More precisely:

(i) Instead of strong resolvent convergencewe prove the norm resolvent convergence of the approximating family, which
has not been established in themultidimensional situation so far. This type of convergence ensures that the spectrum
of the limit operator 𝐻𝑉 can be completely characterized by the spectra of the approximating operators and it also
implies the convergence of the related spectral projections.

(ii) Instead of bounded curves inℝ2, the straight line inℝ2, or bounded surfaces inℝ3, we treat a general class of bounded
and unbounded interaction supports Σ which can be described by finitely many rotated graphs of 𝐶2-functions with
bounded derivatives (see Hypothesis 2.1) and which includes, in particular, graphs of 𝐶2-functions with bounded
derivatives and boundaries of bounded 𝐶2-domains.

(iii) Instead of considering only electrostatic, Lorentz scalar, and anomalous magnetic interactions (which can be
described by three real-valued functions) we allow general symmetric 2 × 2 or 4 × 4 matrix-valued functions as
interaction strengths in dimensions two or three, respectively, and provide an explicit formula for the nonlinear
renormalization when passing to the limit.

In the following, we explain the approximation procedure and our main result in more detail. For this some notation
needs to be fixed. We denote the space dimension by 𝜃 ∈ {2, 3} and set 𝑁 = 2 for 𝜃 = 2 and 𝑁 = 4 for 𝜃 = 3. Let Σ ⊂ ℝ𝜃

be the boundary of a bounded or unbounded 𝐶2-domain Ω+ ⊂ ℝ𝜃 that satisfies Hypothesis 2.1. The curve or surface Σ
splitsℝ𝜃 into two disjoint partsΩ+ andΩ− ∶= ℝ𝜃 ⧵ Ω+, and 𝜈 is the unit normal vector field at Σ pointing outward ofΩ+.
For 𝑢 ∶ ℝ𝜃 → ℂ𝑁 wewrite 𝑢± ∶= 𝑢 ↾ Ω± and we denote the Dirichlet trace operator by 𝒕±Σ ∶ 𝐻1(Ω±;ℂ

𝑁) → 𝐻1∕2(Σ; ℂ𝑁),
where 𝐻𝑠 are the 𝐿2-based Sobolev spaces. Moreover, 𝛼1, … , 𝛼𝜃, 𝛽 ∈ ℂ𝑁×𝑁 are the Dirac matrices defined in (1.15)–(1.16)
and we make use of the notations

𝛼 ⋅ ∇ ∶=

𝜃∑
𝑗=1

𝛼𝑗𝜕𝑗 and 𝛼 ⋅ 𝑥 ∶=

𝜃∑
𝑗=1

𝛼𝑗𝑥𝑗, 𝑥 = (𝑥1, … , 𝑥𝜃) ∈ ℂ𝜃.
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We introduce for𝑚 ∈ ℝ and 𝑉 ∈ 𝐿∞(Σ;ℂ𝑁×𝑁) such that 𝑉(𝑥Σ) = (𝑉(𝑥Σ))
∗ for 𝜎-a.e. 𝑥Σ ∈ Σ in 𝐿2(ℝ𝜃; ℂ𝑁) the operator

𝐻𝑉𝑢 ∶= (−i(𝛼 ⋅ ∇) + 𝑚𝛽)𝑢+ ⊕ (−i(𝛼 ⋅ ∇) + 𝑚𝛽)𝑢−,

dom𝐻𝑉 ∶=

{
𝑢 ∈ 𝐻1(Ω+;ℂ

𝑁) ⊕ 𝐻1(Ω−;ℂ
𝑁) ∶ 𝑖(𝛼 ⋅ 𝜈)(𝒕+Σ𝑢+ − 𝒕−Σ𝑢−) +

𝑉

2
(𝒕+Σ𝑢+ + 𝒕−Σ𝑢−) = 0

}
. (1.2)

This is a rigorous definition of the formal operator (1.1), whose self-adjointness and spectrum was studied under various
assumptions on the coefficients𝑉 and the interaction supportΣ in [2, 3, 5, 6, 10, 11, 16, 24] bymeans of boundary triples and
potential operators. Furthermore, in [48, 49] a sufficient condition for the self-adjointness of 𝐻𝑉 was derived for a wide
class of bounded and unbounded 𝐶2-smooth interaction supports and bounded 𝐶1-smooth interaction matrices. Under
the general assumptions that we are going to make in this paper even the self-adjointness of𝐻𝑉 is not yet established, but
will follow as a byproduct of ourmain result below as𝐻𝑉 is the norm resolvent limit of a sequence of self-adjoint operators.
It is the main goal of this paper to show that the operator𝐻𝑉 in (1.2) can be approximated in the norm resolvent sense

by Dirac operators with strongly localized potentials. To introduce the latter operators, define the map

𝜄 ∶ Σ × ℝ → ℝ𝜃, 𝜄(𝑥Σ, 𝑡) ∶= 𝑥Σ + 𝑡𝜈(𝑥Σ), (1.3)

and for 𝜀 > 0 the set

Ω𝜀 ∶= 𝜄(Σ × (−𝜀, 𝜀)), 𝜀 > 0. (1.4)

We callΩ𝜀 tubular neighborhood of Σ. Hypothesis 2.1 and Proposition 2.4 imply that there exists 𝜀1 > 0 such that 𝜄|ℝ×(−𝜀1,𝜀1)

is injective and hence, all points in Ω𝜀1 can be uniquely described by the map 𝜄. To define the above mentioned strongly
localized potentials choose

𝑞 ∈ 𝐿∞((−1, 1); ℝ) with ∫
1

−1

𝑞(𝑠) 𝑑𝑠 = 1 (1.5)

and

𝑉 ∈ 𝑊1
∞(Σ;ℂ𝑁×𝑁) such that 𝑉(𝑥Σ) = (𝑉(𝑥Σ))

∗ for 𝜎-a.e. 𝑥Σ ∈ Σ, (1.6)

where 𝑊1
∞ denotes the first order 𝐿∞-based Sobolev space and 𝜎 is the Hausdorff measure on Σ. Since 𝜄|ℝ×(−𝜀1,𝜀1) is

injective, we can define for 𝜀 ∈ (0, 𝜀1)

𝑉𝜀(𝑥) ∶=

{ 1

𝜀
𝑉(𝑥Σ)𝑞

( 𝑡

𝜀

)
, if 𝑥 = 𝜄(𝑥Σ, 𝑡) ∈ Ω𝜀,

0, if 𝑥 ∉ Ω𝜀,
(1.7)

and for𝑚 ∈ ℝ and 𝜀 ∈ (0, 𝜀1) the operator

𝐻𝜀𝑢 ∶= −i(𝛼 ⋅ ∇)𝑢 + 𝑚𝛽𝑢 + 𝑉𝜀𝑢, dom𝐻𝜀 ∶= 𝐻1(ℝ𝜃; ℂ𝑁). (1.8)

Note that 𝐻𝜀 is self-adjoint in 𝐿2(ℝ𝜃; ℂ𝑁), as the function 𝑉𝜀 ∈ 𝐿∞(ℝ𝜃; ℂ𝑁×𝑁) is symmetric and the unperturbed Dirac
operator 𝐻 = 𝐻𝜀 − 𝑉𝜀 defined on𝐻1(ℝ𝜃; ℂ𝑁) is self-adjoint in 𝐿2(ℝ𝜃; ℂ𝑁); cf. Section 2.3.
The sequence 𝑉𝜀 converges to 𝑉𝛿Σ in the sense of distributions. However, as in [12, 24, 35, 36, 43, 51, 56] the sequence

𝐻𝜀 does not converge to𝐻𝑉 , but to a similar operator with a renormalized interaction strength𝑉. In the present situation,
this renormalization is expressed with the help of the matrix-valued function

𝑆 = sinc
(
1

2
(𝛼 ⋅ 𝜈)𝑉

)
cos

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)−1

, (1.9)

where analytic functions ofmatrices are defined via the corresponding power series, or equivalently via theRiesz–Dunford
functional calculus. Now, we are prepared to formulate the main result of this paper.
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Theorem 1.1. Let 𝑞,𝑉, and 𝜀2 > 0 be as in (1.5), (1.6), and (3.11), and assume that for some 𝑧 ∈ ℂ ⧵ ((−∞,−|𝑚|] ∪ [|𝑚|,∞))

the condition

‖𝑉‖𝑊1
∞(Σ;ℂ𝑁×𝑁)‖𝑞‖𝐿∞(ℝ;ℝ) < 𝑋𝑧 (1.10)

holds with 𝑋𝑧 given by (3.30). Furthermore, assume that

cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁) (1.11)

and set𝑉 = 𝑉𝑆, where 𝑆 is defined as in (1.9). Then, the operator𝐻𝑉 in (1.2) is self-adjoint in 𝐿2(ℝ𝜃; ℂ𝑁), 𝑧 ∈ 𝜌(𝐻𝜀) ∩ 𝜌(𝐻𝑉)

for all 𝜀 ∈ (0, 𝜀2), and for any 𝑟 ∈ (0, 1∕2) there exists 𝐶 > 0 such that

‖(𝐻𝜀 − 𝑧)−1 − (𝐻𝑉 − 𝑧)−1‖
𝐿2(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁)

≤ 𝐶𝜀1∕2−𝑟, 𝜀 ∈ (0, 𝜀2).

In particular,𝐻𝜀 converges to𝐻𝑉 in the norm resolvent sense as 𝜀 → 0+.

The main assumption in Theorem 1.1 is condition (1.10), which means that 𝑉 has to be small in a suitable sense and
which also appears in a similar form in [43], where the strong resolvent convergence of 𝐻𝜀 for some special potentials
𝑉 was proved. The condition for 𝑉 can be optimized by choosing 𝑞 =

1

2
𝜒(−1,1), where 𝜒(−1,1) denotes the characteristic

function of the interval (−1, 1), but since for some applications alsomore general 𝑞 can be useful, we keep themore general
formulation of (1.10); a more detailed discussion of (1.10) can be found in Remark 4.6. We shall show later in Lemma 3.13
that 𝑋𝑧 ≤ 𝜋

4
, if Σ is compact and smooth. Let us also mention that one can replace (1.10) by the more abstract conditions

(i) and (ii) from Proposition 3.12; cf. Remark 4.5.
In the following, let us consider the special choice

𝑉 = 𝜂𝐼𝑁 + 𝜏𝛽 + 𝜆i(𝛼 ⋅ 𝜈)𝛽, (1.12)

where 𝜂, 𝜏, 𝜆 ∈ 𝑊1
∞(Σ;ℝ) are real-valued functions (or simply real constants) that model electrostatic, Lorentz scalar, and

anomalousmagnetic interactions, respectively. Such potentials𝑉 are of special physical interest and the existing literature
on Dirac operators with 𝛿-shell potentials mostly focuses on this case. It turns out that for such 𝑉 the renormalization
matrix in (1.9) has the simple form

𝑆 =
2√
𝑑
tan

(√
𝑑

2

)
𝐼𝑁,

where 𝑑 = 𝜂2 − 𝜏2 − 𝜆2, and (1.11) simplifies, see (1.13). Note that analogous conditions and renormalizations are given in
[24, Theorem 2.6], [42, Theorem IV.2], and [51, Remarks]. In the present situation, Theorem 1.1 reduces to the following
corollary.

Corollary 1.2. Let 𝑞, 𝑉, and 𝜀2 > 0 be as in (1.5), (1.12), and (3.11), respectively, with 𝜂, 𝜏, 𝜆 ∈ 𝑊1
∞(Σ;ℝ), 𝑑 = 𝜂2 − 𝜏2 − 𝜆2,

and assume that for some 𝑧 ∈ ℂ ⧵ ((−∞,−|𝑚|] ∪ [|𝑚|,∞)) condition (1.10) holds with 𝑋𝑧 given by (3.30). Furthermore,
assume

inf
𝑥Σ∈Σ,𝑘∈ℕ0

|(2𝑘 + 1)2𝜋2 − 𝑑(𝑥Σ)| > 0 (1.13)

and let 𝑉 =
2√
𝑑
tan(

√
𝑑∕2)𝑉. Then, 𝐻𝑉 in (1.2) is self-adjoint in 𝐿2(ℝ𝜃; ℂ𝑁), 𝑧 ∈ 𝜌(𝐻𝜀) ∩ 𝜌(𝐻𝑉) for all 𝜀 ∈ (0, 𝜀2), and for

any 𝑟 ∈ (0, 1∕2) there exists 𝐶 > 0 such that

‖(𝐻𝜀 − 𝑧)−1 − (𝐻𝑉 − 𝑧)−1‖
𝐿2(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁)

≤ 𝐶𝜀1∕2−𝑟, 𝜀 ∈ (0, 𝜀2).

In particular,𝐻𝜀 converges to𝐻𝑉 in the norm resolvent sense as 𝜀 → 0+.
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In the previous two results, we stated conditions on a given 𝑉 ensuring that 𝐻𝜀 converges in the norm resolvent sense
to 𝐻𝑉 . In the following corollary, we address the inverse question and state conditions on 𝑉 such that 𝐻𝑉 is the limit of
the operators𝐻𝜀.

Corollary 1.3. Let 𝑉 ∈ 𝑊1
∞(Σ;ℂ𝑁×𝑁) such that 𝑉(𝑥Σ) = (𝑉(𝑥Σ))

∗ for 𝜎-a.e. 𝑥Σ ∈ Σ, 𝜀2 > 0 be as in (3.11), and assume that
for some given 𝑧 ∈ ℂ ⧵ ((−∞,−|𝑚|] ∪ [|𝑚|,∞))

‖(𝛼 ⋅ 𝜈)𝑉‖𝑊1
∞(Σ;ℂ𝑁×𝑁) < 2 tanh

(
𝑋𝑧‖𝛼 ⋅ 𝜈‖𝑊1
∞(Σ;𝐶𝑁×𝑁)

)
(1.14)

holds. Moreover, set 𝑞 =
1

2
𝜒(−1,1) and

𝑉 = 2(𝛼 ⋅ 𝜈) arctan
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)
= 2(𝛼 ⋅ 𝜈)

∞∑
𝑛=0

(−1)𝑛
((𝛼 ⋅ 𝜈)𝑉)2𝑛+1

22𝑛+1(2𝑛 + 1)
,

and let𝐻𝜀 be the operator defined in (1.8) with these specific choices of 𝑞 and 𝑉. Then, the operator𝐻𝑉 in (1.2) is self-adjoint
in 𝐿2(ℝ𝜃; ℂ𝑁), 𝑧 ∈ 𝜌(𝐻𝜀) ∩ 𝜌(𝐻𝑉) for all 𝜀 ∈ (0, 𝜀2), and for any 𝑟 ∈ (0, 1∕2) there exists 𝐶 > 0 such that

‖(𝐻𝜀 − 𝑧)−1 − (𝐻𝑉 − 𝑧)−1‖
𝐿2(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁)

≤ 𝐶𝜀1∕2−𝑟, 𝜀 ∈ (0, 𝜀2).

In particular,𝐻𝜀 converges to𝐻𝑉 in the norm resolvent sense as 𝜀 → 0+.

Let us briefly explain the strategy to prove Theorem 1.1 and the structure of this paper. First, in Section 2 we collect some
preliminary results regarding the geometry of Σ, the free Dirac operator, and some associated potential and boundary
integral operators (see also Appendix C). In Proposition 3.2, we then prove the resolvent formula

(𝐻𝜀 − 𝑧)−1 = (𝐻 − 𝑧)−1 − 𝐴𝜀(𝑧)𝑉𝑞(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1𝐶𝜀(𝑧),

where 𝐻 is the free Dirac operator (see (2.8)) and 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), 𝐶𝜀(𝑧) are suitable integral operators defined in (3.4) that
are bounded between various 𝐿2-spaces; cf. Proposition 3.1. This is a standard approach that has been applied in other
approximation problems for differential operators with singular potentials, see, for example, [1, 4, 43, 51]. Typically, the
convergence of 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), 𝐶𝜀(𝑧) is analyzed in the corresponding 𝐿2-setting. In the situation of Dirac operators with
singular potentials,𝐵𝜀(𝑧) converges only strongly in 𝐿2 and hence, via this approach only the strong resolvent convergence
of𝐻𝜀 can be shown; cf. [43]. Contrary to that, we investigate the convergence of 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), 𝐶𝜀(𝑧) between Sobolev-type
spaces. For this, a certain shift operator, which allows to compare the values of functions in 𝑥Σ ∈ Σ and in 𝑥Σ + 𝜀𝑠𝜈(𝑥Σ),
plays a crucial role; cf. Proposition 3.3. The condition (1.10) in Theorem 1.1 is needed to ensure that (𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)

−1 is
uniformly bounded in 𝜀. Finally, using the limiting behavior of 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), 𝐶𝜀(𝑧) we compute in Section 4 the limit of
(𝐻𝜀 − 𝑧)−1 for 𝜀 → 0+ and show that it indeed coincideswith the resolvent of𝐻𝑉 . InAppendicesA andB,we provide some
technical calculations that are necessary for the definition of the tubular neighborhood of Σ and the convergence analysis.

1.1 Notations

By 𝜃 ∈ {2, 3} we denote the space dimension and we set 𝑁 = 2 for 𝜃 = 2 and 𝑁 = 4 for 𝜃 = 3. Recall that the Pauli spin
matrices are

𝜎1 =

(
0 1

1 0

)
, 𝜎2 =

(
0 −i
i 0

)
, and 𝜎3 =

(
1 0

0 −1

)
.

With their help the Dirac matrices 𝛼1, … , 𝛼𝜃, 𝛽 ∈ ℂ𝑁×𝑁 are defined for 𝜃 = 2 by

𝛼1 ∶= 𝜎1, 𝛼2 ∶= 𝜎2, and 𝛽 ∶= 𝜎3, (1.15)
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2504 BEHRNDT et al.

and for 𝜃 = 3 by

𝛼𝑗 ∶=

(
0 𝜎𝑗
𝜎𝑗 0

)
for 𝑗 = 1, 2, 3 and 𝛽 ∶=

(
𝐼2 0

0 −𝐼2

)
, (1.16)

where 𝐼2 is the 2 × 2-identity matrix. We will often make use of the notations

𝛼 ⋅ ∇ ∶=

𝜃∑
𝑗=1

𝛼𝑗𝜕𝑗 and 𝛼 ⋅ 𝑥 ∶=

𝜃∑
𝑗=1

𝛼𝑗𝑥𝑗, 𝑥 = (𝑥1, … , 𝑥𝜃) ∈ ℂ𝜃.

The letter 𝐶 > 0 always denotes a constant which may change in-between lines and does not depend on the space
variables or on 𝜀. The symbol | ⋅ | is used for the absolute value, the Euclidean vector norm, or the Frobenius norm of a
number, a vector, or amatrix, respectively.Wewrite ⟨⋅, ⋅⟩ for the Euclidean scalar product inℂ𝑛, 𝑛 ∈ ℕ, which is anti-linear
in the second argument. Eventually, the application of an analytic function to amatrix𝐴 is defined via the associated power
series, whenever it converges. This implies, in particular, for two holomorphic functions 𝑓, 𝑔 that 𝑓(𝐴)𝑔(𝐴) = (𝑓𝑔)(𝐴).
We will also make use of the equivalent definition of 𝑓(𝐴) via the Riesz–Dunford calculus

𝑓(𝐴) = −
1

2𝜋i ∫𝜕Ω 𝑓(𝑧)(𝐴 − 𝑧)−1𝑑𝑧, (1.17)

where Ω ⊂ ℂ is such that all eigenvalues of 𝐴 belong to Ω, 𝑓 is holomorphic in a neighborhood of Ω, and the integral is
understood as a complex line integral; cf. [27, Chapter VII, Section 4] and [31, Chapter VIII.3.1].
Next, let , be Hilbert spaces and let 𝐴 be a linear operator from  to . The domain, kernel, and range of 𝐴 are

denoted by dom𝐴, ker𝐴, and ran𝐴, respectively. If 𝐴 is bounded and everywhere defined, then we write ‖𝐴‖→
for its operator norm. If  =  and 𝐴 is closed, then the resolvent set and the spectrum 𝐴 are denoted by 𝜌(𝐴) and
𝜎(𝐴), respectively.
Following [44, Appendix B], we call (0,1) a compatible pair, if0 and1 are two Hilbert spaces which are continu-

ously embedded in a bigger Hausdorff topological vector space. In this situation, one can construct with the K-method (or
various other methods, see [25, 26, 37, 44], which yield the same spaces with equivalent norms) a family of Hilbert spaces
[0,1]𝜏, 𝜏 ∈ (0, 1), such that0 ∩1 ⊂ [0,1]𝜏 ⊂ 0 +1 for all 𝜏 ∈ (0, 1). Assume that (0,1) is another compat-
ible pair of Hilbert spaces. Recall that for two bounded operators 𝐴0 ∶ 0 → 0 and 𝐴1 ∶ 1 → 1 such that 𝐴0𝑢 = 𝐴1𝑢

for all 𝑢 ∈ 0 ∩1, there exists by [44, Theorem B.2] a unique bounded linear operator 𝐴𝜏 ∶ [0,1]𝜏 → [0,1]𝜏 such
that 𝐴0𝑢 = 𝐴1𝑢 = 𝐴𝜏𝑢 for all 𝑢 ∈ 0 ∩1 and

‖𝐴𝜏‖[0,1]𝜏→[0,1]𝜏 ≤ ‖𝐴0‖1−𝜏0→0‖𝐴1‖𝜏1→1 . (1.18)

Finally, if 𝑘, 𝑛 ∈ ℕ, 𝑈 ⊂ ℝ𝑛 is an open set and  denotes the space of real or complex scalars, vectors, or matrices,
then we write 𝐶𝑘

𝑏
(𝑈;) for the space of all 𝑓 ∈ 𝐶𝑘(𝑈;) such that 𝑓 and all partial derivatives of 𝑓 up to order 𝑘

are bounded. Moreover, (𝑈;) is the set of all 𝑓 ∈ 𝐶∞(𝑈;) with compact support. If 𝑓 ∈ 𝐶1(𝑈;ℂ𝑘), then the sym-
bol 𝐷𝑓 is used for the Jacobi matrix of 𝑓. The usual Bochner Lebesgue space of -valued functions are denoted by
𝐿2((−1, 1);), cf. Section 2.2. For  = 𝐻𝑟(Σ;ℂ𝑁) we use the symbol ‖⋅‖𝑟 for the norm in 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)). In
a similar way, we write ‖⋅‖𝑟→𝑟′ ∶= ‖⋅‖𝐿2((−1,1);𝐻𝑟(Σ;ℂ𝑁))→𝐿2((−1,1);𝐻𝑟′ (Σ;ℂ𝑁)), ‖⋅‖𝑟→ ∶= ‖⋅‖𝐿2((−1,1);𝐻𝑟(Σ;ℂ𝑁))→ as well as‖⋅‖→𝑟′ ∶= ‖⋅‖→𝐿2((−1,1);𝐻𝑟′ (Σ;ℂ𝑁)).

2 PRELIMINARIES

In this section, we provide some preliminary material that is needed in the main part of this paper to prove Theorem 1.1.
First, in Section 2.1 we formulate suitable assumptions on the hypersurface Σ that are convenient for our approximation
procedure, then in Section 2.2 we provide some definitions and fundamental results for Bochner Lebesgue spaces that are
used throughout this paper, and in Section 2.3 we introduce the free Dirac operator and a family of associated potential
and boundary integral operators.
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BEHRNDT et al. 2505

2.1 Description of the boundary 𝚺 and its tubular neighborhood

In this section, we formulate assumptions on the geometry of Σwhich will allow us to construct the tubular neighborhood
of Σ in (1.4) in a similar manner as in [4, 43]. The presentation here differs slightly from [4], as in this paper we need
better properties of the trace map and the extension operator. The following assumption will be made throughout the
paper:

Hypothesis 2.1. Assume thatΩ+ ⊂ ℝ𝜃, 𝜃 ∈ {2, 3}, is an open set with boundary Σ ∶= 𝜕Ω+ and that there exist open sets
𝑊1,… ,𝑊𝑝 ⊂ ℝ𝜃, mappings 𝜁1, … , 𝜁𝑝 ∈ 𝐶2

𝑏
(ℝ𝜃−1;ℝ), rotation matrices 𝜅1, … , 𝜅𝑝 ∈ ℝ𝜃×𝜃, and 𝜀0 > 0 such that

(i) Σ ⊂
⋃𝑝

𝑙=1
𝑊𝑙;

(ii) if 𝑥 ∈ 𝜕Ω+ = Σ, then there exists 𝑙 ∈ {1, … , 𝑝} such that 𝐵(𝑥, 𝜀0) ⊂ 𝑊𝑙;
(iii) 𝑊𝑙 ∩ Ω+ = 𝑊𝑙 ∩ Ω𝑙, where Ω𝑙 = {𝜅𝑙(𝑥

′, 𝑥𝜃) ∶ 𝑥𝜃 < 𝜁(𝑥′), (𝑥′, 𝑥𝜃) ∈ ℝ𝜃}, for 𝑙 ∈ {1, … , 𝑝}.

Furthermore, we set Σ𝑙 ∶= 𝜕Ω𝑙 = {𝜅𝑙(𝑥
′, 𝜁𝑙(𝑥

′)) ∶ 𝑥′ ∈ ℝ𝜃−1},Ω− ∶= ℝ𝜃 ⧵ Ω+, and denote the unit normal vector field at
Σ that is pointing outward of Ω+ by 𝜈.

We note that 𝐶2
𝑏
-hypographs and the boundaries of compact 𝐶2-domains satisfy Hypothesis 2.1. Moreover, the sets Σ𝑙

are a cover of Σ, but in general one has Σ𝑙 ⊄ Σ. In the following, we fix notations regarding points and functions on
Σ satisfying Hypothesis 2.1 that will be used in the entire paper and recall the definition of Sobolev spaces on Σ and a
convenient variant of the trace theorem; cf. [20, 41, 44]. First, if𝑈 ⊂ ℝ𝜃−1 is open, then for 𝑟 ∈ [0, 2] the space𝐻𝑟(𝑈;ℂ𝑁)

and also𝑊1
∞(𝑈;) with  ∈ {ℂ,ℂ𝑁×𝑁} are defined as in [44]. To transfer these definitions to Σ, we choose a partition of

unity 𝜑1, … , 𝜑𝑝 ∈ 𝐶∞(ℝ𝜃) subordinate to𝑊1,… ,𝑊𝑝 such that each 𝜑𝑙, 𝑙 ∈ {1, … , 𝑝}, has uniformly bounded derivatives
(see Lemma B.2). Next, we define

𝑥Σ𝑙 ∶ ℝ𝜃−1 → Σ𝑙, 𝑥Σ𝑙 (𝑥
′) ∶= 𝜅𝑙(𝑥

′, 𝜁𝑙(𝑥
′)), (2.1)

and for 𝜓 ∈ 𝐿2(Σ;ℂ𝑁) we write

𝜓Σ𝑙 (𝑥
′) ∶=

{
𝜑𝑙(𝑥Σ𝑙 (𝑥

′))𝜓(𝑥Σ𝑙 (𝑥
′)), if 𝑥Σ𝑙 (𝑥

′) ∈ Σ,

0, if 𝑥Σ𝑙 (𝑥
′) ∉ Σ.

Then, 𝜓Σ𝑙 ∈ 𝐿2(ℝ𝜃−1; ℂ𝑁) and 𝜓(𝑥Σ) =
∑

𝑙∈{1,…,𝑝},𝑥Σ∈Σ𝑙
𝜓Σ𝑙 (𝑥

−1
Σ𝑙
(𝑥Σ)) for 𝑥Σ ∈ Σ. As usual, we introduce for 𝑟 ∈ [0, 2]

𝐻𝑟(Σ; ℂ𝑁) ∶=
{
𝜓 ∈ 𝐿2(Σ;ℂ𝑁) ∶ 𝜓Σ𝑙 ∈ 𝐻𝑟(ℝ𝜃−1; ℂ𝑁) for all 𝑙 = 1, … , 𝑝

}
and endow this space with the inner product

(𝜙, 𝜓)𝐻𝑟(Σ;ℂ𝑁) =

𝑝∑
𝑙=1

(𝜙Σ𝑙 , 𝜓Σ𝑙 )𝐻𝑟(ℝ𝜃−1;ℂ𝑁)
, 𝜙, 𝜓 ∈ 𝐻𝑟(Σ;ℂ𝑁).

Sobolev spaces 𝐻𝑟(Σ;ℂ𝑁) with 𝑟 ∈ [−2, 0] are defined, as usual, by duality. One can prove in the same manner as in
[44, Theorem B.11] that for 𝑟1, 𝑟2 ∈ [−2, 2] and 𝑟 = (1 − 𝜏)𝑟1 + 𝜏𝑟2, 0 < 𝜏 < 1, the interpolation property

𝐻𝑟(Σ;ℂ𝑁) =
[
𝐻𝑟1(Σ; ℂ𝑁),𝐻𝑟2(Σ; ℂ𝑁)

]
𝜏

(2.2)

holds with equivalent norms. Eventually, we set 𝑈𝑙 ∶= 𝑥−1Σ𝑙
(Σ ∩𝑊𝑙) and define for  ∈ {ℂ;ℂ𝑁×𝑁}

𝑊1
∞(Σ;) ∶= {

𝐹 ∈ 𝐿∞(Σ;) ∶ (𝐹◦𝑥Σ𝑙 ) ↾ 𝑈𝑙 ∈ 𝑊1
∞(𝑈𝑙;) for all 𝑙 = 1, … , 𝑝

}
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2506 BEHRNDT et al.

equipped with the norm

‖𝐹‖𝑊1
∞(Σ;) ∶= max

𝑙∈{1,…,𝑝}
‖(𝐹◦𝑥Σ𝑙 ) ↾ 𝑈𝑙‖𝑊1

∞(𝑈𝑙;), 𝐹 ∈ 𝑊1
∞(Σ;).

Note that if 𝐹 ∈ 𝑊1
∞(Σ;) and 𝑟 ∈ [0, 1], then by direct calculation (𝑟 ∈ {0, 1}) and interpolation (𝑟 ∈ (0, 1)) one obtains

for all 𝜙 ∈ 𝐻𝑟(Σ;ℂ𝑁)

𝐹𝜙 ∈ 𝐻𝑟(Σ;ℂ𝑁) and ‖𝐹𝜙‖𝐻𝑟(Σ;ℂ𝑁) ≤ 𝐶‖𝐹‖𝑊1
∞(Σ;)‖𝜙‖𝐻𝑟(Σ;ℂ𝑁), (2.3)

where 𝐶 > 0 does not depend on 𝐹. In particular, 𝜙 ↦ 𝐹𝜙 induces a bounded operator in 𝐻𝑟(Σ;ℂ𝑁) and the operator
norm is bounded by 𝐶‖𝐹‖𝑊1

∞(Σ;). We identify 𝐹 with this induced operator.
In the next proposition, we state a variant of the trace theorem suitable for our situation; cf. [41, Theorem 2] and [20,

Theorem 8.7].

Proposition 2.2. Assume thatΩ± and Σ satisfy Hypothesis 2.1 and let 𝑟 ∈ (1∕2, 1]. Then, there exists a unique bounded and
surjective operator

𝒕±Σ ∶ 𝐻𝑟(Ω±;ℂ
𝑁) → 𝐻𝑟−1∕2(Σ; ℂ𝑁)

such that 𝒕±Σ𝑢 = 𝑢|Σ for all𝑢 ∈ 𝐻𝑟(Ω±;ℂ
𝑁) ∩ 𝐶(Ω±;ℂ

𝑁). Furthermore, there exists a unique boundedand surjective operator

𝒕Σ ∶ 𝐻𝑟(ℝ𝜃; ℂ𝑁) → 𝐻𝑟−1∕2(Σ; ℂ𝑁)

such that 𝒕Σ𝑢 = 𝑢|Σ for all 𝑢 ∈ 𝐻𝑟(ℝ𝜃; ℂ𝑁) ∩ 𝐶(ℝ𝜃; ℂ𝑁).

In the rest of this subsection, we summarize some statements on tubular neighborhoods of Σ given by (1.4) by making
use of the results in [4, Section 2.1]. Recall that the embedding 𝜄 is defined by (1.3) and that the setΩ𝜀 for 𝜀 > 0 is introduced
in (1.4). In the following definition, we introduce the Weingarten map (or shape operator) on Σ:

Definition 2.3. Let Ω±, Σ satisfy Hypothesis 2.1 and denote for 𝑥Σ = 𝑥Σ𝑙 (𝑥
′) ∈ Σ, 𝑙 ∈ {1, … , 𝑝}, the tangent hyperplane

of Σ in the point 𝑥Σ by the symbol 𝑇𝑥Σ ∶= span {𝜕𝑗𝑥Σ𝑙 (𝑥
′) ∶ 𝑗 = 1,… , 𝜃 − 1}. The Weingarten map is the linear operator

𝑊(𝑥Σ) ∶ 𝑇𝑥Σ → 𝑇𝑥Σ defined by

𝑊(𝑥Σ)𝜕𝑗𝑥Σ𝑙 (𝑥
′) = −𝜕𝑗𝜈(𝑥Σ𝑙 (𝑥

′)), 𝑗 ∈ {1, … , 𝜃 − 1}.

Asmentioned in [4, Definition 2.2] and the text below,𝑊(𝑥Σ) is well-defined (i.e., it is independent of the parameteriza-
tion ofΣ and the index 𝑙). Furthermore, in the followingwedenote thematrix representation of𝑊(𝑥Σ) corresponding to the
basis {𝜕𝑗𝑥Σ𝑙 (𝑥

′) ∶ 𝑗 = 1,… , 𝜃 − 1} of 𝑇𝑥Σ by 𝐿𝑙(𝑥
′). Moreover, note that if 𝑥Σ = 𝑥Σ𝑙 (𝑥

′) = 𝑥Σ𝑘 (𝑦
′) ∈ Σ with 𝑙, 𝑘 ∈ {1, … , 𝑝}

and 𝑥′, 𝑦′ ∈ ℝ𝜃−1, then the eigenvalues of 𝐿𝑙(𝑥′) and 𝐿𝑘(𝑦
′) coincide, see [4, Definition 2.2] and the text below. There-

fore, the expression det(𝐼 − 𝑡𝑊(𝑥Σ)) ∶= det(𝐼𝜃−1 − 𝑡𝐿𝑙(𝑥
′)) for 𝑡 ∈ ℝ is well-defined. In the next proposition, we state

important properties of 𝜄 and𝑊, and identify 𝐿1(Ω𝜀) with 𝐿1(Σ × (−𝜀, 𝜀)).

Proposition 2.4. LetΩ±, Σ ⊂ ℝ𝜃 , 𝜃 ∈ {2, 3}, satisfy Hypothesis 2.1. Then, there exists 𝜀1 > 0 such that the following is true:

(i) 𝜄|Σ×(−𝜀1,𝜀1) is injective.
(ii) There exists 𝐶 > 0 such that |1 − det(𝐼 − 𝜀𝑊(𝑥Σ))| ≤ 𝐶𝜀 < 1∕2 for all 𝑥Σ ∈ Σ and 𝜀 ∈ (−𝜀1, 𝜀1).
(iii) For 𝜀 ∈ (−𝜀1, 𝜀1) one has 𝑢 ∈ 𝐿1(Ω𝜀) if and only if 𝑢◦𝜄|Σ×(−𝜀,𝜀) ∈ 𝐿1(Σ × (−𝜀, 𝜀)) and in this case

∫
Ω𝜀

𝑢(𝑦) 𝑑𝑦 = ∫
𝜀

−𝜀
∫
Σ

𝑢(𝑦Σ + 𝑠𝜈(𝑦Σ)) det(𝐼 − 𝑠𝑊(𝑦Σ)) 𝑑𝜎(𝑦Σ) 𝑑𝑠.
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BEHRNDT et al. 2507

Proof. Let 𝜀𝐴 be the number specified in Proposition A.2 and let 𝜀1 ∈ (0, 𝜀𝐴). Then, by Proposition A.2 (ii) there exists
𝐶𝐴,2 > 0 such that

|𝜄(𝑥Σ, 𝑡) − 𝜄(𝑦Σ, 𝑠)| ≥ 𝐶−1
𝐴,2

(|𝑥Σ − 𝑦Σ| + |𝑡 − 𝑠|), (𝑥Σ, 𝑡), (𝑦Σ, 𝑠) ∈ Σ × (−𝜀1, 𝜀1).

Hence, 𝜄|Σ×(−𝜀1,𝜀1) is injective, that is, item (i) is true.
Next, we show assertion (ii). For this, we introduce for 𝑙 ∈ {1, … , 𝑝} and 𝑥′ ∈ ℝ𝜃−1 such that 𝑥Σ𝑙 (𝑥

′) ∈ Σ the coordinate
matrices𝑀𝑙(𝑥

′) and𝐻𝑙(𝑥
′) of the first and second fundamental form, respectively. Their entries are given by

𝑀𝑙(𝑥
′) [ 𝑗, 𝑘] ∶= ⟨ 𝜕𝑗𝑥Σ𝑙 (𝑥′), 𝜕𝑘𝑥Σ𝑙 (𝑥

′)⟩ and 𝐻𝑙(𝑥
′) [ 𝑗, 𝑘] ∶= ⟨ 𝜕𝑗𝑥Σ𝑙 (𝑥′), −𝜕𝑘𝜈(𝑥Σ𝑙 (𝑥

′))⟩
for 𝑗, 𝑘 ∈ {1, … , 𝜃 − 1}. It is well-known, see for instance [40, Chapter 3B], that thesematrices are related to the coordinate
matrix of the Weingarten map at 𝑥Σ𝑙 (𝑥

′) = 𝑥Σ ∈ Σ via the formula

𝐻𝑙(𝑥
′)[𝑗, 𝑘] = ⟨𝜕𝑗𝑥Σ𝑙 (𝑥′),𝑊(𝑥Σ)𝜕𝑘𝑥Σ𝑙 (𝑥

′)⟩ = 𝜃−1∑
𝑛=1

⟨𝜕𝑗𝑥Σ𝑙 (𝑥′), 𝐿𝑙(𝑥
′)[𝑛, 𝑘]𝜕𝑛𝑥Σ𝑙 (𝑥

′)⟩ = 𝜃−1∑
𝑛=1

𝑀𝑙(𝑥
′)[𝑗, 𝑛]𝐿𝑙(𝑥

′)[𝑛, 𝑘]

= (𝑀𝑙(𝑥
′)𝐿𝑙(𝑥

′))[𝑗, 𝑘], 𝑗, 𝑘 ∈ {1, … , 𝜃 − 1}.

Furthermore, using the definition of 𝑥Σ𝑙 (𝑥
′) one concludes 𝑀𝑙(𝑥

′) = 𝐼𝜃−1 + ∇𝜁𝑙(𝑥
′)(∇𝜁𝑙(𝑥

′))𝑇 . The inverse of 𝑀𝑙(𝑥
′) is

given by 𝐼𝜃−1 − (1 + |∇𝜁(𝑥′)|2)−1∇𝜁𝑙(𝑥
′)(∇𝜁𝑙(𝑥

′))𝑇 . Hence,

𝐿𝑙(𝑥
′) =

(
𝐼𝜃−1 − (1 + |∇𝜁𝑙(𝑥

′)|2)−1∇𝜁𝑙(𝑥
′)(∇𝜁𝑙(𝑥

′))𝑇
)
𝐻𝑙(𝑥

′). (2.4)

Since 𝜁𝑙 ∈ 𝐶2
𝑏
(ℝ𝜃−1;ℝ) by Hypothesis 2.1, Equation (2.4) and the definition of𝐻𝑙(𝑥

′) imply sup𝑙∈{1,…,𝑝},𝑥′∈𝑥−1
Σ𝑙

(Σ) |𝐿𝑙(𝑥′)| <
∞. Now, recall that det(𝐼 − 𝜀𝑊(𝑥Σ)) = det(𝐼𝜃−1 − 𝜀𝐿𝑙(𝑥

′)) for 𝑥Σ = 𝑥Σ𝑙 (𝑥
′) ∈ Σ. Moreover, expressing the determinant as

the product of the eigenvalues one verifies the equation 1 − det(𝐼𝜃−1 − 𝜀𝐿𝑙(𝑥
′)) = 𝜀𝑃𝑙(𝜀), where 𝑃𝑙 is a polynomial in 𝜀with

coefficients depending continuously on the entries of 𝐿𝑙(𝑥′). This shows that (ii) holds if 𝜀1 > 0 is chosen sufficiently small.
Finally, the claim in (iii) follows from [4, Proposition 2.6], since (i), (ii), and Proposition A.2 (i) show that Σ satisfying

Hypothesis 2.1 also fulfills [4, Hypothesis 2.3]. □

2.2 Bochner Lebesgue spaces

In this subsection, we summarize some results on Bochner Lebesgue spaces that will be used throughout this paper; for
details we refer to [37, Chapter 1]. We always assume that  and  are separable Hilbert spaces, ,1,2 are Borel sets
in ℝ𝑛, 𝑛 ∈ ℕ, and (,) is the set of bounded linear operators from to .
Definition 2.5. We call 𝑓 ∶  →  (weakly) measurable, if for all 𝜑 ∈  the mapping  ∋ 𝑡 ↦ (𝑓(𝑡), 𝜑) is measur-
able with respect to the Lebesgue measure on . Furthermore, we call 𝐹 ∶  → (,)measurable, if  ∋ 𝑡 ↦ 𝐹(𝑡)ℎ is
measurable for all ℎ ∈ .

We also recall that a function 𝑓 ∶  →  is (strongly) measurable, if 𝑓 is the pointwise limit of simple functions, and
that in the present situation both notions of measurability coincide due to the Pettis theorem, see [37, Theorem 1.1.20].
Moreover, if 𝑓 ∶  →  and𝐹 ∶  → (,) aremeasurable, then the function ∋ 𝑡 ↦ 𝐹(𝑡)𝑓(𝑡) ∈  is measurable, see
[37, Proposition 1.1.28].
For a measurable function 𝑓 ∶  →  such that 𝑡 ↦ ‖𝑓(𝑡)‖ is integrable, the Bochner integral ∫ 𝑓(𝑡) 𝑑𝑡 ∈  is

defined in the standardway, see [37,Definition 1.2.1 andProposition 1.2.2].Many standard results for (usual) Lebesgue inte-
grals admit natural generalizations to Bochner integrals. In particular, we will make use of Fubini’s theorem for Bochner
integrals, see [37, Proposition 1.2.7]: If 𝑓 ∶ 1 × 2 →  is measurable and the integral ∫1×2

‖𝑓(𝑡, 𝑠)‖ 𝑑𝑡𝑑𝑠 is finite,
then the Bochner integral ∫2

𝑓(𝑡, 𝑠) 𝑑𝑠 exists for a.e. 𝑡 ∈ 1 and the function 1 ∋ 𝑡 ↦ ∫2
𝑓(𝑡, 𝑠) 𝑑𝑠 is measurable and

Bochner integrable.
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2508 BEHRNDT et al.

Next, we introduce Bochner Lebesgue spaces.

Definition 2.6. We define 𝐿2(;) as the space which contains all (equivalence classes of) measurable functions 𝑓 ∶

 →  such that

∫ ‖𝑓(𝑡)‖2 𝑑𝑡 < ∞.

Furthermore, we equip this space with the scalar product

∫ (𝑓(𝑡), 𝑔(𝑡)) 𝑑𝑡, 𝑓, 𝑔 ∈ 𝐿2(;).

It is not difficult to show that 𝐿2(;) is a Hilbert space; cf. the comments below [37, Definition 1.2.15]. Next, duality
and interpolation properties of Bochner Lebesgue spaces are discussed. According to [37, Corollary 1.3.13 and Theorem
1.3.21] the identification of 𝑓 ∈ 𝐿2(;∗) with the functional defined by

𝐿2(;) ∋ 𝑔 ↦ ∫ ∗⟨𝑓(𝑡), 𝑔(𝑡)⟩ 𝑑𝑡,

where ∗⟨⋅, ⋅⟩ denotes the bilinear dual pairing on∗ ×, induces an isometric isomorphism between 𝐿2(;∗) and
the dual space of 𝐿2(;), that is,

𝐿2(;)∗ ≃ 𝐿2(;∗). (2.5)

If  is a Hilbert space such that (,) is a compatible pair (cf. the notations section), then also (𝐿2(;), 𝐿2(;)) is a
compatible pair and

𝐿2(; [,]𝜏) = [
𝐿2(;), 𝐿2(;)]

𝜏
, 𝜏 ∈ (0, 1), (2.6)

with equivalent norms, see [37, Theorem 2.2.6 and Corollary C.4.2].
In this paper, we are particularly interested in the Bochner Lebesgue spaces 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)), 𝑟 ∈ [−2, 2], where

Σ ⊂ ℝ𝜃, 𝜃 ∈ {2, 3}, is a hypersurface satisfying Hypothesis 2.1 and 𝐻𝑟(Σ;ℂ𝑁) is defined as in Section 2.1. We summarize
important properties of these spaces in Proposition 2.7, where (i) and (ii) follow from (2.6) and (2.5) and the properties of
𝐻𝑟(Σ;ℂ𝑁) in Section 2.1 and (2.2). Assertion (iii) follows from [37, Propositions 1.2.24 and 1.2.25].

Proposition 2.7. LetΩ±, Σ ⊂ ℝ𝜃 , 𝜃 ∈ {2, 3}, satisfy Hypothesis 2.1. Then, the following is true:

(i) If 𝜏 ∈ (0, 1), 𝑟1, 𝑟2 ∈ [−2, 2] and 𝑟 = (1 − 𝜏)𝑟1 + 𝜏𝑟2, then

𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)) =
[
𝐿2((−1, 1);𝐻𝑟1(Σ; ℂ𝑁)), 𝐿2((−1, 1);𝐻𝑟2(Σ; ℂ𝑁))

]
𝜏

and the corresponding norms are equivalent.
(ii) For 𝑟 ∈ [0, 2] there exists an isometric isomorphism between the dual space of 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)) and

𝐿2((−1, 1);𝐻−𝑟(Σ; ℂ𝑁)), that is,

𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁))∗ ≃ 𝐿2((−1, 1);𝐻−𝑟(Σ; ℂ𝑁)).

(iii) For any 𝑎 > 0 the identification of 𝐹 ∈ 𝐿2(Σ × (−𝑎, 𝑎); ℂ𝑁) with the function 𝑓 ∶ 𝑡 ↦ 𝐹(⋅, 𝑡) induces an isometric
isomorphism between the spaces 𝐿2(Σ × (−𝑎, 𝑎); ℂ𝑁) and 𝐿2((−𝑎, 𝑎); 𝐿2(Σ; ℂ𝑁)) and(

∫
𝑎

−𝑎

𝑓(𝑡) 𝑑𝑡

)
(𝑥Σ) = ∫

𝑎

−𝑎

𝑓(𝑡)(𝑥Σ) 𝑑𝑡 for 𝜎 - a.e. 𝑥Σ ∈ Σ.
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BEHRNDT et al. 2509

The following identification turns out to be useful in our considerations: for ∈ 𝐿∞((−1, 1); ℂ) and a bounded operator
 in𝐻𝑟(Σ;ℂ𝑁), 𝑟 ∈ [−2, 2], we identify

 ∶ 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)) → 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)), (𝑓)(𝑡) ∶= (𝑡)𝑓(𝑡),
and

 ∶ 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)) → 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)), (𝑓)(𝑡) ∶= (𝑓(𝑡)),

with  and , respectively. Note that the norms ‖‖𝑟→𝑟
and ‖‖𝑟→𝑟 are bounded by ‖‖𝐿∞((−1,1);ℂ) and‖‖𝐻𝑟(Σ;ℂ𝑁)→𝐻𝑟(Σ;ℂ𝑁), respectively. We will also use the bounded embedding

𝔍 ∶ 𝐻𝑟(Σ;ℂ𝑁) → 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)), (𝔍𝜑)(𝑡) ∶= 𝜑, (2.7)

and its adjoint

𝔍∗ ∶ 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)) → 𝐻𝑟(Σ;ℂ𝑁), 𝔍∗𝑓 = ∫
1

−1

𝑓(𝑡) 𝑑𝑡.

2.3 The free Dirac operator and associated integral operators

Let𝑚 ∈ ℝ and recall that the Dirac matrices 𝛼1, … , 𝛼𝜃, 𝛽 ∈ ℂ𝑁×𝑁 are given by (1.15)–(1.16). Then, the free Dirac operator
𝐻 is the differential operator in 𝐿2(ℝ𝜃; ℂ𝑁) given by

Hu ∶= −i(𝛼 ⋅ ∇)𝑢 + 𝑚𝛽𝑢, dom𝐻 ∶= 𝐻1(ℝ𝜃; ℂ𝑁). (2.8)

With the help of the Fourier transform, one gets that 𝐻 is self-adjoint in 𝐿2(ℝ𝜃; ℂ𝑁) and 𝜎(𝐻) = (−∞,−|𝑚|] ∪ [|𝑚|,∞),
see for instance [12, Section 2] for 𝜃 = 2 and [54, Theorem 1.1] for 𝜃 = 3. For 𝑧 ∉ 𝜎(𝐻) the resolvent 𝑅𝑧 is

𝑅𝑧𝑢(𝑥) ∶= (𝐻 − 𝑧)−1𝑢(𝑥) = ∫
ℝ𝜃

𝐺𝑧(𝑥 − 𝑦)𝑢(𝑦) 𝑑𝑦, 𝑢 ∈ 𝐿2(ℝ𝜃; ℂ𝑁), 𝑥 ∈ ℝ𝜃, (2.9)

where 𝐺𝑧 is given for 𝜃 = 2 and 𝑥 ∈ ℝ2 ⧵ {0} by

𝐺𝑧(𝑥) =

√
𝑧2 − 𝑚2

2𝜋
𝐾1

(
−i

√
𝑧2 − 𝑚2|𝑥|)𝛼 ⋅ 𝑥|𝑥| +

1

2𝜋
𝐾0

(
−i

√
𝑧2 − 𝑚2|𝑥|)(𝑚𝛽 + 𝑧𝐼2) (2.10)

and for 𝜃 = 3 and 𝑥 ∈ ℝ3 ⧵ {0} by

𝐺𝑧(𝑥) =

(
𝑧𝐼4 + 𝑚𝛽 + i

(
1 − i

√
𝑧2 − 𝑚2|𝑥|)𝛼 ⋅ 𝑥|𝑥|2

)
ei
√
𝑧2−𝑚2|𝑥|
4𝜋|𝑥| ; (2.11)

see, for example, [10, 11, 54]. Here, 𝐾0 and 𝐾1 denote the modified Bessel functions of the second kind of order zero and
one, respectively, and the branch of the square root is fixed by Im

√
𝑤 > 0 for 𝑤 ∈ ℂ ⧵ [0,∞). Note that 𝑅𝑧 is bounded in

𝐿2(ℝ𝜃; ℂ𝑁) and it can also be viewed as a bounded operator from 𝐿2(ℝ𝜃; ℂ𝑁) to 𝐻1(ℝ𝜃; ℂ𝑁). In fact, with the help of the
Fourier transform, it is not difficult to show that 𝑅𝑧 gives rise to a bounded operator from𝐻𝑠(ℝ𝜃; ℂ𝑁) to𝐻𝑠+1(ℝ𝜃; ℂ𝑁) for
all 𝑠 ∈ ℝ.
We move on to the discussion of potential and boundary integral operators associated with the free Dirac operator. In

the following, let 𝑧 ∈ 𝜌(𝐻) = ℂ ⧵ ((−∞,−|𝑚|] ∪ [|𝑚|,∞)) be fixed and let Ω± and Σ ⊂ ℝ𝜃 satisfy Hypothesis 2.1. First,
we introduce the potential operator Φ𝑧 ∶ 𝐿2(Σ; ℂ𝑁) → 𝐿2(ℝ𝜃; ℂ𝑁) by

Φ𝑧𝜑(𝑥) ∶= ∫
Σ

𝐺𝑧(𝑥 − 𝑦Σ)𝜑(𝑦Σ) 𝑑𝜎(𝑦Σ), 𝜑 ∈ 𝐿2(Σ; ℂ𝑁), 𝑥 ∈ ℝ𝜃. (2.12)
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2510 BEHRNDT et al.

We note that Φ𝑧 is indeed well-defined and bounded, see [2, Lemma 2.1]. Further properties of Φ𝑧 are summarized in the
following proposition. For compact hypersurfaces Σ, these results are well known, see, for example, [11, Theorem 4.3],
but for unbounded Σ they were not treated in the literature so far. For completeness, we give a proof of these results in
Appendix C.

Proposition 2.8. Let 𝑧 ∈ 𝜌(𝐻) = ℂ ⧵ ((−∞,−|𝑚|] ∪ [|𝑚|,∞)) and let Φ𝑧 be given by (2.12). Then, the following is true:

(i) For any 𝑟 ∈ [0, 1∕2] the operator Φ𝑧 gives rise to a bounded operator

Φ𝑧 ∶ 𝐻𝑟(Σ; ℂ𝑁) → 𝐻𝑟+1∕2(Ω+;ℂ
𝑁) ⊕ 𝐻𝑟+1∕2(Ω−;ℂ

𝑁).

(ii) For 𝜑 ∈ 𝐻1∕2(Σ; ℂ𝑁) one has [(−𝑖(𝛼 ⋅ ∇) + 𝑚𝛽 − 𝑧𝐼𝑁)Φ𝑧𝜑]± = 0.
(iii) The adjoint Φ∗

𝑧 ∶ 𝐿2(ℝ𝜃; ℂ𝑁) → 𝐿2(Σ;ℂ𝑁) of Φ𝑧 acts on 𝑢 ∈ 𝐿2(ℝ𝜃; ℂ𝑁) as

Φ∗
𝑧𝑢(𝑥Σ) = ∫

ℝ𝜃

𝐺𝑧(𝑥Σ − 𝑦)𝑢(𝑦) 𝑑𝑦 = 𝒕Σ𝑅𝑧𝑢(𝑥Σ), 𝑥Σ ∈ Σ, (2.13)

and Φ∗
𝑧 gives rise to a bounded operator Φ∗

𝑧 ∶ 𝐿2(ℝ𝜃; ℂ𝑁) → 𝐻1∕2(Σ; ℂ𝑁).

Finally, we introduce a family of boundary integral operators. Let 𝑧 ∈ 𝜌(𝐻) = ℂ ⧵ ((−∞,−|𝑚|] ∪ [|𝑚|,∞)). Then, we
define the map 𝑧 ∶ 𝐻1∕2(Σ; ℂ𝑁) → 𝐻1∕2(Σ; ℂ𝑁) by

𝑧𝜑 ∶=
1

2
(𝒕+Σ (Φ𝑧𝜑)+ + 𝒕−Σ (Φ𝑧𝜑)−), 𝜑 ∈ 𝐻1∕2(Σ; ℂ𝑁). (2.14)

We remark that the operator 𝑧 can be represented as a strongly singular boundary integral operator, see, for instance,
[11, Equation (4.5) and Proposition 4.4 (ii)] for the case thatΩ+ is bounded. However, for our purposes the representation
in (2.14) is more convenient. The basic properties of 𝑧 are stated in the following proposition. Again, for compact hyper-
surfaces Σ they are well-known, see, for example, [11, Theorem 4.3, Proposition 4.4, and Corollary 4.5]. For general (also
unbounded) hypersurfaces Σ satisfying Hypothesis 2.1 we give a proof in Appendix C.

Proposition 2.9. Let 𝑧 ∈ 𝜌(𝐻) = ℂ ⧵ ((−∞,−|𝑚|] ∪ [|𝑚|,∞)) and let 𝑧 be given by (2.14). Then, the following is true:
(i) For any 𝑟 ∈ [−1∕2, 1∕2] the map 𝑧 has a bounded extension 𝑧 ∶ 𝐻𝑟(Σ; ℂ𝑁) → 𝐻𝑟(Σ;ℂ𝑁).
(ii) For any 𝑟 ∈ (0, 1∕2] and 𝜑 ∈ 𝐻𝑟(Σ;ℂ𝑁) one has

𝑧𝜑 = ±
𝑖

2
(𝛼 ⋅ 𝜈)𝜑 + 𝒕±Σ(Φ𝑧𝜑)±.

We note that item (ii) of the previous proposition is a version of the well-known Plemelj–Sokhotski formula, see for
instance [2, Lemma 3.3 (i)], where 𝑧 is represented as a singular boundary integral operator.

3 RESOLVENT FORMULA FOR𝑯𝜺 AND ANALYSIS OF THE ASSOCIATED INTEGRAL
OPERATORS

Throughout this section, let 𝜀1 be the number specified in Proposition 2.4, so that 𝜄 acts as a bijectivemap fromΣ × (−𝜀1, 𝜀1)

toΩ𝜀1 . Moreover, let 𝜀 ∈ (0, 𝜀1), 𝑧 ∈ 𝜌(𝐻) = ℂ ⧵ ((−∞,−|𝑚|] ∪ [|𝑚|,∞)),𝐺𝑧 be the function defined in (2.10)–(2.11), andΣ
be a hypersurface satisfying Hypothesis 2.1 with associatedWeingartenmap𝑊 (see Definition 2.3). This section is devoted
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BEHRNDT et al. 2511

to the study of the integral operators which formally act on 𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) and 𝑢 ∈ 𝐿2(ℝ𝜃; ℂ𝑁) as

𝐴𝜀(𝑧)𝑓(𝑥) = ∫
1

−1
∫
Σ

𝐺𝑧(𝑥 − 𝑦Σ − 𝜀𝑠𝜈(𝑦Σ))𝑓(𝑠)(𝑦Σ) det(𝐼 − 𝜀𝑠𝑊(𝑦Σ)) 𝑑𝜎(𝑦Σ) 𝑑𝑠, (3.1a)

𝐵𝜀(𝑧)𝑓(𝑡)(𝑥Σ) = ∫
1

−1
∫
Σ

𝐺𝑧(𝑥Σ + 𝜀𝑡𝜈(𝑥Σ) − 𝑦Σ − 𝜀𝑠𝜈(𝑦Σ))𝑓(𝑠)(𝑦Σ) det(𝐼 − 𝜀𝑠𝑊(𝑦Σ)) 𝑑𝜎(𝑦Σ) 𝑑𝑠, (3.1b)

𝐶𝜀(𝑧)𝑢(𝑡)(𝑥Σ) = ∫
ℝ𝜃

𝐺𝑧(𝑥Σ + 𝜀𝑡𝜈(𝑥Σ) − 𝑦)𝑢(𝑦) 𝑑𝑦, (3.1c)

for a.e. 𝑥 ∈ ℝ𝜃, a.e. 𝑡 ∈ (−1, 1), and 𝜎-a.e. 𝑥Σ ∈ Σ. First, in Section 3.1 we define these operators rigorously and show their
relation to the resolvent of the operator 𝐻𝜀 in (1.8). Then, in Section 3.2 we introduce and investigate a shift operator
which plays an important role in the convergence analysis of 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), and 𝐶𝜀(𝑧) in Section 3.3. Finally, in Section 3.4
we discuss the convergence of (𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)

−1.

3.1 Definition and elementary results on 𝑨𝜺(𝒛), 𝑩𝜺(𝒛), and 𝑪𝜺(𝒛)

First, we rigorously define the operators 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), and 𝐶𝜀(𝑧) formally given by (3.1). Recall thatΩ𝜀 was defined in (1.4)
and introduce the mappings

𝜀 ∶ 𝐿2((−𝜀, 𝜀); 𝐿2(Σ; ℂ𝑁)) → 𝐿2(Ω𝜀; ℂ
𝑁), 𝜀𝑓(𝑥Σ + 𝑡𝜈(𝑥Σ)) ∶= 𝑓(𝑡)(𝑥Σ),

−1
𝜀 ∶ 𝐿2(Ω𝜀; ℂ

𝑁) → 𝐿2((−𝜀, 𝜀); 𝐿2(Σ; ℂ𝑁)), −1
𝜀 𝑢(𝑡)(𝑥Σ) ∶= 𝑢(𝑥Σ + 𝑡𝜈(𝑥Σ)),

(3.2)

and

𝜀 ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−𝜀, 𝜀); 𝐿2(Σ; ℂ𝑁)), 𝜀𝑔(𝑡) ∶=
1√
𝜀
𝑔
( 𝑡
𝜀

)
,

−1
𝜀 ∶ 𝐿2((−𝜀, 𝜀); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)), −1

𝜀 𝑔(𝑡) ∶=
√
𝜀𝑔(𝜀𝑡).

(3.3)

According to Propositions 2.4 and 2.7 (iii) for any 𝜀 ∈ (0, 𝜀1) these mappings are well-defined, bounded, invertible, and
their inverses have the claimed form, see also [4, Equations (3.6) and (3.7)]. Moreover, set 𝑢𝜀 ∶=

𝜒Ω𝜀√
𝜀
, where 𝜒Ω𝜀

is the
characteristic function for Ω𝜀, and define the operators

𝑈𝜀 ∶ 𝐿2(ℝ𝜃; ℂ𝑁) → 𝐿2(Ω𝜀; ℂ
𝑁) and 𝑈∗

𝜀 ∶ 𝐿2(Ω𝜀; ℂ
𝑁) → 𝐿2(ℝ𝜃; ℂ𝑁)

acting on 𝑢 ∈ 𝐿2(ℝ𝜃; ℂ𝑁) and 𝑣 ∈ 𝐿2(Ω𝜀; ℂ
𝑁) as

𝑈𝜀𝑢 = (𝑢𝜀𝑢) ↾ Ω𝜀 and 𝑈∗
𝜀 𝑣 =

{
𝑢𝜀𝑣 in Ω𝜀,

0 in ℝ𝜃 ⧵ Ω𝜀.

Recall that we use the notation 𝑅𝑧 = (𝐻 − 𝑧)−1 for the resolvent of the free Dirac operator 𝐻 given by (2.8). Then, we
define

𝐴𝜀(𝑧) ∶= 𝑅𝑧𝑈
∗
𝜀 𝜀𝜀 ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2(ℝ𝜃; ℂ𝑁),

𝐵𝜀(𝑧) ∶= −1
𝜀 −1

𝜀 𝑈𝜀𝑅𝑧𝑈
∗
𝜀 𝜀𝜀 ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)),

𝐶𝜀(𝑧) ∶= −1
𝜀 −1

𝜀 𝑈𝜀𝑅𝑧 ∶ 𝐿2(ℝ𝜃; ℂ𝑁) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)).

(3.4)

Note that by definition these operators arewell-defined and bounded. In the next proposition,we show that these operators
coincide with the formal expressions in (3.1).

 15222616, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.70004 by Jussi B
ehrndt - R

eadcube (L
abtiva Inc.) , W

iley O
nline L

ibrary on [14/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2512 BEHRNDT et al.

Proposition 3.1. For the operators 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), and 𝐶𝜀(𝑧) defined in (3.4) the representations in (3.1) hold.

Proof. First, we show the claim for 𝐴𝜀(𝑧). Let 𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)). Using (2.9), Proposition 2.4 (iii), (3.2), and (3.3)
we find

𝐴𝜀(𝑧)𝑓(𝑥) = (𝑅𝑧𝑈
∗
𝜀 𝜀𝜀𝑓)(𝑥) = ∫

ℝ𝜃

𝐺𝑧(𝑥 − 𝑦)(𝑈∗
𝜀 𝜀𝜀𝑓)(𝑦) 𝑑𝑦 = ∫

Ω𝜀

𝐺𝑧(𝑥 − 𝑦)𝑢𝜀(𝑦)(𝜀𝜀𝑓)(𝑦) 𝑑𝑦

= ∫
𝜀

−𝜀
∫
Σ

𝐺𝑧(𝑥 − (𝑦Σ + 𝑠𝜈(𝑦Σ)))
1√
𝜀
(𝜀𝜀𝑓)(𝑦Σ + 𝑠𝜈(𝑦Σ)) det(𝐼 − 𝑠𝑊(𝑦Σ)) 𝑑𝜎(𝑦Σ) 𝑑𝑠

= ∫
𝜀

−𝜀
∫
Σ

𝐺𝑧(𝑥 − 𝑦Σ − 𝑠𝜈(𝑦Σ))
1

𝜀
𝑓
( 𝑠
𝜀

)
(𝑦Σ) det(𝐼 − 𝑠𝑊(𝑦Σ)) 𝑑𝜎(𝑦Σ) 𝑑𝑠

= ∫
1

−1
∫
Σ

𝐺𝑧(𝑥 − 𝑦Σ − 𝜀𝑠𝜈(𝑦Σ))𝑓(𝑠)(𝑦Σ) det(𝐼 − 𝜀𝑠𝑊(𝑦Σ)) 𝑑𝜎(𝑦Σ) 𝑑𝑠

for a.e. 𝑥 ∈ ℝ𝜃, which is the claimed identity. Next, to prove the claim for𝐶𝜀(𝑧)wenote for 𝑣 ∈ 𝐿2(ℝ𝜃; ℂ𝑁), a.e. 𝑡 ∈ (−1, 1),
and 𝜎-a.e. 𝑥Σ ∈ Σ that

𝐶𝜀(𝑧)𝑣(𝑡)(𝑥Σ) = (−1
𝜀 −1

𝜀 𝑈𝜀𝑅𝑧𝑣)(𝑡)(𝑥Σ) =
√
𝜀(𝑈𝜀𝑅𝑧𝑣)(𝑥Σ + 𝜀𝑡𝜈(𝑥Σ)) = ∫

ℝ𝜃

𝐺𝑧(𝑥Σ + 𝜀𝑡𝜈(𝑥Σ) − 𝑦)𝑣(𝑦) 𝑑𝑦.

The representation for 𝐵𝜀(𝑧) follows by combining the last two calculations. □

Next, we show a resolvent formula for 𝐻𝜀 involving the operators 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), and 𝐶𝜀(𝑧) which will be useful for the
convergence analysis. Using the identifications in the end of Section 2.2, we regard𝑉𝑞 in the following as a multiplication
operator in 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)). A similar formula is shown in [43, Lemma 3.1].

Proposition 3.2. Let 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), and 𝐶𝜀(𝑧) be given by (3.4), let 𝑞 and 𝑉 be given by (1.5) and (1.6), respectively, and let𝐻𝜀

be given by (1.8). If −1 ∈ 𝜌(𝐵𝜀(𝑧)𝑉𝑞), then 𝑧 ∈ 𝜌(𝐻𝜀) and

(𝐻𝜀 − 𝑧)−1 = 𝑅𝑧 − 𝐴𝜀(𝑧)𝑉𝑞(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1𝐶𝜀(𝑧).

Proof. Let 𝑉𝜀 be given by (1.7) and set 𝑣𝜀 ∶=
√
𝜀𝑉𝜀. Then, 𝐻𝜀 = 𝐻 + 𝑣𝜀𝑢𝜀 and 𝑣𝜀𝜀𝜀 = 𝑢𝜀𝜀𝜀𝑉𝑞. Hence, due to the

invertibility of 𝐼 + 𝐵𝜀(𝑧)𝑉𝑞 and (3.4) we obtain

(𝐻𝜀 − 𝑧)(𝑅𝑧 − 𝐴𝜀(𝑧)𝑉𝑞(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1𝐶𝜀(𝑧)) = (𝐻 − 𝑧 + 𝑣𝜀𝑢𝜀)(𝑅𝑧 − 𝑅𝑧𝑣𝜀(𝐼 + 𝑢𝜀𝑅𝑧𝑣𝜀)

−1𝑢𝜀𝑅𝑧)

= 𝐼 + 𝑣𝜀𝑢𝜀𝑅𝑧 − 𝑣𝜀(𝐼 + 𝑢𝜀𝑅𝑧𝑣𝜀)
−1𝑢𝜀𝑅𝑧 − 𝑣𝜀𝑢𝜀𝑅𝑧𝑣𝜀(𝐼 + 𝑢𝜀𝑅𝑧𝑣𝜀)

−1𝑢𝜀𝑅𝑧

= 𝐼 + 𝑣𝜀𝑢𝜀𝑅𝑧 − 𝑣𝜀(𝐼 + 𝑢𝜀𝑅𝑧𝑣𝜀)
−1𝑢𝜀𝑅𝑧 + 𝑣𝜀(𝐼 + 𝑢𝜀𝑅𝑧𝑣𝜀)

−1𝑢𝜀𝑅𝑧 − 𝑣𝜀𝑢𝜀𝑅𝑧

= 𝐼.

A similar calculation shows that (𝑅𝑧 − 𝐴𝜀(𝑧)𝑉𝑞(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1𝐶𝜀(𝑧))(𝐻𝜀 − 𝑧) = 𝐼 is true. The latter two equations imply

the claim of this proposition. □

3.2 The shift operator

In this subsection, we introduce and study a shift operator which turns out to be useful in the convergence analysis of
the maps 𝐴𝜀(𝑧), 𝐵𝜀(𝑧), and 𝐶𝜀(𝑧) in (3.4). For that, we first fix a 𝐶1

𝑏
-extension of the normal vector field 𝜈 to ℝ𝜃, which

we also denote by 𝜈. In the following, we show how one possible choice of this extension can be constructed, which also
proves that such an extension exists. Choose 𝜑𝜈 ∈ 𝐶1(ℝ;ℝ) with 𝜑𝜈(0) = 1 and compact support in (−𝜀1, 𝜀1), where 𝜀1 is
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BEHRNDT et al. 2513

the number specified in Proposition 2.4. Since Σ is assumed to satisfy Hypothesis 2.1, it is not difficult to show that the
vector field defined by

ℝ𝜃 ∋ 𝑥 ↦

{
𝜈(𝑥Σ)𝜑𝜈(𝑡), if 𝑥 = 𝑥Σ + 𝑡𝜈(𝑥Σ) ∈ Ω𝜀1 with (𝑥Σ, 𝑡) ∈ Σ × (−𝜀1, 𝜀1),

0, if 𝑥 ∉ Ω𝜀1 ,

is a𝐶1
𝑏
-extension of 𝜈which is supported inΩ𝜀1 . Next,we define for 𝛿 ∈ ℝ the shift operator 𝜏𝛿 ∶ 𝐿2(ℝ𝜃; ℂ𝑁) → 𝐿2(ℝ𝜃; ℂ𝑁)

by

𝜏𝛿𝑢(𝑥) ∶= 𝑢(𝑥 + 𝛿𝜈(𝑥)), 𝑥 ∈ ℝ𝜃. (3.5)

Proposition 3.3. Let 𝐷𝜈 be the Jacobi matrix of 𝜈 and 𝛿0 ∈ (0, ‖𝐷𝜈‖−1𝐿∞(ℝ𝜃;ℝ𝜃×𝜃)). Then, for any 𝑟 ∈ [0, 1] the operators 𝜏𝛿 ,
𝛿 ∈ [−𝛿0, 𝛿0], are uniformly bounded in𝐻𝑟(ℝ𝜃; ℂ𝑁) and for 𝑟′ ∈ [0, 𝑟]

‖𝜏𝛿 − 𝐼‖𝐻𝑟(ℝ𝜃;ℂ𝑁)→𝐻𝑟′ (ℝ𝜃;ℂ𝑁) ≤ 𝐶|𝛿|𝑟−𝑟′ (3.6)

holds for all 𝛿 ∈ [−𝛿0, 𝛿0], where 𝐶 > 0 is independent of 𝛿.

Proof. Fix 𝛿 ∈ [−𝛿0, 𝛿0] and observe first that 𝐼𝜃 + 𝛿𝐷𝜈(𝑥) is invertible for all 𝑥 ∈ ℝ𝜃 and the norm of the inverse is
bounded by (1 − |𝛿0|‖𝐷𝜈‖𝐿∞(ℝ𝜃;ℝ𝜃×𝜃))

−1. The same bound holds for the modulus of the eigenvalues of (𝐼𝜃 + 𝛿𝐷𝜈(𝑥))−1

and hence we conclude

|det((𝐼𝜃 + 𝛿𝐷𝜈(𝑥))−1)| ≤ 1

(1 − |𝛿0|‖𝐷𝜈‖𝐿∞(ℝ𝜃;ℝ𝜃×𝜃))
𝜃
, 𝑥 ∈ ℝ𝜃. (3.7)

We start by showing the uniform boundedness of 𝜏𝛿 for 𝑟 = 0. Let 𝑢 ∈ 𝐿2(ℝ𝜃; ℂ𝑁). Then, a change of variables and (3.7)
lead to

∫
ℝ𝜃

|𝜏𝛿𝑢(𝑥)|2 𝑑𝑥 = ∫
ℝ𝜃

|𝑢(𝑥 + 𝛿𝜈(𝑥))|2 𝑑𝑥 = ∫
ℝ𝜃

|𝑢(𝑥 + 𝛿𝜈(𝑥))|2|det(𝐼𝜃 + 𝛿𝐷𝜈(𝑥)) det((𝐼𝜃 + 𝛿𝐷𝜈(𝑥))−1)|𝑑𝑥
≤ 1

(1 − |𝛿0|‖𝐷𝜈‖𝐿∞(ℝ𝜃;ℝ𝜃×𝜃))
𝜃 ∫

ℝ𝜃

|𝑢(𝑥)|2 𝑑𝑥, (3.8)

and it follows that the operators 𝜏𝛿, 𝛿 ∈ [−𝛿0, 𝛿0], are uniformly bounded in 𝐿2(ℝ𝜃; ℂ𝑁). To see the uniform boundedness
of the operators 𝜏𝛿 in𝐻1(ℝ𝜃; ℂ𝑁), let 𝑢 ∈ (ℝ𝜃; ℂ𝑁) and compute in a similar way as above

∫
ℝ𝜃

|𝐷(𝜏𝛿𝑢)(𝑥)|2 𝑑𝑥 = ∫
ℝ𝜃

|(𝐷𝑢)(𝑥 + 𝛿𝜈(𝑥))(𝐼𝜃 + 𝛿𝐷𝜈(𝑥))|2 𝑑𝑥 ≤ (1 + 𝛿0‖𝐷𝜈‖𝐿∞(ℝ𝜃;ℝ𝜃×𝜃))
2

(1 − |𝛿0|‖𝐷𝜈‖𝐿∞(ℝ𝜃;ℝ𝜃×𝜃))
𝜃 ∫

ℝ𝜃

|𝐷𝑢(𝑥)|2 𝑑𝑥. (3.9)

By density this estimate remains valid for 𝑢 ∈ 𝐻1(ℝ𝜃; ℂ𝑁). Therefore, the uniform boundedness of the operators 𝜏𝛿 in
𝐻1(ℝ𝜃; ℂ𝑁) follows from (3.8) and (3.9). Eventually, using interpolation one concludes that 𝜏𝛿 is uniformly bounded in
𝐻𝑟(ℝ𝜃; ℂ𝑁) for any 𝑟 ∈ [0, 1].
It remains to prove (3.6). Since we already have shown that 𝜏𝛿 is uniformly bounded in 𝐻𝑟(ℝ𝜃; ℂ𝑁), the claim in (3.6)

holds for 𝑟 = 𝑟′ ∈ [0, 1]. Next, we show (3.6) for 𝑟′ = 0 and 𝑟 = 1. With the main theorem of calculus and the chain rule,
we find for 𝑢 ∈ (ℝ𝜃; ℂ𝑁)

∫
ℝ𝜃

|𝜏𝛿𝑢(𝑥) − 𝑢(𝑥)|2 𝑑𝑥 = ∫
ℝ𝜃

||||∫
𝛿

0

𝐷𝑢(𝑥 + 𝑡𝜈(𝑥))𝜈(𝑥)𝑑𝑡
||||
2

𝑑𝑥 ≤ ∫
ℝ𝜃

(
∫

𝛿

0

|(𝜏𝑡𝐷𝑢)(𝑥)|2 𝑑𝑡)(
∫

𝛿

0

|𝜈(𝑥)|2 𝑑𝑡) 𝑑𝑥

≤ |𝛿|‖𝜈‖2
𝐿∞(ℝ𝜃;ℝ𝜃) ∫

𝛿

0

‖𝜏𝑡𝐷𝑢‖2𝐿2(ℝ𝜃;ℂ𝑁×𝜃)
𝑑𝑡 ≤ 𝐶|𝛿|∫ 𝛿

0

‖𝐷𝑢‖2
𝐿2(ℝ𝜃;ℂ𝑁×𝜃)

𝑑𝑡 ≤ 𝐶|𝛿|2‖𝑢‖2
𝐻1(ℝ𝜃;ℂ𝑁)

,
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2514 BEHRNDT et al.

where 𝜏𝑡𝐷𝑢 is understood column-wise. By density this estimate remains valid for 𝑢 ∈ 𝐻1(ℝ𝜃; ℂ𝑁) and hence‖𝜏𝛿 − 𝐼‖𝐻1(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁) ≤ 𝐶|𝛿|. It remains to prove the claim in the case 0 ≤ 𝑟′ < 𝑟 ≤ 1 with (𝑟′, 𝑟) ≠ (0, 1). We set

𝜇 = 𝑟 − 𝑟′ ∈ (0, 1) and 𝜐 =
𝑟′

1−(𝑟−𝑟′)
∈ [0, 1]. Then,

𝑟′ = (1 − 𝜇)𝜐 + 𝜇0 and 𝑟 = (1 − 𝜇)𝜐 + 𝜇1

and consequently [44, Theorem B.7] implies

𝐻𝑟′(ℝ𝜃; ℂ𝑁) = [𝐻𝜐(ℝ𝜃; ℂ𝑁),𝐻0(ℝ𝜃; ℂ𝑁)]𝜇 = [𝐻𝜐(ℝ𝜃; ℂ𝑁), 𝐿2(ℝ𝜃; ℂ𝑁)]𝜇

and

𝐻𝑟(ℝ𝜃; ℂ𝑁) = [𝐻𝜐(ℝ𝜃; ℂ𝑁),𝐻1(ℝ𝜃; ℂ𝑁)]𝜇.

Applying (1.18) yields

‖𝐼 − 𝜏𝛿‖𝐻𝑟(ℝ𝜃;ℂ𝑁)→𝐻𝑟′ (ℝ𝜃;ℂ𝑁) ≤ 𝐶‖𝐼 − 𝜏𝛿‖[𝐻𝜐(ℝ𝜃;ℂ𝑁),𝐻1(ℝ𝜃;ℂ𝑁)]𝜇→[𝐻𝜐(ℝ𝜃;ℂ𝑁),𝐿2(ℝ𝜃;ℂ𝑁)]𝜇

≤ 𝐶‖𝐼 − 𝜏𝛿‖1−𝜇𝐻𝜐(ℝ𝜃;ℂ𝑁)→𝐻𝜐(ℝ𝜃;ℂ𝑁)
‖𝐼 − 𝜏𝛿‖𝜇𝐻1(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁)

= 𝐶|𝛿|𝑟−𝑟′ ,
which is exactly (3.6). This finishes the proof of this proposition. □

Wewill also need a variant of the shift operator 𝜏𝛿 that acts on functions defined onΩ±. SinceΩ± satisfy Hypothesis 2.1
we can make use of Stein’s extension operator 𝐸 ∶ 𝐿2(Ω±;ℂ

𝑁) → 𝐿2(ℝ𝜃; ℂ𝑁) which has the properties (𝐸𝑓)± = 𝑓 for
𝑓 ∈ 𝐿2(Ω±;ℂ

𝑁) and which has a continuous restriction 𝐸 ∶ 𝐻𝑟(Ω±;ℂ
𝑁) → 𝐻𝑟(ℝ𝜃; ℂ𝑁) for any 𝑟 ≥ 0, see [53, Chapter 6,

Section 3, Theorem 5]. We then define the shift operator for functions on Ω± by

𝜏
Ω±

𝛿
∶= (𝜏𝛿𝐸(⋅))± ∶ 𝐿2(Ω±;ℂ

𝑁) → 𝐿2(Ω±;ℂ
𝑁). (3.10)

The following properties of 𝜏Ω±

𝛿
follow immediately from the properties of 𝐸 and Proposition 3.3.

Corollary 3.4. Let 𝐷𝜈 be the Jacobi matrix of 𝜈 and 𝛿0 ∈ (0, ‖𝐷𝜈‖−1
𝐿∞(ℝ𝜃;ℝ𝜃×𝜃)

). Then, for any 𝑟 ∈ [0, 1] the operators 𝜏Ω±

𝛿
,

𝛿 ∈ [−𝛿0, 𝛿0], are uniformly bounded in𝐻𝑟(Ω±;ℂ
𝑁) and for 𝑟′ ∈ [0, 𝑟]

‖𝜏Ω±

𝛿
− 𝐼‖

𝐻𝑟(Ω±;ℂ𝑁)→𝐻𝑟′ (Ω±;ℂ𝑁)
≤ 𝐶|𝛿|𝑟−𝑟′

holds for all 𝛿 ∈ [−𝛿0, 𝛿0], where 𝐶 > 0 is independent of 𝛿.

Eventually, we show that the map 𝑡 ↦ 𝜏𝑡𝛿𝑢 has a useful continuity property.

Proposition 3.5. Let𝐷𝜈 be the Jacobi matrix of 𝜈, 𝛿0 ∈ (0, ‖𝐷𝜈‖−1
𝐿∞(ℝ𝜃;ℝ𝜃×𝜃)

), 𝛿 ∈ [−𝛿0, 𝛿0], 𝑟 ∈ [0, 1], 𝑢 ∈ 𝐻𝑟(ℝ𝜃; ℂ𝑁), and
𝑣 ∈ 𝐻𝑟(Ω±;ℂ

𝑁). Then, the functions

𝑓𝑢 ∶ (−1, 1) → 𝐻𝑟(ℝ𝜃; ℂ𝑁), 𝑡 ↦ 𝜏𝑡𝛿𝑢, and 𝑓±
𝑣 ∶ (−1, 1) → 𝐻𝑟(Ω± ℂ𝑁), 𝑡 ↦ 𝜏

Ω±

𝑡𝛿
𝑣,

are continuous.

Proof. First, consider 𝑢 ∈ (ℝ𝜃; ℂ𝑁) and let 𝑡𝑛, 𝑡 ∈ (−1, 1) such that 𝑡𝑛 → 𝑡 as 𝑛 → ∞. Then, with dominated convergence
one gets

lim
𝑛→∞

𝑓𝑢(𝑡𝑛) = lim
𝑛→∞

𝑢((⋅) + 𝛿𝑡𝑛𝜈) = 𝑢((⋅) + 𝛿𝑡𝜈) = 𝑓𝑢(𝑡) in H1(ℝθ; ℂN).
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BEHRNDT et al. 2515

Since𝐻1(ℝ𝜃; ℂ𝑁) is continuously embedded in𝐻𝑟(ℝ𝜃; ℂ𝑁), the assertion follows for 𝑢 ∈ (ℝ𝜃; ℂ𝑁). If 𝑢 ∈ 𝐻𝑟(ℝ𝜃; ℂ𝑁),
then there exists a sequence (𝑢𝑛)𝑛∈ℕ ⊂ (ℝ𝜃; ℂ𝑁) such that 𝑢𝑛 → 𝑢 in 𝐻𝑟(ℝ𝜃; ℂ𝑁) as 𝑛 → ∞. Applying Proposition 3.3
yields

‖𝑓𝑢(𝑡) − 𝑓𝑢𝑛(𝑡)‖𝐻𝑟(ℝ𝜃;ℂ𝑁)
= ‖𝜏𝛿𝑡(𝑢 − 𝑢𝑛)‖𝐻𝑟(ℝ𝜃;ℂ𝑁) ≤ 𝐶‖𝑢 − 𝑢𝑛‖𝐻𝑟(ℝ𝜃;ℂ𝑁)

for all 𝑛 ∈ ℕ and 𝑡 ∈ (−1, 1). Hence, 𝑓𝑢𝑛(𝑡) → 𝑓𝑢(𝑡) uniformly with respect to 𝑡 in 𝐻𝑟(ℝ𝜃; ℂ𝑁) as 𝑛 → ∞. Thus, 𝑓𝑢 is
also continuous.
It remains to verify the claim for 𝑓±

𝑣 . Let 𝑡𝑛, 𝑡 ∈ (−1, 1) such that 𝑡𝑛 → 𝑡 as 𝑛 → ∞. Using the properties of Stein’s
extension operator𝐸 and the above observations, we get that 𝑓𝐸𝑣(𝑡𝑛) → 𝑓𝐸𝑣(𝑡) in𝐻𝑟(ℝ𝜃; ℂ𝑁). Moreover, the boundedness
of the restriction mapping gives us that 𝑓±

𝑣 (𝑡𝑛) = (𝜏𝛿𝑡𝑛𝐸𝑣)± = (𝑓𝐸𝑣(𝑡𝑛))± converges to (𝑓𝐸𝑣(𝑡))± = 𝑓±
𝑣 (𝑡) in 𝐻𝑟(Ω±;ℂ

𝑁).
This shows the continuity of 𝑓±

𝑣 . □

3.3 Convergence of 𝑨𝜺(𝒛), 𝑩𝜺(𝒛), and 𝑪𝜺(𝒛)

This section is devoted to the convergence analysis of the operators𝐴𝜀(𝑧), 𝐵𝜀(𝑧), and 𝐶𝜀(𝑧) introduced in (3.4) for 𝜀 → 0+.
First, in Proposition 3.7 we study the convergence of 𝐶𝜀(𝑧), which allows us with a duality argument to investigate the
convergence of 𝐴𝜀(𝑧) in Proposition 3.8. Eventually, in Proposition 3.10 we consider the convergence of 𝐵𝜀(𝑧).
We define

𝜀2 ∶= min

{
𝜀1
2
,

1

2‖𝐷𝜈‖𝐿∞(ℝ𝜃;ℝ𝜃×𝜃)

}
, (3.11)

where 𝜀1 is specified Proposition 2.4. Let𝑊 be the Weingarten map associated with Σ introduced in Definition 2.3. In our
analysis, the operator𝑀𝜀 ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) acting as

𝑀𝜀𝑓(𝑡) = det (𝐼 − 𝑡𝜀𝑊)𝑓(𝑡) for a.e. 𝑡 ∈ (−1, 1) (3.12)

will be useful. In the following lemma,which is an immediate consequence of Proposition 2.4 (ii), some relevant properties
of𝑀𝜀 are stated.

Lemma 3.6. For any 𝜀 ∈ (0, 𝜀2) the operator𝑀𝜀 is boundedly invertible, and ‖𝑀𝜀‖0→0 ≤ (1 + 𝜀𝐶) and ‖𝑀𝜀 − 𝐼‖0→0 ≤ 𝜀𝐶.

To formulate the result about the convergence of 𝐶𝜀(𝑧), recall that the embedding 𝔍 is defined in (2.7) and introduce
the operator

𝐶0(𝑧) ∶= 𝔍Φ∗
𝑧
∶ 𝐿2(ℝ𝜃; ℂ𝑁) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)). (3.13)

In fact, the properties of 𝔍 and Φ∗
𝑧
, see (2.7) and Proposition 2.8, imply that 𝐶0(𝑧) gives rise also to a bounded operator

from 𝐿2(ℝ𝜃; ℂ𝑁) to 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)).

Proposition 3.7. Let 𝑧 ∈ 𝜌(𝐻), 𝑅𝑧 = (𝐻 − 𝑧)−1, 𝜏(⋅) be the shift operator in (3.5), and 𝜀 ∈ (0, 𝜀2)with 𝜀2 given by (3.11). Then,
for any 𝑢 ∈ 𝐿2(ℝ𝜃; ℂ𝑁) the relation

𝐶𝜀(𝑧)𝑢(𝑡) = 𝒕Σ𝜏𝜀𝑡𝑅𝑧𝑢 for a.e. 𝑡 ∈ (−1, 1) (3.14)

holds in 𝐿2(Σ; ℂ𝑁) and ran𝐶𝜀(𝑧) ⊂ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)). Moreover, the operators 𝐶𝜀(𝑧) are uniformly bounded from
𝐿2(ℝ𝜃; ℂ𝑁) to 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) and for any 𝑟 ∈ (0, 1∕2) one has

‖𝐶𝜀(𝑧) − 𝐶0(𝑧)‖𝐿2(ℝ𝜃;ℂ𝑁)→0 ≤ 𝐶𝜀1∕2−𝑟. (3.15)
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2516 BEHRNDT et al.

Proof. First, we show (3.14) for 𝑢 ∈ (ℝ𝜃; ℂ𝑁). By density and continuity, this implies (3.14) for all 𝑢 ∈ 𝐿2(ℝ𝜃; ℂ𝑁). Recall
that 𝑅𝑧 ∶ 𝐻𝑠(ℝ𝜃; ℂ𝑁) → 𝐻𝑠+1(ℝ𝜃; ℂ𝑁) is bounded for 𝑠 ∈ ℝ; cf. Section 2.3. Hence, by the Sobolev embedding theorem
𝑅𝑧𝑢 is continuous for 𝑢 ∈ (ℝ𝜃; ℂ𝑁) and the same is true for 𝜏𝜀𝑡𝑅𝑧𝑢. Furthermore, as 𝜏𝜀𝑡𝑅𝑧𝑢 ∈ 𝐻1(ℝ𝜃; ℂ𝑁)we conclude
with Proposition 3.1 for 𝑡 ∈ (−1, 1) and 𝑥Σ ∈ Σ that

𝒕Σ𝜏𝜀𝑡𝑅𝑧𝑢(𝑥Σ) = 𝜏𝜀𝑡𝑅𝑧𝑢(𝑥Σ) = ∫
ℝ𝜃

𝐺𝑧(𝑥Σ + 𝜀𝑡𝜈(𝑥Σ) − 𝑦)𝑢(𝑦)𝑑𝑦 = 𝐶𝜀(𝑧)𝑢(𝑡)(𝑥Σ).

Hence, (3.14) is true.
Next, we show the inclusion ran𝐶𝜀(𝑧) ⊂ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)). Assume that 𝑢 ∈ 𝐿2(ℝ𝜃; ℂ𝑁). Then, by Proposi-

tion 3.5 and the boundedness of the trace 𝒕Σ ∶ 𝐻1(ℝ𝜃; ℂ𝑁) → 𝐻1∕2(Σ; ℂ𝑁) it follows that the function 𝒕Σ𝜏(⋅)𝜀𝑅𝑧𝑢 is
continuous as a mapping from (−1, 1) to𝐻1∕2(Σ; ℂ𝑁). In particular, 𝒕Σ𝜏(⋅)𝜀𝑅𝑧𝑢 is measurable as a mapping from (−1, 1) to
𝐻1∕2(Σ; ℂ𝑁). Using again the boundedness of 𝒕Σ ∶ 𝐻1(ℝ𝜃; ℂ𝑁) → 𝐻1∕2(Σ; ℂ𝑁) and the uniform boundedness of the shift
operator in𝐻1(ℝ𝜃; ℂ𝑁), see Propositions 2.2 and 3.3, respectively, we conclude

∫
1

−1

‖𝒕Σ𝜏𝜀𝑡𝑅𝑧𝑢‖2𝐻1∕2(Σ;ℂ𝑁)
𝑑𝑡 ≤ ∫

1

−1

𝐶‖𝑅𝑧𝑢‖2𝐻1(ℝ𝜃;ℂ𝑁)
𝑑𝑡 ≤ 𝐶‖𝑢‖2

𝐿2(ℝ𝜃;ℂ𝑁)

and therefore 𝒕Σ𝜏(⋅)𝜀𝑅𝑧𝑢 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)). Moreover, this also shows that 𝐶𝜀(𝑧) is uniformly bounded from
𝐿2(ℝ𝜃; ℂ𝑁) to 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)).
Eventually, with Proposition 3.3 and the identity 𝐶0(𝑧) = 𝔍Φ∗

𝑧
= 𝔍𝒕Σ𝑅𝑧, see Proposition 2.8 (iii), we have for 𝑟 ∈ (0,

1

2
)

and 𝑢 ∈ 𝐿2(ℝ𝜃; ℂ𝑁)

‖𝐶𝜀(𝑧)𝑢 − 𝐶0(𝑧)𝑢‖20 = ‖𝒕Σ𝜏𝜀(⋅)𝑅𝑧𝑢 − 𝔍𝒕Σ𝑅𝑧𝑢‖20 = ∫
1

−1

‖𝒕Σ(𝜏𝜀𝑡 − 𝐼)𝑅𝑧𝑢‖2𝐿2(Σ;ℂ𝑁) 𝑑𝑡 ≤ 𝐶 ∫
1

−1

‖(𝜏𝜀𝑡 − 𝐼)𝑅𝑧𝑢‖2𝐻𝑟+1∕2(ℝ𝜃;ℂ𝑁) 𝑑𝑡

≤ 𝐶 ∫
1

−1

|𝜀𝑡|1−2𝑟‖𝑅𝑧𝑢‖2𝐻1(ℝ𝜃;ℂ𝑁)
𝑑𝑡 ≤ 𝐶 ∫

1

−1

𝜀1−2𝑟‖𝑢‖2
𝐿2(ℝ𝜃;ℂ𝑁)

𝑑𝑡 ≤ 𝐶𝜀1−2𝑟‖𝑢‖2
𝐿2(ℝ𝜃;ℂ𝑁)

,

which leads to (3.15). Therefore, all claims are shown. □

Using the convergence of 𝐶𝜀(𝑧), it is not difficult to show the convergence of𝐴𝜀(𝑧). We define the natural candidate for
the limit operator by

𝐴0(𝑧) ∶= Φ𝑧𝔍
∗ ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2(ℝ𝜃; ℂ𝑁).

Proposition 3.8. Let 𝑧 ∈ 𝜌(𝐻) and 𝜀 ∈ (0, 𝜀2) with 𝜀2 given by (3.11). Then, for any 𝑟 ∈ (0, 1∕2) one has

‖𝐴𝜀(𝑧) − 𝐴0(𝑧)‖0→𝐿2(ℝ𝜃;ℂ𝑁) ≤ 𝐶𝜀1∕2−𝑟

and, in particular, the operators 𝐴𝜀(𝑧) ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2(ℝ𝜃; ℂ𝑁) are uniformly bounded.

Proof. Let 𝜀, 𝑆𝜀, and𝑀𝜀 be the operators given by (3.2), (3.3), and (3.12), respectively. One verifies by a direct calculation
using Proposition 2.4 (iii), (3.2), and (3.3) that (𝜀𝜀)

∗ = 𝑀𝜀−1
𝜀 −1

𝜀 . Using this relation, we conclude from (3.4) that

(𝐴𝜀(𝑧)𝑀
−1
𝜀 )∗ = 𝑀−1

𝜀 (𝐴𝜀(𝑧))
∗ = 𝑀−1

𝜀 (𝑅𝑧𝑈
∗
𝜀 𝜀𝜀)

∗ = 𝑀−1
𝜀 𝑀𝜀−1

𝜀 −1
𝜀 𝑈𝜀𝑅𝑧 = −1

𝜀 −1
𝜀 𝑈𝜀𝑅𝑧 = 𝐶𝜀(𝑧).

Moreover, (𝐴0(𝑧))
∗ = (Φ𝑧𝔍

∗)∗ = 𝔍Φ∗
𝑧 = 𝐶0(𝑧). Hence, Lemma 3.6 and Proposition 3.7 yield

‖𝐴𝜀(𝑧) − 𝐴0(𝑧)‖0→𝐿2(ℝ𝜃;ℂ𝑁) = ‖𝐴𝜀(𝑧)𝑀
−1
𝜀 (𝑀𝜀 − 𝐼) + 𝐴𝜀(𝑧)𝑀

−1
𝜀 − 𝐴0(𝑧)‖0→𝐿2(ℝ𝜃;ℂ𝑁)

≤ 𝐶𝜀‖𝐶𝜀(𝑧)‖𝐿2(ℝ𝜃;ℂ𝑁)→0 + ‖𝐶𝜀(𝑧) − 𝐶0(𝑧)‖𝐿2(ℝ𝜃;ℂ𝑁)→0 ≤ 𝐶𝜀1∕2−𝑟,

which is the claimed estimate. □
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BEHRNDT et al. 2517

Remark 3.9. For completeness we note that one can follow the proof of Proposition 3.7 to show

‖𝐶𝜀(𝑧) − 𝐶0(𝑧)‖𝐿2(ℝ𝜃;ℂ𝑁)→𝑟 ≤ 𝐶𝜀1∕2−𝑟

for 𝑟 ∈ (0, 1∕2). Moreover, if Σ is 𝐶3 smooth, one can extend the result of Lemma 3.6 to spaces 𝐿2((−1, 1);𝐻𝑡(Σ; ℂ𝑁)),
𝑡 ∈ [−1, 1], and use this to verify

‖𝐴𝜀(𝑧) − 𝐴0(𝑧)‖−𝑟→𝐿2(ℝ𝜃;ℂ𝑁) ≤ 𝐶𝜀1∕2−𝑟

for 𝑟 ∈ (0, 1∕2) in a similar way as in the proof of Proposition 3.8.

Next, we study the convergence of the operators 𝐵𝜀(𝑧). Define the limit operator by

𝐵0(𝑧) ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁))

which acts on 𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) evaluated for a.e. 𝑡 ∈ (−1, 1) as

𝐵0(𝑧)𝑓(𝑡) ∶=
i

2
(𝛼 ⋅ 𝜈)∫

1

−1

sign(𝑡 − 𝑠)𝑓(𝑠) ds + 𝑧 ∫
1

−1

𝑓(𝑠) ds, (3.16)

where 𝑧 ∶ 𝐿2(Σ; ℂ𝑁) → 𝐿2(Σ;ℂ𝑁) is the extension of the operator defined in (2.14) from Proposition 2.9. Using the map-
ping properties of𝑧 in Proposition 2.9 (i), it follows that𝐵0(𝑧) can also be regarded as an operator in 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁))

for any 𝑟 ∈ [−1∕2, 1∕2]. In the following proposition, we show that 𝐵𝜀(𝑧) converges to 𝐵0(𝑧). The proof of this result is
more complicated as the proofs of Propositions 3.7 and 3.8, and therefore some of the more technical calculations are
shifted to Appendix B.

Proposition 3.10. Let 𝑧 ∈ 𝜌(𝐻) and 𝜀 ∈ (0, 𝜀2) with 𝜀2 given by (3.11). Then, the operators 𝐵𝜀(𝑧) are uniformly bounded in
𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) and for any 𝑟 ∈ (0, 1∕2) one has

‖𝐵𝜀(𝑧) − 𝐵0(𝑧)‖1∕2→0 ≤ 𝐶𝜀1∕2−𝑟.

Proof. The proof is split into several steps. LetΦ𝑧 be as in (2.12) and let 𝜏
Ω±

(⋅)
be defined by (3.10). We introduce the auxiliary

operators

𝐵𝜀(𝑧) ∶= 𝐵𝜀(𝑧)𝑀
−1
𝜀 ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)), (3.17)

which are, due to the properties of 𝐵𝜀(𝑧) and 𝑀𝜀 in (3.4) and (3.12), bounded and act on 𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁))

evaluated at 𝑡 ∈ (−1, 1) and 𝑥Σ ∈ Σ as

𝐵𝜀(𝑧)𝑓(𝑡)(𝑥Σ) = ∫
1

−1
∫
Σ

𝐺𝑧(𝑥Σ + 𝜀𝑡𝜈(𝑥Σ) − 𝑦Σ − 𝜀𝑠𝜈(𝑦Σ))𝑓(𝑠)(𝑦Σ) 𝑑𝜎(𝑦Σ) 𝑑𝑠. (3.18)

Moreover, we define

𝐵𝜀(𝑧) ∶ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) → 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁))

acting on 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) for a.e. 𝑡 ∈ (−1, 1) as

𝐵𝜀(𝑧)𝑓(𝑡) = ∫
𝑡

−1

𝒕−Σ𝜏
Ω−

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))−𝑑𝑠 + ∫

1

𝑡

𝒕+Σ𝜏
Ω+

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))+ 𝑑𝑠. (3.19)
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2518 BEHRNDT et al.

First, in Step 1 we show that 𝐵𝜀(𝑧) is bounded and converges to 𝐵0(𝑧), then in Step 2 we verify an alternative represen-
tation of 𝐵𝜀(𝑧). In Step 3, we use Appendix B to compare 𝐵𝜀(𝑧) and 𝐵𝜀(𝑧), and show that 𝐵𝜀(𝑧) is uniformly bounded in 𝜀.
In Step 4, we combine the results from Step 1 to Step 3 to conclude the claim of this proposition.
Step 1. First, we note that, due to Definition 2.5 and Proposition 3.5, the function

(−1, 1)2 ∋ (𝑡, 𝑠) ↦ Θ(∓(𝑡 − 𝑠))𝜏
Ω±

𝜀(𝑡−𝑠)
∈ (𝐻1(Ω±;ℂ

𝑁),𝐻1(Ω±;ℂ
𝑁))

is measurable, where Θ is the Heaviside function. Hence, it follows with Definition 2.5 that the integrands in (3.19) are
measurable with respect to (𝑡, 𝑠) ∈ (−1, 1)2. Moreover, by the mapping properties of 𝒕±

Σ
, 𝜏Ω±

(⋅)
, and Φ𝑧 in Proposition 2.2,

Corollary 3.4, and Proposition 2.8, respectively, the integrands are bounded by 𝐶‖𝑓(𝑠)‖𝐻1∕2(Σ;ℂ𝑁) for (𝑡, 𝑠) ∈ (−1, 1)2. In
particular, we conclude for 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) that

∫
1

−1
∫

1

−1

‖Θ(𝑡 − 𝑠)𝒕−Σ𝜏
Ω−

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))− + Θ(𝑠 − 𝑡)𝒕+Σ𝜏

Ω+

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))+‖2𝐻1∕2(Σ;ℂ𝑁)

𝑑𝑡𝑑𝑠 < ∞.

Thus, Fubini’s theorem for Bochner integrals, cf. Section 2.2, yields the integrability of the integrands in (3.19) with
respect to 𝑠 ∈ (−1, 1) and the measurability of 𝑡 ↦ 𝐵𝜀(𝑧)𝑓(𝑡). Furthermore, the bound for the integrands implies also the
inequality ‖𝐵𝜀(𝑧)𝑓‖1∕2 ≤ 𝐶‖𝑓‖1∕2 for 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)). Hence, 𝐵𝜀(𝑧) is well-defined and uniformly bounded
in 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)). We claim that

‖𝐵𝜀(𝑧) − 𝐵0(𝑧)‖1∕2→0 ≤ 𝐶𝜀1∕2−𝑟. (3.20)

To see this we remark that with Proposition 2.9 (ii) we have the pointwise representation

𝐵0(𝑧)𝑓(𝑡) = ∫
𝑡

−1

𝒕−Σ (Φ𝑧𝑓(𝑠))− 𝑑𝑠 + ∫
1

𝑡

𝒕+Σ (Φ𝑧𝑓(𝑠))+ 𝑑𝑠 (3.21)

for a.e. 𝑡 ∈ (−1, 1) and 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)). Thus, 𝑟 ∈ (0, 1∕2) and direct estimates show

‖𝐵𝜀(𝑧)𝑓 − 𝐵0(𝑧)𝑓‖20 = ∫
1

−1

‖‖‖‖∫
𝑡

−1

𝒕−
Σ
(𝜏

Ω−

𝜀(𝑡−𝑠)
− 𝐼)(Φ𝑧𝑓(𝑠))−𝑑𝑠 + ∫

1

𝑡

𝒕+
Σ
(𝜏

Ω+

𝜀(𝑡−𝑠)
− 𝐼)(Φ𝑧𝑓(𝑠))+𝑑𝑠

‖‖‖‖
2

𝐿2(Σ;ℂ𝑁)

𝑑𝑡 (3.22)

≤ ∫
1

−1

(
∫

𝑡

−1

‖𝒕−Σ (𝜏Ω−

𝜀(𝑡−𝑠)
− 𝐼)(Φ𝑧𝑓(𝑠))−‖

𝐻𝑟(Σ;ℂ𝑁)
𝑑𝑠 + ∫

1

𝑡

‖𝒕+Σ (𝜏Ω+

𝜀(𝑡−𝑠)
− 𝐼)(Φ𝑧𝑓(𝑠))+‖

𝐻𝑟(Σ;ℂ𝑁)
𝑑𝑠

)2

𝑑𝑡.

Employing Proposition 2.2, Corollary 3.4, and Proposition 2.8 yields for all 𝑠, 𝑡 ∈ (−1, 1)

‖𝒕±Σ (𝜏Ω±

𝜀(𝑡−𝑠)
− 𝐼)(Φ𝑧𝑓(𝑠))±‖

𝐻𝑟(Σ;ℂ𝑁)
≤ 𝐶𝜀1∕2−𝑟‖𝑓(𝑠)‖𝐻1∕2(Σ;ℂ𝑁).

Plugging this into (3.22) we obtain

‖𝐵𝜀(𝑧)𝑓 − 𝐵0(𝑧)𝑓‖20 ≤ 𝐶𝜀2(1∕2−𝑟) ∫
1

−1

(
∫

𝑡

−1

‖𝑓(𝑠)‖𝐻1∕2(Σ;ℂ𝑁) 𝑑𝑠 + ∫
1

𝑡

‖𝑓(𝑠)‖𝐻1∕2(Σ;ℂ𝑁) 𝑑𝑠

)2

𝑑𝑡

≤ 𝐶𝜀2(1∕2−𝑟) ∫
1

−1

‖𝑓(𝑠)‖2𝐻1∕2(Σ;ℂ𝑁) 𝑑𝑠 = 𝐶𝜀2(1∕2−𝑟)‖𝑓‖21∕2,
which implies (3.20).
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BEHRNDT et al. 2519

Step 2. We show that the operator 𝐵𝜀(𝑧) in (3.19) has the alternative representation

𝐵𝜀(𝑧)𝑓(𝑡)(𝑥Σ) = ∫
1

−1
∫
Σ

𝐺𝑧(𝑥Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ) − 𝑦Σ)𝑓(𝑠)(𝑦Σ) 𝑑𝜎(𝑦Σ) 𝑑𝑠 (3.23)

for 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)), a.e. 𝑡 ∈ (−1, 1), and 𝜎-a.e. 𝑥Σ ∈ Σ. Let 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) and 𝑡, 𝑠 ∈ (−1, 1) be
fixed such that 𝑡 > 𝑠. Note that the choice of 𝜀1 in Proposition 2.4 implies 𝜀2 ≤ 𝜀1

2
<

𝜀𝐴

2
, cf. also Proposition A.2. Hence, by

Corollary A.3 we have 𝑥Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ) ∈ Ω− for all 𝑥Σ ∈ Σ. Moreover, we conclude from the representation ofΦ𝑧 given
in (2.12) and the form of the integral kernel 𝐺𝑧, see (2.10)–(2.11), thatΦ𝑧𝑓(𝑠) is continuous away from Σ. Thus, we have for
𝜎-a.e. 𝑥Σ ∈ Σ

𝒕−Σ𝜏
Ω−

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))−(𝑥Σ) = (Φ𝑧𝑓(𝑠))(𝑥Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ)) = ∫

Σ

𝐺𝑧(𝑥Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ) − 𝑦Σ)𝑓(𝑠)(𝑦Σ) 𝑑𝜎(𝑦Σ).

Analogously, for 𝑡 < 𝑠 and 𝜎-a.e. 𝑥Σ ∈ Σ

𝒕+Σ𝜏
Ω+

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))+(𝑥Σ) = (Φ𝑧𝑓(𝑠))(𝑥Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ)) = ∫

Σ

𝐺𝑧(𝑥Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ) − 𝑦Σ)𝑓(𝑠)(𝑦Σ) 𝑑𝜎(𝑦Σ).

Combining the previous two equations yields

∫
𝑡

−1

𝒕−Σ𝜏
Ω−

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))−(𝑥Σ) 𝑑𝑠 + ∫

1

𝑡

𝒕+Σ 𝜏
Ω+

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))+(𝑥Σ) 𝑑𝑠

= ∫
1

−1
∫
Σ

𝐺𝑧(𝑥Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ) − 𝑦Σ)𝑓(𝑠)(𝑦Σ) 𝑑𝜎(𝑦Σ) 𝑑𝑠. (3.24)

Moreover, as the integrands on the right-hand side in (3.19) are Bochner integrable (cf. Step 1), Proposition 2.7 (iii) shows
that the pointwise evaluation of the Bochner integrals in the definition of 𝐵𝜀(𝑧) in (3.19) coincides with (3.24), that is,(

∫
𝑡

−1

𝒕−Σ𝜏
Ω−

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))− 𝑑𝑠 + ∫

1

𝑡

𝒕+Σ𝜏
Ω+

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))+ 𝑑𝑠

)
(𝑥Σ)

= ∫
𝑡

−1

𝒕−Σ𝜏
Ω−

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))−(𝑥Σ) 𝑑𝑠 + ∫

1

𝑡

𝒕+Σ 𝜏
Ω+

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))+(𝑥Σ) 𝑑𝑠.

This is exactly the claimed formula in (3.23).
Step 3. By the results in Appendix B the map 𝐵𝜀(𝑧) − 𝐵𝜀(𝑧) admits an extension to a bounded operator from

𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) to 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) and

‖𝐵𝜀(𝑧) − 𝐵𝜀(𝑧)‖0→0 ≤ ‖𝐵𝜀(𝑧) − 𝐵𝜀(𝑧)‖0→1∕2 ≤ 𝐶(𝜀 + 𝜀|log(𝜀)|)1∕2. (3.25)

Moreover, we claim that 𝐵𝜀(𝑧) is uniformly bounded in 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)). To see this, observe first that

‖𝐵𝜀(𝑧)‖1∕2→1∕2 ≤ ‖𝐵𝜀(𝑧) − 𝐵𝜀(𝑧)‖1∕2→1∕2 + ‖𝐵𝜀(𝑧)‖1∕2→1∕2 ≤ ‖𝐵𝜀(𝑧) − 𝐵𝜀(𝑧)‖0→1∕2 + ‖𝐵𝜀(𝑧)‖1∕2→1∕2. (3.26)

Therefore, the estimate (3.25) and the uniform boundedness of the operators 𝐵𝜀(𝑧) in 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) shown in
Step 1 imply that 𝐵𝜀(𝑧) is also uniformly bounded in 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)). The same is true for 𝐵𝜀(𝑧) and hence also
the anti-dual

(𝐵𝜀(𝑧))
′ ∶ 𝐿2((−1, 1);𝐻−1∕2(Σ; ℂ𝑁)) → 𝐿2((−1, 1);𝐻−1∕2(Σ; ℂ𝑁))
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2520 BEHRNDT et al.

is uniformly bounded. We claim that (𝐵𝜀(𝑧))
′ is an extension of 𝐵𝜀(𝑧), that is,

𝐵𝜀(𝑧)𝑓 = (𝐵𝜀(𝑧))
′𝑓, 𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)). (3.27)

The identity (𝜀𝜀)
∗ = 𝑀𝜀−1

𝜀 −1
𝜀 and (3.4) yield for the adjoint of 𝐵𝜀(𝑧) in 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁))

(𝐵𝜀(𝑧))
∗ = (−1

𝜀 −1
𝜀 𝑈𝜀𝑅𝑧𝑈

∗
𝜀 𝜀𝜀)

∗ = 𝑀𝜀−1
𝜀 −1

𝜀 𝑈𝜀𝑅𝑧𝑈
∗
𝜀 𝜀𝜀𝑀

−1
𝜀 = 𝑀𝜀𝐵𝜀(𝑧)𝑀

−1
𝜀 . (3.28)

In turn,𝑀𝜀 = (𝑀𝜀)
∗ and 𝐵𝜀(𝑧) = 𝐵𝜀(𝑧)𝑀

−1
𝜀 give us

(𝐵𝜀(𝑧))
∗ = (𝐵𝜀(𝑧)𝑀

−1
𝜀 )∗ = 𝑀−1

𝜀 (𝐵𝜀(𝑧))
∗ = 𝑀−1

𝜀 𝑀𝜀𝐵𝜀(𝑧)𝑀
−1
𝜀 = 𝐵𝜀(𝑧)

and hence Proposition 2.7 (ii) implies for 𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) and 𝑔 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁))

⟨(𝐵𝜀(𝑧))
′𝑓, 𝑔⟩𝐿2((−1,1);𝐻−1∕2(Σ;ℂ𝑁))×𝐿2((−1,1);𝐻1∕2(Σ;ℂ𝑁)) = ⟨𝑓, 𝐵𝜀(𝑧)𝑔⟩𝐿2((−1,1);𝐻−1∕2(Σ;ℂ𝑁))×𝐿2((−1,1);𝐻1∕2(Σ;ℂ𝑁))

= (𝑓, 𝐵𝜀(𝑧)𝑔)𝐿2((−1,1);𝐿2(Σ;ℂ𝑁)) = (𝐵𝜀(𝑧)𝑓, 𝑔)𝐿2((−1,1);𝐿2(Σ;ℂ𝑁)) = ⟨𝐵𝜀(𝑧)𝑓, 𝑔⟩𝐿2((−1,1);𝐻−1∕2(Σ;ℂ𝑁))×𝐿2((−1,1);𝐻1∕2(Σ;ℂ𝑁)),

where ⟨⋅, ⋅⟩𝐿2((−1,1);𝐻−1∕2(Σ;ℂ𝑁))×𝐿2((−1,1);𝐻1∕2(Σ;ℂ𝑁)) denotes the sesquilinear duality product, which is anti-linear in the sec-
ond argument. This implies (3.27) and since (𝐵𝜀(𝑧))

′ and 𝐵𝜀(𝑧) are both uniformly bounded in 𝐿2((−1, 1);𝐻−1∕2(Σ; ℂ𝑁))

and 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)), respectively, an interpolation argument leads to the uniform boundedness of 𝐵𝜀(𝑧) in
𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)).
Step 4. Using the results from Step 1 to Step 3 we will now complete the proof of Proposition 3.10. Since 𝐵𝜀(𝑧) =

𝐵𝜀(𝑧)𝑀𝜀, Lemma 3.6 and the uniform boundedness of 𝐵𝜀(𝑧) shown in Step 3 imply the uniform boundedness of 𝐵𝜀(𝑧)

in 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)), proving the first claim of this proposition. Moreover, the uniform boundedness of 𝐵𝜀(𝑧), (3.25),
and Lemma 3.6 show that 𝐵𝜀(𝑧) also acts as a uniformly bounded operator in 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) and

‖𝐵𝜀(𝑧) − 𝐵𝜀(𝑧)‖0→0 ≤ ‖𝐵𝜀(𝑧)(𝑀𝜀 − 𝐼)‖0→0 + ‖𝐵𝜀(𝑧) − 𝐵𝜀(𝑧)‖0→0 ≤ 𝐶
(
𝜀 + (𝜀 + 𝜀|log(𝜀)|)1∕2) ≤ 𝐶(𝜀 + 𝜀|log(𝜀)|)1∕2.

(3.29)
Combining (3.29) with (3.20) yields

‖𝐵𝜀(𝑧) − 𝐵0(𝑧)‖1∕2→0 ≤ ‖𝐵𝜀(𝑧) − 𝐵𝜀(𝑧)‖1∕2→0 + ‖𝐵𝜀(𝑧) − 𝐵0(𝑧)‖1∕2→0 ≤ ‖𝐵𝜀(𝑧) − 𝐵𝜀(𝑧)‖0→0 + ‖𝐵𝜀(𝑧) − 𝐵0(𝑧)‖1∕2→0

≤ 𝐶
(
(𝜀 + 𝜀|log(𝜀)|)1∕2 + 𝜀1∕2−𝑟

) ≤ 𝐶𝜀1∕2−𝑟.

This is the claimed norm estimate and finishes the proof of this proposition. □

Remark 3.11. Note that by combining (3.28) and Lemma 3.6 we obtain for 𝜀 ∈ (0, 𝜀2) the estimate

‖𝐵𝜀(𝑧) − (𝐵𝜀(𝑧))
∗‖0→0 = ‖𝐵𝜀(𝑧) − 𝑀𝜀𝐵𝜀(𝑧)𝑀

−1
𝜀 ‖0→0 ≤ ‖(𝐼 − 𝑀𝜀)𝐵𝜀(𝑧)‖0→0 + ‖𝑀𝜀𝐵𝜀(𝑧)𝑀

−1
𝜀 (𝑀𝜀 − 𝐼)‖0→0 ≤ 𝐶𝜀.

3.4 Convergence of (𝑰 + 𝑩𝜺(𝒛)𝑽𝒒)−𝟏

Recall that 𝐵𝜀(𝑧) is defined in (3.4) and let 𝑞 and 𝑉 be as in (1.5) and (1.6), respectively. In this section, we treat the
convergence of (𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)

−1 under suitable assumptions on 𝑞 and𝑉. The crucial assumption here,which is also needed
in our main result, Theorem 1.1, is that a suitable norm of 𝑉𝑞 is bounded by

𝑋𝑧 ∶=
1

max{sup𝜀∈(0,𝜀2) ‖𝐵𝜀(𝑧)‖0→0, ‖𝐵0(𝑧)‖1∕2→1∕2}
, (3.30)

where 𝜀2 is given by (3.11) and 𝑧 ∈ 𝜌(𝐻) is fixed. After the convergence result in the next proposition, we provide more
information on 𝑋𝑧 in Lemma 3.13.
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BEHRNDT et al. 2521

Proposition 3.12. Let 𝑧 ∈ 𝜌(𝐻), 𝜀3 ∈ (0, 𝜀2], and 𝜀2 > 0 be given by (3.11), and let 𝑞 and𝑉 be as in (1.5) and (1.6), respectively,
such that the following conditions are fulfilled:

(i) The operators 𝐼 + 𝐵𝜀(𝑧)𝑉𝑞 are bijective in 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) for 𝜀 ∈ (0, 𝜀3) and their inverses are uniformly bounded.
(ii) The operator 𝐼 + 𝐵0(𝑧)𝑉𝑞 is bijective in 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)).

Then, for any 𝑟 ∈ (0, 1∕2) one has

‖(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1 − (𝐼 + 𝐵0(𝑧)𝑉𝑞)

−1‖1∕2→0 ≤ 𝐶𝜀1∕2−𝑟, 𝜀 ∈ (0, 𝜀3).

In particular, this is true if 𝜀3 = 𝜀2 and

‖𝑉‖𝑊1
∞(Σ;ℂ𝑁×𝑁)‖𝑞‖𝐿∞(ℝ;ℝ) < 𝑋𝑧. (3.31)

Proof. Since the conditions (i) and (ii) are fulfilled, we have

((𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1 − (𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)

−1)𝑓 = (𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1(𝐵𝜀(𝑧) − 𝐵0(𝑧))𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)

−1𝑓

for 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) and 𝜀 ∈ (0, 𝜀3). Thus, with Proposition 3.10 and the fact that 𝑉𝑞 induces a bounded
operator in 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)), see (2.3) and Section 2.2, we find

‖(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1 − (𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)

−1‖1∕2→0 ≤ ‖(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1‖0→0‖(𝐵𝜀(𝑧) − 𝐵0(𝑧))𝑉𝑞‖1∕2→0‖(𝐼 + 𝐵0(𝑧)𝑉𝑞)

−1‖1∕2→1∕2

≤ 𝐶‖𝐵0(𝑧) − 𝐵𝜀(𝑧)‖1∕2→0 ≤ 𝐶𝜀1∕2−𝑟, 𝜀 ∈ (0, 𝜀3),

which is the claimed result. Finally, note that if (3.31) is true, then

max
{

sup
𝜀∈(0,𝜀2)

‖𝐵𝜀(𝑧)𝑉𝑞‖0→0, ‖𝐵0(𝑧)𝑉𝑞‖1∕2→1∕2

} ≤ max
{

sup
𝜀∈(0,𝜀2)

‖𝐵𝜀(𝑧)‖0→0, ‖𝐵0(𝑧)‖1∕2→1∕2

}‖𝑉‖𝑊1
∞(Σ;ℂ𝑁×𝑁)‖𝑞‖𝐿∞(ℝ;ℝ)

=
1

𝑋𝑧
‖𝑉‖𝑊1

∞(Σ;ℂ𝑁×𝑁)‖𝑞‖𝐿∞(ℝ;ℝ) < 1

shows that (i) and (ii) are fulfilled. □

In the following lemma, we give more explicit estimates for the constant 𝑋𝑧 in (3.30). Recall that 𝐸 denotes Stein’s
extension operator. Moreover, we introduce 𝐶1∕2,−1∕2 ∶=

𝐶2

𝐶1
≥ 1, where 𝐶2 ≥ 𝐶1 > 0 are chosen such that

𝐶1‖𝑓‖0 ≤ ‖𝑓‖[𝐿2((−1,1);𝐻−1∕2(Σ;ℂ𝑁)),𝐿2((−1,1);𝐻1∕2(Σ;ℂ𝑁))]1∕2
≤ 𝐶2‖𝑓‖0

holds for 𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)); note that according to Proposition 2.7 (i) such a choice is possible. If 𝐵 is a bounded
operator in 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) that admits a bounded extension to 𝐿2((−1, 1);𝐻−1∕2(Σ; ℂ𝑁)) and a bounded restriction
to 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)), then Proposition 2.7 (i) and (1.18) imply

‖𝐵‖0→0 ≤ 𝐶1∕2,−1∕2‖𝐵‖1∕21∕2→1∕2
‖𝐵‖1∕2

−1∕2→−1∕2
. (3.32)

Lemma 3.13. Let 𝑧 ∈ 𝜌(𝐻) and let 𝑋𝑧 be as in (3.30). Then, the following assertions hold:

(i) 𝑋𝑧 ≥ 1

𝐶𝒕Σ,𝐸,𝑧

+ ((𝜀2 + 𝜀2| log(𝜀2)|)1∕2), where the constant
𝐶𝒕Σ,𝐸,𝑧 = 2𝐶1∕2,−1∕2 max

(sign,𝜇)∈{+,−}×{𝑧,𝑧}
‖𝒕signΣ ‖𝐻1(Ωsign;ℂ𝑁)→𝐻1∕2(Σ;ℂ𝑁)‖𝐸‖𝐻1(Ωsign;ℂ𝑁)→𝐻1(ℝ𝜃;ℂ𝑁)‖Φ𝜇‖𝐻1∕2(Σ;ℂ𝑁)→𝐻1(Ωsign;ℂ𝑁)

depends only on the geometry of Σ and 𝑧 ∈ 𝜌(𝐻).
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2522 BEHRNDT et al.

(ii) If Σ is 𝐶∞-smooth and compact and𝑚 > 0, then 𝑋𝑧 ≤ 𝜋

4
.

In particular, if ‖𝑉‖𝑊1
∞(Σ;ℂ𝑁×𝑁)‖𝑞‖𝐿∞(ℝ;ℝ) <

1

𝐶𝒕Σ,𝐸,𝑧
and 𝜀2 is chosen sufficiently small, then the claim in Proposition 3.12

is true.

Proof. (i) First, by the definition of 𝐵𝜀(𝑧) and 𝜏
Ω±

𝛿
in (3.19) and (3.10), respectively, and the Cauchy–Schwarz inequality we

have for 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) and 𝜀 ∈ (0, 𝜀2)

‖𝐵𝜀(𝑧)𝑓‖21∕2 ≤ ∫
1

−1

(
∫

𝑡

−1

‖𝒕−Σ𝜏Ω−

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))−‖

𝐻1∕2(Σ;ℂ𝑁)
𝑑𝑠 + ∫

1

𝑡

‖𝒕+Σ𝜏Ω+

𝜀(𝑡−𝑠)
(Φ𝑧𝑓(𝑠))+‖

𝐻1∕2(Σ;ℂ𝑁)
𝑑𝑠

)2

𝑑𝑡

≤∫
1

−1

(
∫

1

−1

𝐶𝒕Σ,𝐸,𝑧

2𝐶1∕2,−1∕2
sup

𝛿∈(−2𝜀2,2𝜀2)
‖𝜏𝛿‖𝐻1(ℝ𝜃;ℂ𝑁)→𝐻1(ℝ𝜃;ℂ𝑁)‖𝑓(𝑠)‖𝐻1∕2(Σ;ℂ𝑁)𝑑𝑠

)2

𝑑𝑡

≤
(

𝐶𝒕Σ,𝐸,𝑧

𝐶1∕2,−1∕2
sup

𝛿∈(−2𝜀2,2𝜀2)
‖𝜏𝛿‖𝐻1(ℝ𝜃;ℂ𝑁)→𝐻1(ℝ𝜃;ℂ𝑁)‖𝑓‖1∕2)2

.

Hence,

sup
𝜀∈(0,𝜀2)

‖𝐵𝜀(𝑧)‖1∕2→1∕2 ≤
𝐶𝒕Σ,𝐸,𝑧

𝐶1∕2,−1∕2
sup

𝛿∈(−2𝜀2,2𝜀2)
‖𝜏𝛿‖𝐻1(ℝ𝜃;ℂ𝑁)→𝐻1(ℝ𝜃;ℂ𝑁)

and a similar calculation using (3.21), the estimate ‖𝐸‖𝐻1(Ωsign;ℂ𝑁)→𝐻1(ℝ𝜃;ℂ𝑁) ≥ 1, and 𝐶1∕2,−1∕2 ≥ 1 leads to

‖𝐵0(𝑧)‖1∕2→1∕2 ≤ 𝐶𝒕Σ,𝐸,𝑧. (3.33)

Let us proceed with the estimate for 𝐵𝜀(𝑧). Since by (3.8) and (3.9)

sup
𝛿∈(−2𝜀2,2𝜀2)

‖𝜏𝛿‖𝐻1(ℝ𝜃;ℂ𝑁)→𝐻1(ℝ𝜃;ℂ𝑁) ≤
1 + 2𝜀2‖𝐷𝜈‖𝐿∞(ℝ𝜃;ℝ𝜃×𝜃)

(1 − 2𝜀2‖𝐷𝜈‖𝐿∞(ℝ𝜃;ℝ𝜃×𝜃))
𝜃∕2

= 1 + (𝜀2),

the results from (3.25)–(3.26) and Appendix B imply

sup
𝜀∈(0,𝜀2)

‖𝐵𝜀(𝑧)‖1∕2→1∕2 ≤ 𝐶𝒕Σ,𝐸,𝑧

𝐶1∕2,−1∕2
+ ((𝜀2 + 𝜀2| log(𝜀2)|)1∕2). (3.34)

It is clear that the estimates (3.33) and (3.34) hold also with 𝑧 replaced by 𝑧. As in Step 3 of the proof of Proposition 3.10
we use again that the anti-dual (𝐵𝜀(𝑧))

′ of 𝐵𝜀(𝑧) in 𝐿2((−1, 1);𝐻−1∕2(Σ; ℂ𝑁)) is an extension of 𝐵𝜀(𝑧) that is bounded by‖𝐵𝜀(𝑧)‖1∕2→1∕2. Hence, with (3.32) one gets

sup
𝜀∈(0,𝜀2)

‖𝐵𝜀(𝑧)‖0→0 ≤ sup
𝜀∈(0,𝜀2)

𝐶1∕2,−1∕2‖𝐵𝜀(𝑧)‖1∕21∕2→1∕2
‖(𝐵𝜀(𝑧))

′‖1∕2
−1∕2→−1∕2

= sup
𝜀∈(0,𝜀2)

𝐶1∕2,−1∕2‖𝐵𝜀(𝑧)‖1∕21∕2→1∕2
‖𝐵𝜀(𝑧)‖1∕21∕2→1∕2

≤ 𝐶𝒕Σ,𝐸,𝑧 + ((𝜀2 + 𝜀2| log(𝜀2)|)1∕2).
Thus, it follows from the definition of 𝐵𝜀(𝑧) in (3.17) and Lemma 3.6 that

sup
𝜀∈(0,𝜀2)

‖𝐵𝜀(𝑧)‖0→0 ≤ 𝐶𝒕Σ,𝐸,𝑧 + ((𝜀2 + 𝜀2| log(𝜀2)|)1∕2).
Together with (3.33) this yields the claim in (i).
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BEHRNDT et al. 2523

(ii) First, note that there exist 𝜑𝑛 ∈ 𝐻1∕2(Σ; ℂ𝑁) such that

‖𝜑𝑛‖𝐻1∕2(Σ;ℂ𝑁) = 1 and
‖‖‖‖‖
(
−
1

2
𝐼𝑁 + 𝑧

)
𝜑𝑛

‖‖‖‖‖𝐻1∕2(Σ;ℂ𝑁)

→ 0, as 𝑛 → ∞; (3.35)

for 𝑧 ∈ (−𝑚,𝑚) this follows from [34, Corollaries 3.8 and 4.12], while for 𝑧 ∈ ℂ ⧵ ℝ one may additionally use that [11,
Proposition 4.4 (iv)] implies that 𝑧 − 0 is compact in 𝐻1∕2(Σ; ℂ𝑁). Define the functions 𝑓𝑛 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁))

by 𝑓𝑛(𝑡) ∶= exp(𝑖(𝛼 ⋅ 𝜈)𝜋𝑡∕4)𝜑𝑛 and compute with Proposition 2.7 (iii)

i

2
(𝛼 ⋅ 𝜈)∫

1

−1

sign(𝑡 − 𝑠)𝑓𝑛(𝑠)ds =
2

𝜋

(
∫

𝑡

−1

𝑑

ds
exp

(
i(𝛼 ⋅ 𝜈)

𝜋

4
𝑠
)
𝜑𝑛ds − ∫

1

𝑡

𝑑

ds
exp

(
i(𝛼 ⋅ 𝜈)

𝜋

4
𝑠
)
𝜑𝑛ds

)

=
4

𝜋

(
exp

(
i(𝛼 ⋅ 𝜈)

𝜋

4
𝑡
)
− cos

(
(𝛼 ⋅ 𝜈)

𝜋

4

))
𝜑𝑛 =

4

𝜋

(
𝑓𝑛(𝑡) −

√
2

2
𝐼𝑁𝜑𝑛

)
,

where in the last step the identity cos((𝛼 ⋅ 𝜈)𝜋∕4) = cos(𝜋∕4)𝐼𝑁 =

√
2

2
𝐼𝑁 , which can be shown via the power series rep-

resentation of cosine and (𝛼 ⋅ 𝜈)2 = 𝐼𝑁 , was used. With a similar argument, one verifies that (𝛼 ⋅ 𝜈) sin((𝛼 ⋅ 𝜈)𝜋∕4) =

sin(𝜋∕4)𝐼𝑁 =

√
2

2
𝐼𝑁 , which yields

∫
1

−1

𝑓𝑛(𝑠)𝑑𝑠 = ∫
1

−1

exp
(
𝑖(𝛼 ⋅ 𝜈)

𝜋

4
𝑠
)
𝜑𝑛𝑑𝑠 =

8

𝜋
(𝛼 ⋅ 𝜈) sin

(
(𝛼 ⋅ 𝜈)

𝜋

4

)
𝜑𝑛 =

4
√
2

𝜋
𝜑𝑛.

Combining the last two displayed formulas with the representation of 𝐵0(𝑧) in (3.16), we conclude

𝐵0(𝑧)𝑓𝑛(𝑡) =
i

2
(𝛼 ⋅ 𝜈)∫

1

−1

sign(𝑡 − 𝑠)𝑓(𝑠) ds + 𝑧 ∫
1

−1

𝑓(𝑠) ds = 4

𝜋

(
𝑓𝑛(𝑡) +

√
2

(
−
1

2
𝐼𝑁 + 𝑧

)
𝜑𝑛

)
.

Hence, using (3.35), we find that

‖𝐵0(𝑧)‖1∕2→1∕2 ≥ lim
𝑛→∞

‖𝐵0(𝑧)𝑓𝑛‖1∕2‖𝑓𝑛‖1∕2 =
4

𝜋

and thus 𝑋𝑧 ≤ 𝜋

4
. □

4 PROOF OF THEMAIN RESULTS

In this section, we prove the main results of this paper. For this we show in Proposition 4.1 that the resolvent (𝐻𝜀 − 𝑧)−1

of the self-adjoint operator 𝐻𝜀 in (1.8) converges to the limit operator

(𝑧) ∶= 𝑅𝑧 − 𝐴0(𝑧)𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧) (4.1)

whenever 𝑞 and 𝑉 in (1.5) and (1.6), respectively, satisfy the condition (3.31) for some 𝑧 ∈ 𝜌(𝐻) = ℂ ⧵ ((−∞,−|𝑚|] ∪
[|𝑚|,∞)). Lemmas 4.2 and 4.3 collect some auxiliary considerations that are needed in Proposition 4.4, where it is
shown that (𝑧) = (𝐻𝑉 − 𝑧)−1 with𝐻𝑉 defined by (1.2). After these preparations we complete the proofs of Theorem 1.1,
Corollary 1.2, and Corollary 1.3.

Proposition 4.1. Let 𝑧 ∈ 𝜌(𝐻) and 𝜀 ∈ (0, 𝜀2)with 𝜀2 > 0 given by (3.11), and let 𝑞 and𝑉 be as in (1.5) and (1.6), respectively,
such that (3.31) holds. Then, 𝑧 ∈ 𝜌(𝐻𝜀) and for any 𝑟 ∈ (0, 1∕2) one has

‖(𝐻𝜀 − 𝑧)−1 − (𝑧)‖𝐿2(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁) ≤ 𝐶𝜀1∕2−𝑟, 𝜀 ∈ (0, 𝜀2),

where the operator (𝑧) is given by (4.1). In particular, (𝐻𝜀 − 𝑧)−1 converges to (𝑧) in the operator norm as 𝜀 → 0+.
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2524 BEHRNDT et al.

Proof. According to Proposition 3.2 and (3.31), see also Proposition 3.12, we have 𝑧 ∈ 𝜌(𝐻𝜀) and

(𝐻𝜀 − 𝑧)−1 − (𝑧) = −𝐴𝜀(𝑧)𝑉𝑞(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1𝐶𝜀(𝑧) + 𝐴0(𝑧)𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)

−1𝐶0(𝑧)

= −𝐴𝜀(𝑧)𝑉𝑞(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1(𝐶𝜀(𝑧) − 𝐶0(𝑧)) − 𝐴𝜀(𝑧)𝑉𝑞((𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)

−1 − (𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1)𝐶0(𝑧)

− (𝐴𝜀(𝑧) − 𝐴0(𝑧))𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧).

(4.2)

We note that by Proposition 3.8 and Proposition 3.12 the operators 𝐴𝜀(𝑧) ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2(ℝ𝜃; ℂ𝑁) and
(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)

−1 ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) are uniformly bounded. Employing this and Proposi-
tion 3.7 we see that

‖𝐴𝜀(𝑧)𝑉𝑞(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1(𝐶𝜀(𝑧) − 𝐶0(𝑧))‖𝐿2(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁) ≤ 𝐶‖𝐶𝜀(𝑧) − 𝐶0(𝑧)‖𝐿2(ℝ𝜃;ℂ𝑁)→0 ≤ 𝐶𝜀1∕2−𝑟. (4.3)

Since 𝐶0(𝑧) ∶ 𝐿2(ℝ𝜃; ℂ𝑁) → 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) in (3.13) is bounded, Proposition 3.12 yields

‖𝐴𝜀(𝑧)𝑉𝑞((𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1 − (𝐼 + 𝐵0(𝑧)𝑉𝑞)

−1)𝐶0(𝑧)‖𝐿2(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁)

≤ 𝐶‖(𝐼 + 𝐵𝜀(𝑧)𝑉𝑞)
−1 − (𝐼 + 𝐵0(𝑧)𝑉𝑞)

−1‖1∕2→0 ≤ 𝐶𝜀1∕2−𝑟.
(4.4)

Eventually, in a similar way as in (4.3) we find with Proposition 3.8 that

‖(𝐴𝜀(𝑧) − 𝐴0(𝑧))𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧)‖𝐿2(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁) ≤ 𝐶‖𝐴𝜀(𝑧) − 𝐴0(𝑧)‖0→𝐿2(ℝ𝜃;ℂ𝑁) ≤ 𝐶𝜀1∕2−𝑟. (4.5)

Combining (4.3)–(4.5) with (4.2) shows the claim of this proposition. □

The next goal is to show that the limit operator (𝑧) in (4.1) is the resolvent of 𝐻𝑉 defined in (1.2). This requires some
technical preparations and we first introduce the operator

𝑇 ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)), Tf(𝑡) ∶= 𝑖

2 ∫
1

−1

sign(𝑡 − 𝑠)𝑓(𝑠) ds, (4.6)

and the function

𝑄(𝑡) ∶= −
1

2
+ ∫

𝑡

−1

𝑞(𝑠)𝑑𝑠, 𝑡 ∈ [−1, 1]. (4.7)

Note that 𝑄 satisfies 𝑄′ = 𝑞, 𝑄(−1) = −
1

2
, and by (1.5) also 𝑄(1) = 1

2
. Moreover, for 𝑟 ∈ [0, 1∕2] the map 𝑇 gives rise to a

bounded operator in 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)).

Lemma 4.2. Let 𝑞 and 𝑉 be as in (1.5) and (1.6), respectively, let 𝑟 ∈ [0, 1∕2], and assume that cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
∈

𝑊1
∞(Σ;ℂ𝑁×𝑁). Then, the following is true:

(i) 𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞 is boundedly invertible in 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)) and its inverse is given by the operator 𝑂 in (4.10).
(ii) If 𝑓 ∈ ran𝔍 (i.e., 𝑓 is independent of 𝑡 ∈ (−1, 1)), then

(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝑓(𝑡) = cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
exp(−𝑖(𝛼 ⋅ 𝜈)𝑉𝑄(𝑡))𝑓(𝑡) (4.8)

holds for a.e. 𝑡 ∈ (−1, 1).

Proof. (i) It will be shown that the operator defined in (4.10) below is the inverse of 𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞. Fix 𝑟 ∈ [0, 1∕2] and
define the operators

Ξ ∶ 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)) → 𝐻𝑟(Σ;ℂ𝑁), Ξ𝑓 =
1

2
cos

( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
𝑖(𝛼 ⋅ 𝜈)𝑉 ∫

1

−1

exp
(
𝑖(𝛼 ⋅ 𝜈)𝑉

(
𝑄(𝑠) −

1

2

))
𝑞(𝑠)𝑓(𝑠) 𝑑𝑠,

(4.9)
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BEHRNDT et al. 2525

and

𝑂 ∶ 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)) → 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁))

𝑂𝑓(𝑡) ∶= 𝑓(𝑡) + exp(−i(𝛼 ⋅ 𝜈)𝑉𝑄(𝑡))Ξ𝑓 − i(𝛼 ⋅ 𝜈)𝑉 ∫
𝑡

−1

exp(i(𝛼 ⋅ 𝜈)𝑉(𝑄(𝑠) − 𝑄(𝑡)))𝑞(𝑠)𝑓(𝑠) 𝑑𝑠.
(4.10)

We will show that Ξ and 𝑂 are bounded and that 𝑂 = (𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1. First, we verify that Ξ is well-defined and
bounded. Let𝑓 ∈ 𝐿2((−1, 1);𝐻𝑟(Σ; ℂ𝑁)). Then, the integrand in (4.9) ismeasurable as a function from (−1, 1) to𝐻𝑟(Σ;ℂ𝑁)

since
(
exp

(
i(𝛼 ⋅ 𝜈)𝑉

(
𝑄(⋅) −

1

2

))
𝑞(⋅)𝑓(⋅), 𝜓

)
𝐻𝑟(Σ;ℂ𝑁)

is measurable for all 𝜓 ∈ 𝐻𝑟(Σ;ℂ𝑁), see Definition 2.5. In fact, the
latter function is the pointwise limit of the sequence of measurable functions

𝑡 ↦

𝑛∑
𝑘=0

((
i(𝛼 ⋅ 𝜈)𝑉

(
𝑄(𝑡) −

1

2

))𝑘
𝑞(𝑡)𝑓(𝑡), 𝜓

)
𝐻𝑟(Σ;ℂ𝑁)

𝑘!
=

𝑛∑
𝑘=0

(
𝑄(𝑡) −

1

2

)𝑘
𝑞(𝑡)((𝑖(𝛼 ⋅ 𝜈)𝑉)𝑘𝑓(𝑡), 𝜓)𝐻𝑟(Σ;ℂ𝑁)

𝑘!
.

Moreover, as cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
, 𝛼 ⋅ 𝜈, 𝑉 ∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁) it follows that

‖Ξ𝑓‖𝐻𝑟(Σ;ℂ𝑁) =
1

2

‖‖‖‖cos( 12 (𝛼 ⋅ 𝜈)𝑉
)−1

i(𝛼 ⋅ 𝜈)𝑉 ∫
1

−1

exp
(
i(𝛼 ⋅ 𝜈)𝑉

(
𝑄(𝑠) −

1

2

))
𝑞(𝑠)𝑓(𝑠) 𝑑𝑠

‖‖‖‖𝐻𝑟(Σ;ℂ𝑁)

≤ 𝐶 ∫
1

−1

‖‖exp(i(𝛼 ⋅ 𝜈)𝑉
(
𝑄(𝑠) −

1

2

))
𝑞(𝑠)𝑓(𝑠)‖‖𝐻𝑟(Σ;ℂ𝑁)

𝑑𝑠

and 𝛼 ⋅ 𝜈, 𝑉 ∈ 𝑊1
∞(Σ;ℂ𝑁×𝑁) also imply exp

(
i(𝛼 ⋅ 𝜈)𝑉

(
𝑄(𝑠) −

1

2

))
∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁) via the power series of the exponential
function. Using 𝑞 ∈ 𝐿∞((−1, 1); ℝ), we conclude

‖Ξ𝑓‖𝐻𝑟(Σ;ℂ𝑁) ≤ 𝐶 ∫
1

−1

‖‖exp((𝛼 ⋅ 𝜈)𝑉
(
𝑄(𝑠) −

1

2

))‖‖𝑊1
∞(Σ;ℂ𝑁×𝑁)

‖𝑞‖𝐿∞((−1,1);ℝ)‖𝑓(𝑠)‖𝐻𝑟(Σ;ℂ𝑁) 𝑑𝑠

≤ 𝐶 ∫
1

−1

‖𝑓(𝑠)‖𝐻𝑟(Σ;ℂ𝑁) ≤ 𝐶‖𝑓‖𝑟.
This shows that Ξ is well-defined and bounded. Analogously one can check that 𝑂 is well-defined and bounded. Hence,
in order to show (i) it suffices to prove

(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)𝑂𝑓 = 𝑂(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)𝑓 = 𝑓 (4.11)

for all 𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)). By Proposition 2.7 (iii) and [37, Proposition 1.2.24] this is true, if for 𝜎-a.e. 𝑥Σ ∈ Σ the
relation

(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)𝑂𝑓(⋅)(𝑥Σ) = 𝑂(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)𝑓(⋅)(𝑥Σ) = 𝑓(⋅)(𝑥Σ)

holds a.e. on (−1, 1). Let𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) and𝑥Σ ∈ Σ be fixed such that𝜑 = 𝜑(𝑥Σ) ∶= 𝑓(⋅)(𝑥Σ) ∈ 𝐿2((−1, 1); ℂ𝑁)

and set 𝐴 = 𝐴(𝑥Σ) ∶= (𝛼 ⋅ 𝜈(𝑥Σ))𝑉(𝑥Σ). Then, we have for a.e. 𝑡 ∈ (−1, 1)

(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)𝑂𝑓(𝑡)(𝑥Σ) = 𝜑(𝑡) + exp(−i𝐴𝑄(𝑡))Ξ𝑓(𝑥Σ) − i𝐴 ∫
𝑡

−1

exp(i𝐴(𝑄(𝑠) − 𝑄(𝑡)))𝑞(𝑠)𝜑(𝑠) 𝑑𝑠

+
i
2 ∫

1

−1

sign(𝑡 − 𝑠)𝐴𝑞(𝑠)

(
𝜑(𝑠) + exp(−i𝐴𝑄(𝑠))Ξ𝑓(𝑥Σ) − i𝐴 ∫

𝑠

−1

exp(i𝐴(𝑄(𝑟) − 𝑄(𝑠)))𝑞(𝑟)𝜑(𝑟) 𝑑𝑟

)
𝑑𝑠.

(4.12)
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2526 BEHRNDT et al.

With a direct calculation we find that

i

2 ∫
1

−1

sign(𝑡 − 𝑠)𝐴 exp(−iAQ(𝑠))𝑞(𝑠)Ξ𝑓(𝑥Σ) ds

=
1

2

(
∫

𝑡

−1

i𝐴 exp(−iAQ(𝑠))𝑞(𝑠) ds − ∫
1

𝑡

i𝐴 exp(−iAQ(𝑠))𝑞(𝑠) ds

)
Ξ𝑓(𝑥Σ)

= −exp(−iAQ(𝑡))Ξ𝑓(𝑥Σ) +
1

2

(
exp

(
−i

2
𝐴

)
+ exp

(
i

2
𝐴

))
Ξ𝑓(𝑥Σ) = −exp(−iAQ(𝑡))Ξ𝑓(𝑥Σ) + cos

(
1

2
𝐴

)
Ξ𝑓(𝑥Σ).

Furthermore, integration by parts gives us

−
i

2 ∫
1

−1

sign(𝑡 − 𝑠)Aq(𝑠)i𝐴 ∫
𝑠

−1

exp(i𝐴(𝑄(𝑟) − 𝑄(𝑠)))𝑞(𝑟)𝜑(𝑟) dr ds

=
i

2
𝐴 ∫

𝑡

−1

𝑑

ds
(exp(−iAQ(𝑠)))∫

𝑠

−1

exp(iAQ(𝑟))𝑞(𝑟)𝜑(𝑟) dr ds

−
i

2
𝐴 ∫

1

𝑡

𝑑

ds
(exp(−iAQ(𝑠)))∫

𝑠

−1

exp(iAQ(𝑟))𝑞(𝑟)𝜑(𝑟) dr ds

= i𝐴 exp(−iAQ(𝑡))∫
𝑡

−1

exp(iAQ(𝑟))𝑞(𝑟)𝜑(𝑟) dr − i

2
𝐴 ∫

1

−1

exp

(
i𝐴

(
𝑄(𝑟) −

1

2

))
𝑞(𝑟)𝜑(𝑟) dr

−
i

2
𝐴 ∫

1

−1

sign(𝑡 − 𝑠)𝑞(𝑠)𝜑(𝑠) ds

= i𝐴 exp(−iAQ(𝑡))∫
𝑡

−1

exp(iAQ(𝑟))𝑞(𝑟)𝜑(𝑟) dr − i

2
𝐴 ∫

1

−1

sign(𝑡 − 𝑠)𝑞(𝑠)𝜑(𝑠) ds − cos

(
1

2
𝐴

)
Ξ𝑓(𝑥Σ).

A combination of the last two calculations with (4.12) yields

(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)𝑂𝑓(𝑡)(𝑥Σ) = 𝜑(𝑡).

One verifies in a very similar way that 𝑂 is also the left inverse of 𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞. Consequently, (4.11) is true.
(ii) Let 𝑓 ∈ ran𝔍, that is, 𝑓 is independent of 𝑡 ∈ (−1, 1). Instead of inserting 𝑓 in (4.10) we find it more convenient

and easier to verify this claim directly by showing

(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞) cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
exp(−i(𝛼 ⋅ 𝜈)𝑉𝑄)𝑓 = 𝑓.

Similar as above it suffices to prove

(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞) cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
exp(−i(𝛼 ⋅ 𝜈)𝑉𝑄)𝑓(⋅)(𝑥Σ) = 𝑓(⋅)(𝑥Σ)

for 𝜎-a.e. 𝑥Σ ∈ Σ a.e. on (−1, 1). Thus, we again fix 𝑥Σ ∈ Σ and use the same abbreviations as in the proof of (i). Since here
𝑓 is constant with respect to 𝑡 also 𝜑 = 𝑓(𝑡)(𝑥Σ) is independent of 𝑡. We then compute

(𝐼 + 𝑇(𝛼 ⋅ 𝜈)Vq) cos
(
1

2
(𝛼 ⋅ 𝜈)𝑉

)−1

exp(−i(𝛼 ⋅ 𝜈)VQ)𝑓(𝑡)(𝑥Σ)

= cos

(
1

2
𝐴

)−1

exp(−iAQ(𝑡))𝜑 +
i

2∫
1

−1

sign(𝑡 − 𝑠)Aq(𝑠) cos
(
1

2
𝐴

)−1

exp(−iAQ(𝑠))𝜑ds
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BEHRNDT et al. 2527

= cos

(
1

2
𝐴

)−1

exp(−iAQ(𝑡))𝜑 −
1

2
cos

(
1

2
𝐴

)−1

∫
1

−1

sign(𝑡 − 𝑠)
𝑑

ds
exp(−iAQ(𝑠)) ds𝜑

= cos

(
1

2
𝐴

)−1

exp(−iAQ(𝑡))𝜑 −
1

2
cos

(
1

2
𝐴

)−1(
2 exp(−iAQ(𝑡)) − exp

(
i

2
𝐴

)
− exp

(
−i

2
𝐴

))
𝜑 = 𝜑 = 𝑓(𝑡)(𝑥Σ)

for a.e. 𝑡 ∈ (−1, 1), which shows (4.8). □

In the next lemma, we study relations connecting the coefficient matrix 𝑉 defined in (1.6) and the matrix 𝑉 = 𝑉𝑆 with

𝑆 = sinc

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)
cos

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)−1

.

Lemma 4.3. Let 𝑧 ∈ 𝜌(𝐻), 𝑞 and 𝑉 be as in (1.5) and (1.6), respectively, assume that cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁),
and set 𝑉 = 𝑉𝑆, where 𝑆 is as above; cf. (1.9). Then, the following is true:

(i) 𝑆, 𝑉 ∈ 𝑊1
∞(Σ;ℂ𝑁×𝑁) and, in particular, the multiplication by 𝑉 gives rise to a bounded operator in𝐻1∕2(Σ; ℂ𝑁).

(ii) 𝔍∗𝑞 cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
exp(−𝑖(𝛼 ⋅ 𝜈)𝑉𝑄)𝔍 = 𝑆.

(iii) (𝐼 + 𝐵0(𝑧)𝑉𝑞)(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝔍 = 𝔍(𝐼 + 𝑧𝑉).
(iv) If (3.31) holds, then 𝐼 + 𝐵0(𝑧)𝑉𝑞 and 𝐼 + 𝑧𝑉 are boundedly invertible in the spaces 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) and

𝐻1∕2(Σ; ℂ𝑁), respectively, and

(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝔍 = (𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝔍(𝐼 + 𝑧𝑉)−1.

Proof. (i) From 𝛼 ⋅ 𝜈, 𝑉 ∈ 𝑊1
∞(Σ;ℂ𝑁×𝑁)we conclude sinc( 1

2
(𝛼 ⋅ 𝜈)𝑉) ∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁) using the power series of sinc. The

assumption cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁) implies 𝑆 ∈ 𝑊1
∞(Σ;ℂ𝑁×𝑁) and hence also𝑉 = 𝑉𝑆 ∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁). Even-
tually, since the multiplication by any 𝐵 ∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁) gives rise to a bounded operator in𝐻1∕2(Σ; ℂ𝑁), the same is true
for 𝑉; cf. (2.3).
(ii) Recall that𝔍 is defined by (2.7) and that its adjoint acts as

𝔍∗𝑓 = ∫
1

−1

𝑓(𝑡) 𝑑𝑡, 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)).

As in the proof of the previous lemma we use the abbreviation 𝐴 = (𝛼 ⋅ 𝜈)𝑉. Then, with Proposition 2.7 (iii) we get for
𝜓 ∈ 𝐿2(Σ;ℂ𝑁)

𝔍∗𝑞 cos

(
1

2
𝐴

)−1

exp(−iAQ)𝔍𝜓 = ∫
1

−1

cos

(
1

2
𝐴

)−1

exp(−iAQ(𝑠))𝑞(𝑠)(𝔍𝜓)(𝑠) ds

= cos

(
1

2
𝐴

)−1

∫
1∕2

−1∕2

exp(−iAr) dr𝜓 = cos

(
1

2
𝐴

)−1

∫
1∕2

0

2 cos(Ar) dr𝜓

= sinc

(
1

2
𝐴

)
cos

(
1

2
𝐴

)−1

𝜓 = 𝑆𝜓.

This shows (ii).
(iii) Using the definition of𝔍 and𝔍∗, see (2.7), and the representation of 𝐵0(𝑧) in (3.16) one sees

𝐵0(𝑧) = 𝑇(𝛼 ⋅ 𝜈) + 𝔍𝑧𝔍∗. (4.13)

 15222616, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.70004 by Jussi B
ehrndt - R

eadcube (L
abtiva Inc.) , W

iley O
nline L

ibrary on [14/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2528 BEHRNDT et al.

Hence, for 𝜓 ∈ 𝐿2(Σ;ℂ𝑁) item (ii) above and Lemma 4.2 (ii) imply

(𝐼 + 𝐵0(𝑧)𝑉𝑞)(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝔍𝜓 = 𝔍𝜓 +𝔍𝑧𝔍∗𝑉𝑞(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝔍𝜓

= 𝔍𝜓 +𝔍𝑧𝔍∗𝑉𝑞 cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
exp(−i(𝛼 ⋅ 𝜈)𝑉𝑄)𝔍𝜓

= 𝔍𝜓 +𝔍𝑧𝑉𝑆𝜓 = 𝔍(𝐼 + 𝑧𝑉)𝜓.
(iv) First, (3.31) and Proposition 3.12 imply that 𝐼 + 𝐵0(𝑧)𝑉𝑞 is boundedly invertible in 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)).

Moreover, as cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁) by assumption, the operator 𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞 is bijective in
𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) according to Lemma 4.2 (i). Thus, it follows from (iii) and𝔍∗𝔍 = 2𝐼 that

1

2
𝔍∗(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)(𝐼 + 𝐵0(𝑧)𝑉𝑞)

−1𝔍

is the left inverse of 𝐼 + 𝑧𝑉 and, in particular, 𝐼 + 𝑧𝑉 is injective. To show that 𝐼 + 𝑧𝑉 is surjective consider 𝜑 ∈

𝐻1∕2(Σ; ℂ𝑁). Then, there exists a unique 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) such that

(𝐼 + 𝐵0(𝑧)𝑉𝑞)(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝑓 = 𝔍𝜑. (4.14)

Define

𝜓 ∶= 𝜑 − 𝑧𝔍∗𝑉𝑞(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝑓.

Since 𝑉 ∈ 𝑊1
∞(Σ;ℂ𝑁×𝑁) we conclude together with Proposition 2.9 (i) that 𝜓 ∈ 𝐻1∕2(Σ; ℂ𝑁). Using (4.13) and (4.14) we

see that

𝔍𝜓 = 𝔍𝜑 −𝔍𝑧𝔍∗𝑉𝑞(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝑓 = (𝐼 + 𝐵0(𝑧)𝑉𝑞 − 𝔍𝑧𝔍∗𝑉𝑞)(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝑓 = 𝑓.

Thus, we conclude with (iii) that

𝔍(𝐼 + 𝑧𝑉)𝜓 = (𝐼 + 𝐵0(𝑧)𝑉𝑞)(𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝔍𝜓 = 𝔍𝜑

and therefore also (𝐼 + 𝑧𝑉)𝜓 = 𝜑. Hence, the operator 𝐼 + 𝑧𝑉 is surjective and thus bijective. Finally, the formula for
the inverse follows directly by applying (𝐼 + 𝐵0(𝑧)𝑉𝑞)

−1 from the left and (𝐼 + 𝑧𝑉)−1 from the right to the identity in
(iii). □

In the next proposition, we use the results from Lemmas 4.2 and 4.3 to show that under the assumption in (3.31) the
operator 𝐻𝑉 in (1.2) is self-adjoint and satisfies (𝐻𝑉 − 𝑧)−1 = (𝑧), where (𝑧) is given by (4.1).
Proposition 4.4. Let 𝑧 ∈ 𝜌(𝐻), 𝑞 and𝑉 be as in (1.5) and (1.6), respectively, assume that cos

( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁)

and set𝑉 = 𝑉𝑆, where 𝑆 is given by (1.9). If (3.31) holds, then the operator𝐻𝑉 in (1.2) is self-adjoint in 𝐿2(ℝ𝜃; ℂ𝑁), 𝑧 ∈ 𝜌(𝐻𝑉),
and one has

(𝐻𝑉 − 𝑧)−1 = 𝑅𝑧 − 𝐴0(𝑧)𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧) = (𝑧).

Proof. The proof of this proposition consists of two steps. In Step 1, we show that for the given 𝑧 ∈ 𝜌(𝐻) satisfying (3.31)
the operator

(𝑧) = 𝑅𝑧 − 𝐴0(𝑧)𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧)

fulfills (𝑧) = (𝐻0 − 𝑧)−1 for a self-adjoint operator 𝐻0, and in Step 2 we prove 𝐻0 = 𝐻𝑉 .
Step 1. First, we check that ran(𝑧) is dense in 𝐿2(ℝ𝜃; ℂ𝑁). Recall that 𝐻 is the free Dirac operator defined by (2.8),

let 𝑢 ∈ (ℝ𝜃 ⧵ Σ;ℂ𝑁) ⊂ 𝐻1(ℝ𝜃; ℂ𝑁) = dom𝐻 and set 𝑣 ∶= (𝐻 − 𝑧)𝑢, which is equivalent to 𝑢 = 𝑅𝑧𝑣. Then, it follows
with (3.13) and Proposition 2.8 that

𝐶0(𝑧)𝑣 = 𝔍𝒕Σ𝑅𝑧𝑣 = 𝔍𝒕Σ𝑢 = 0
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BEHRNDT et al. 2529

and hence,

𝑢 = 𝑅𝑧𝑣 − 𝐴0(𝑧)𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧)𝑣 = (𝑧)𝑣.

We conclude that(ℝ𝜃 ⧵ Σ;ℂ𝑁) ⊂ ran(𝑧) and therefore ran(𝑧) is dense.
To show that(𝑧) is the resolvent of a self-adjoint operator, we first consider the case 𝑧 ∈ ℂ ⧵ ℝ ⊂ 𝜌(𝐻) such that (3.31)

holds. Note that, by Proposition 4.1, (𝑧) is the limit in the operator norm of (𝐻𝜀 − 𝑧)−1 as 𝜀 → 0+, which are resolvents
of self-adjoint operators. Moreover, (𝐻𝜀 − 𝑧)−1 converges to(𝑧)∗ as 𝜀 → 0+. Thus, as ran(𝑧) is dense in 𝐿2(ℝ𝜃; ℂ𝑁), we
conclude from [50, Theorem VIII.22] that there exists a self-adjoint operator 𝐻0 in 𝐿2(ℝ𝜃; ℂ𝑁) such that 𝑧 ∈ 𝜌(𝐻0) and(𝑧) = (𝐻0 − 𝑧)−1.
Eventually, consider 𝑧 ∈ ℝ ∩ 𝜌(𝐻) such that (3.31) holds. Then, (𝑧) is self-adjoint, as it is the limit of the bounded and

self-adjoint operators (𝐻𝜀 − 𝑧)−1. Moreover, since ran(𝑧) is dense in 𝐿2(ℝ𝜃; ℂ𝑁), we have ker(𝑧) = (ran(𝑧))⟂ = {0},
which shows that (𝑧) is injective. Hence,

𝐻0 ∶= 𝑧 + ((𝑧))−1

defines a self-adjoint operator with 𝑧 ∈ 𝜌(𝐻0) and (𝐻0 − 𝑧)−1 = (𝑧).
Step 2. We show that 𝐻𝑉 = 𝐻0. Since(ℝ𝜃 ⧵ Σ;ℂ𝑁) ⊂ dom𝐻�̃� , the operator 𝐻𝑉 is densely defined. Moreover, as 𝑉 =

𝑉∗ we compute for 𝑢, 𝑣 ∈ dom𝐻�̃� using integration by parts (see (C1))

(𝐻𝑉𝑢, 𝑣)𝐿2(ℝ𝜃;ℂ𝑁) − (𝑢,𝐻𝑉𝑣)𝐿2(ℝ𝜃;ℂ𝑁)

=
1

2
(𝒕+Σ𝑢+ + 𝒕−Σ𝑢−, 𝑖(𝛼 ⋅ 𝜈)(𝒕+Σ𝑣+ − 𝒕−Σ𝑣−))𝐿2(Σ;ℂ𝑁) −

1

2
(𝑖(𝛼 ⋅ 𝜈)(𝒕+Σ𝑢+ − 𝒕−Σ𝑢−), 𝒕

+
Σ𝑣+ + 𝒕−Σ𝑣−)𝐿2(Σ;ℂ𝑁)

= −
1

4
(𝒕+Σ𝑢+ + 𝒕−Σ𝑢−, 𝑉(𝒕

+
Σ𝑣+ + 𝒕−Σ𝑣−))𝐿2(Σ;ℂ𝑁) +

1

4
(𝑉(𝒕+Σ𝑢+ + 𝒕−Σ𝑢−), 𝒕

+
Σ𝑣+ + 𝒕−Σ𝑣−)𝐿2(Σ;ℂ𝑁) = 0,

where the jump condition for 𝑢, 𝑣 ∈ dom𝐻�̃� in (1.2) was used in the last step. Therefore, 𝐻𝑉 is symmetric and to see
𝐻𝑉 = 𝐻0 it suffices to prove 𝐻0 ⊂ 𝐻𝑉 . Let 𝑧 ∈ 𝜌(𝐻) such that (3.31) holds and let 𝑢 ∈ dom𝐻0 = ran(𝑧). Then, there
exists 𝑣 ∈ 𝐿2(ℝ𝜃; ℂ𝑁) such that

𝑢 = (𝐻0 − 𝑧)−1𝑣 = (𝑧)𝑣 = 𝑅𝑧𝑣 − 𝐴0(𝑧)𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧)𝑣. (4.15)

We show that 𝑢 ∈ 𝐻1(ℝ𝜃 ⧵ Σ;ℂ𝑁) = 𝐻1(Ω+;ℂ
𝑁) ⊕ 𝐻1(Ω−;ℂ

𝑁). By (3.13), Lemma 4.3 (iv), and (4.8) we get

(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧)𝑣 = (𝐼 + 𝑇(𝛼 ⋅ 𝜈)𝑉𝑞)−1𝔍(𝐼 + 𝑧𝑉)−1Φ∗

𝑧
𝑣 = cos

( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
exp(−i(𝛼 ⋅ 𝜈)𝑉𝑄)𝔍(𝐼 + 𝑧𝑉)−1Φ∗

𝑧
𝑣.

With 𝐴0(𝑧) = Φ𝑧𝔍
∗, Lemma 4.3 (ii), and 𝑉𝑆 = 𝑉 we conclude from this

𝐴0(𝑧)𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧)𝑣 = Φ𝑧𝑉𝔍

∗𝑞 cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
exp(−i(𝛼 ⋅ 𝜈)𝑉𝑄)𝔍(𝐼 + 𝑧𝑉)−1Φ∗

𝑧
𝑣

= Φ𝑧𝑉𝑆(𝐼 + 𝑧𝑉)−1Φ∗
𝑧
𝑣 = Φ𝑧𝑉(𝐼 + 𝑧𝑉)−1Φ∗

𝑧
𝑣.

(4.16)

Proposition 2.8 and Lemma 4.3 (i), (iv) imply Φ𝑧𝑉(𝐼 + 𝑧𝑉)−1Φ∗
𝑧
𝑣 ∈ 𝐻1(ℝ𝜃 ⧵ Σ;ℂ𝑁), and since 𝑅𝑧𝑣 ∈ dom𝐻 =

𝐻1(ℝ𝜃; ℂ𝑁) we conclude from (4.15) and (4.16) that 𝑢 ∈ 𝐻1(ℝ𝜃 ⧵ Σ;ℂ𝑁). Next, we show that 𝑢 satisfies the transmission
condition in dom𝐻�̃� . Note that 𝑅𝑧𝑣 ∈ dom𝐻 = 𝐻1(ℝ𝜃; ℂ𝑁). This, (4.16), (2.13), (2.14), and Proposition 2.9 (ii) (applied to
the function 𝜑 = 𝑉(𝐼 + 𝑧𝑉)−1Φ∗

𝑧
𝑣) yield

𝑉

2
(𝒕+
Σ
𝑢+ + 𝒕−

Σ
𝑢−) + 𝑖(𝛼 ⋅ 𝜈)(𝒕+

Σ
𝑢+ − 𝒕−

Σ
𝑢−) = 𝑉Φ∗

𝑧
𝑣 − 𝑉𝑧𝑉(𝐼 + 𝑧𝑉)−1Φ∗

𝑧
𝑣 − i(𝛼 ⋅ 𝜈)(−i(𝛼 ⋅ 𝜈))𝑉(𝐼 + 𝑧𝑉)−1Φ∗

𝑧
𝑣 = 0.
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2530 BEHRNDT et al.

Hence, 𝑢 ∈ dom𝐻�̃� . Finally, we get with (−i(𝛼 ⋅ ∇) + 𝑚𝛽 − 𝑧𝐼𝑁)𝑅𝑧𝑣 = 𝑣 and Proposition 2.8 (ii) that

[(𝐻𝑉 − 𝑧)𝑢]± = (−i(𝛼 ⋅ ∇) + 𝑚𝛽 − 𝑧𝐼𝑁)𝑢±

= (−i(𝛼 ⋅ ∇) + 𝑚𝛽 − 𝑧𝐼𝑁)(𝑅𝑧𝑣)± − (−i(𝛼 ⋅ ∇) + 𝑚𝛽 − 𝑧𝐼𝑁)(Φ𝑧𝑉(𝐼 + 𝑧𝑉)−1Φ∗
𝑧
𝑣)±

= 𝑣± = [(𝐻0 − 𝑧)𝑢]±.

Therefore,𝐻0 ⊂ 𝐻𝑉 and the proof is complete. □

Proof of Theorem 1.1. Combining the results fromPropositions 4.1 and 4.4we find that𝐻𝑉 is self-adjoint and for 𝑟 ∈ (0, 1∕2)

we have

‖(𝐻𝜀 − 𝑧)−1 − (𝐻𝑉 − 𝑧)−1‖𝐿2(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁) = ‖(𝐻𝜀 − 𝑧)−1 − 𝑅𝑧 + 𝐴0(𝑧)𝑉𝑞(𝐼 + 𝐵0(𝑧)𝑉𝑞)
−1𝐶0(𝑧)‖𝐿2(ℝ𝜃;ℂ𝑁)→𝐿2(ℝ𝜃;ℂ𝑁)

≤ 𝐶𝜀1∕2−𝑟.

Hence, Theorem 1.1 is proved. □

Remark 4.5. We point out that Proposition 4.1, Lemma 4.3 (iv), and Proposition 4.4 remain valid if the condition (3.31) is
replaced by assumptions (i) and (ii) in Proposition 3.12. In particular, Theorem 1.1 remains valid if one assumes that (i)
and (ii) in Proposition 3.12 hold.

Now, we prove Corollary 1.2, where the special case 𝑉 = 𝜂𝐼𝑁 + 𝜏𝛽 + 𝜆i(𝛼 ⋅ 𝜈)𝛽 with real-valued functions 𝜂, 𝜏, 𝜆 ∈

𝑊1
∞(Σ;ℝ) is considered.

Proof of Corollary 1.2. Let 𝑑 = 𝜂2 − 𝜏2 − 𝜆2. Then, ((𝛼 ⋅ 𝜈)𝑉)2 = 𝑑𝐼𝑁 and the appearance of only even powers in the power
series representations of cos and sinc yield

cos

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)
= cos

(√
𝑑

2

)
𝐼𝑁 and sinc

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)
= sinc

(√
𝑑

2

)
𝐼𝑁.

Hence, the condition cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁) in (1.11) reduces to

inf
𝑥Σ∈Σ,𝑘∈ℕ0

|(2𝑘 + 1)2𝜋2 − 𝑑(𝑥Σ)| > 0

and 𝑆 = sinc(
1

2
(𝛼 ⋅ 𝜈)𝑉) cos (

1

2
(𝛼 ⋅ 𝜈)𝑉)

−1
=

2√
𝑑
tan(

√
𝑑∕2)𝐼𝑁 . Therefore, Corollary 1.2 follows immediately from Theo-

rem 1.1. □

Proof of Corollary 1.3. First, we mention some identities for functions of matrices that will be useful. For 𝐴 ∈ ℂ𝑁×𝑁 with|𝐴| < 1, the series

arctan(𝐴) =

∞∑
𝑛=0

(−1)𝑛
𝐴2𝑛+1

2𝑛 + 1

converges absolutely with respect to the matrix norm (in our case the Frobenius norm), and with the help of (1.17) (see
also [27, Chapter VII, Section 4] and [31, Chapter VIII.3.1]) one finds that cos(arctan(𝐴)) is invertible,

sin(arctan(𝐴)) cos(arctan (𝐴))
−1

= 𝐴, and cos(arctan (𝐴))
−1

= cos(arctan(𝐴))(𝐼𝑁 + 𝐴2). (4.17)
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BEHRNDT et al. 2531

Now, set

𝑉 = 2(𝛼 ⋅ 𝜈) arctan
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)
.

It suffices to show that 𝑉 fulfills the assumptions of Theorem 1.1, that is, (1.10) and (1.11), and 𝑉 = 𝑆𝑉, as then the claim
follows from Theorem 1.1. The assumption (1.14) implies ‖(𝛼 ⋅ 𝜈)𝑉‖𝑊1

∞(Σ;ℂ𝑁) < 2. Therefore, the power series defining
arctan

( 1
2
(𝛼 ⋅ 𝜈)𝑉

)
converges in 𝑊1

∞(Σ;ℂ𝑁×𝑁) and hence also 𝑉 ∈ 𝑊1
∞(Σ;ℂ𝑁×𝑁). Pointwise application of the results

mentioned above and 1

2
(𝛼 ⋅ 𝜈)𝑉 = arctan

( 1
2
(𝛼 ⋅ 𝜈)𝑉

)
show that cos

( 1
2
(𝛼 ⋅ 𝜈)𝑉

)
= cos

(
arctan

( 1
2
(𝛼 ⋅ 𝜈)𝑉

))
is invertible 𝜎-

a.e. and (4.17) yields

cos

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)−1

= cos

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)(
𝐼𝑁 +

1

4
((𝛼 ⋅ 𝜈)�̃�)

2
)

𝜎 - a.e. on Σ.

As 𝛼 ⋅ 𝜈, 𝑉, 𝑉, cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)
∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁), this implies that also cos
( 1
2
(𝛼 ⋅ 𝜈)𝑉

)−1
∈ 𝑊1

∞(Σ;ℂ𝑁×𝑁). Similarly, we get
with (4.17)

VS = 𝑉sinc

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)
cos

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)−1

= 2(𝛼 ⋅ 𝜈)
(𝛼 ⋅ 𝜈)𝑉

2
sinc

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)
cos

(
1

2
(𝛼 ⋅ 𝜈)𝑉

)−1

= 2(𝛼 ⋅ 𝜈) sin

(
arctan

(
1

2
(𝛼 ⋅ 𝜈)𝑉

))
cos

(
arctan

(
1

2
(𝛼 ⋅ 𝜈)𝑉

))−1

= 𝑉.

Finally, we verify that (1.10) is satisfied. By (1.14) and the definition of 𝑉 we have

1

2
‖𝑉‖𝑊1

∞(Σ;ℂ𝑁×𝑁) ≤ ‖𝛼 ⋅ 𝜈‖𝑊1
∞(Σ;ℂ𝑁×𝑁)

∞∑
𝑛=0

‖‖‖‖‖‖
((𝛼 ⋅ 𝜈)𝑉)

2𝑛+1

22𝑛+1(2𝑛 + 1)

‖‖‖‖‖‖𝑊1
∞(Σ;ℂ𝑁×𝑁)

= ‖𝛼 ⋅ 𝜈‖𝑊1
∞(Σ;ℂ𝑁×𝑁)artanh

(‖(𝛼 ⋅ 𝜈)𝑉‖𝑊1
∞(Σ;ℂ𝑁×𝑁)

2

)
< 𝑋𝑧.

Hence, (1.10) is fulfilled with 𝑞 =
1

2
𝜒(−1,1). This finishes the proof of Corollary 1.3. □

In the following remark, we comment on the condition ‖𝑉‖𝑊1
∞(Σ;ℂ𝑁)‖𝑞‖𝐿∞(ℝ;ℝ) < 𝑋𝑧 in (1.10), which is the main

restriction in Theorem 1.1, and explain that it is sharp (in a certain sense).

Remark 4.6. Consider the operator𝐻𝑉 in (1.2) for a so-called critical interaction strength in the purely electrostatic setting
with𝑚 > 0 and Σ compact and smooth, that is, we set𝑉 = ±2𝐼𝑁 . In this case, it is known that the operator𝐻𝑉 defined on
functions from 𝐻1(Ω+;ℂ

𝑁) ⊕ 𝐻1(Ω−;ℂ
𝑁) that satisfy the transmission conditions in dom𝐻𝑉 is essentially self-adjoint,

but not self-adjoint, and one has 𝜎ess(𝐻𝑉) ∩ (−𝑚,𝑚) ≠ ∅; cf. [11, 17], and references therein for more details. In particular,
𝐻𝑉 or 𝐻𝑉 cannot be the norm resolvent limit of self-adjoint operators 𝐻𝜀, as 𝜎ess(𝐻𝜀) = (−∞,−𝑚] ∪ [𝑚,∞) for all 𝜀 ∈
(0, 𝜀2], see, for example, [54, Theorem 4.7 and (4.53)] for the case 𝜃 = 3. However, to construct approximating operators
with potentials 𝑉𝜀 Corollary 1.3 would suggest the specific choices 𝑞 =

1

2
𝜒(−1,1) and

𝑉 = 2(𝛼 ⋅ 𝜈) arctan
(±1

2
(𝛼 ⋅ 𝜈)2𝐼𝑁

)
= ±2 arctan(1)𝐼𝑁 = ±

𝜋

2
𝐼𝑁,

and in this situation

‖𝑉‖𝑊1
∞(Σ;ℂ𝑁×𝑁)‖𝑞‖𝐿∞(ℝ;ℝ) =

𝜋

4
,
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2532 BEHRNDT et al.

which is exactly the upper bound for 𝑋𝑧 from Lemma 3.13 (ii). Hence, this critical case cannot be treated by Theorem 1.1
and the upper bound for 𝑋𝑧 in Lemma 3.13 (ii) is sharp in the sense that it does not allow electrostatic interactions being
larger (in absolute value) or equal to the critical values ±2.

ACKNOWLEDGMENTS
This research was funded in whole by the Austrian Science Fund (FWF) 10.55776/P 33568-N. For the purpose of open
access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from
this submission. This publication is based upon work from COST Action CA 18232 MAT-DYN-NET, supported by COST
(European Cooperation in Science and Technology), www.cost.eu.
Open access funding provided by Technische Universitat Graz/KEMÖ.

CONFL ICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

ORCID
MarkusHolzmann https://orcid.org/0000-0001-8071-481X

REFERENCES
[1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable models in quantummechanics, AMS Chelsea Publishing, Providence,

RI, 2005. With an appendix by Pavel Exner.
[2] N. Arrizabalaga, A. Mas, and L. Vega, Shell interactions for Dirac operators, J. Math. Pures Appl. (9) 102 (2014), no. 4, 617–639.
[3] N. Arrizabalaga, A.Mas, and L. Vega, Shell interactions for Dirac operators: on the point spectrum and the confinement, SIAM J.Math. Anal.

47 (2015), no. 2, 1044–1069.
[4] J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, Approximation of Schrödinger operators with 𝛿-interactions supported on

hypersurfaces, Math. Nachr. 290 (2017), no. 8–9, 1215–1248.
[5] J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, On the spectral properties of Dirac operators with electrostatic 𝛿-shell interactions,

J. Math. Pures Appl. 111 (2018), 47–78.
[6] J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, On Dirac operators in ℝ3 with electrostatic and Lorentz scalar 𝛿-shell interactions,

Quantum Stud. 6 (2019), no. 3, 295–314.
[7] J. Behrndt, S.Hassi, andH. S. V. de Snoo,Boundary value problems,Weyl functions,andDifferentialOperators,Monographs inMathematics,

vol. 108, Birkhäuser, 2020.
[8] J. Behrndt and M. Holzmann, On Dirac operators with electrostatic 𝛿-shell interactions of critical strength, J. Spectral Theory. 10 (2020), no.

1, 147–184.
[9] J. Behrndt, M. Holzmann, and A. Mas, Self-adjoint Dirac operators on domains inℝ3, Ann. Henri Poincaré. 21 (2020), no. 8, 2681–2735.
[10] J. Behrndt, M. Holzmann, T. Ourmieres-Bonafos, and K. Pankrashkin, Two-dimensional Dirac operators with singular interactions

supported on closed curves, J. Funct. Anal. 279 (2020), no. 8, 47.
[11] J. Behrndt, M. Holzmann, C. Stelzer-Landauer, and G. Stenzel, Boundary triples and Weyl functions for Dirac operators with singular

interactions, Rev. Math. Phys. 36 (2024), no. 2, 65.
[12] J. Behrndt, M. Holzmann, and M. Tušek, Two-dimensional Dirac operators with general 𝛿-shell interactions supported on a straight line, J.

Phys. A 56 (2023), no. 4, 29.
[13] J. Behrndt andM. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal. 243 (2007),

no. 2, 536–565.
[14] J. Behrndt andM. Langer, Elliptic operators, Dirichlet-to-Neumannmaps and quasi-boundary triples, Operator methods for boundary value

problems, London Math. Soc. Lecture Note Ser., vol. 404, Cambridge Univ. Press, Cambridge, 2012, pp. 121–160.
[15] J. Behrndt, M. Langer, and V. Lotoreichik, Schrödinger operators with 𝛿 and 𝛿′-potentials supported on hypersurfaces, Ann. Henri Poincaré.

14 (2013), no. 2, 385–423.
[16] B. Benhellal, Spectral properties of the Dirac operator coupled with 𝛿-shell interactions, Lett. Math. Phys. 112 (2022), no. 6, 52.
[17] B. Benhellal and K. Pankrashkin, Curvature contribution to the essential spectrum of Dirac operators with critical shell interactions, Pure

Appl. Anal. 6 (2024), no. 1, 237–252.
[18] S. Benvegnu and L. Dabrowski, Relativistic point interaction in one dimension, Lett. Math. Phys. 30 (1994), no. 2, 159–167.
[19] J. Brasche, P. Exner, Y. Kuperin, and P. Šeba, Schrödinger operators with singular interactions, J. Math. Anal. Appl. 184 (1994), no. 1, 112–139.
[20] K. Brewster, D. Mitrea, I. Mitrea, andM.Mitrea, Extending Sobolev functions with partially vanishing traces from locally (𝜀, 𝛿)-domains and

applications to mixed boundary problems, J. Funct. Anal. 266 (2014), no. 7, 4314–4421.
[21] J. Brüning, V. Geyler, and K. Pankrashkin, Spectra of selfadjoint extensions and applications to solvable Schrödinger operator, Rev. Math.

Phys. 20 (2008), no. 1, 1–70.
[22] V. Budyika, M. Malamud, and A. Posilicano, Nonrelativistic limit for 2𝑝 × 2𝑝-Dirac operators with point interactions on a discrete set, Russ.

J. Math. Phys. 24 (2017), no. 4, 426–435.

 15222616, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.70004 by Jussi B
ehrndt - R

eadcube (L
abtiva Inc.) , W

iley O
nline L

ibrary on [14/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.cost.eu
https://orcid.org/0000-0001-8071-481X
https://orcid.org/0000-0001-8071-481X


BEHRNDT et al. 2533

[23] R. Carlone,M.Malamud, andA. Posilicano,On the spectral theory ofGesztesy–Šeba realizations of 1-DDirac operatorswith point interactions
on a discrete set, J. Differ. Equ. 254 (2013), no. 9, 3835–3902.

[24] B. Cassano, V. Lotoreichik, A. Mas, and M. Tušek, General 𝛿-shell interactions for the two-dimensional Dirac operator: self-adjointness and
approximation, Rev. Mat. Iberoam. 39 (2023), no. 4, 1443–1492.

[25] S. N. Chandler-Wilde, D. P. Hewett, and A. Moiola, Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples,
Mathematika. 61 (2015), no. 2, 414–443.

[26] S. N. Chandler-Wilde, D. P. Hewett, and A. Moiola, Corrigendum: Interpolation of Hilbert and Sobolev spaces: quantitative estimates and
counterexamples, Mathematika. 68 (2022), no. 4, 1393–1400.

[27] J. Conway, A course in functional analysis, Graduate Texts in Mathematics, Springer Verlag, New York, 1990.
[28] V. Derkach, S. Hassi, M. Malamud, and H. de Snoo, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006), no.

12, 5351–5400.
[29] V. Derkach and M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal.

95 (1991), no. 1, 1–95.
[30] V. Derkach and M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), no. 2, 141–242.
[31] N. Dunford and J. T. Schwartz, Linear operators. Part I: General theory, Pure and Applied Mathematics, vol. 7, Interscience Publishers,

Inc. , 1958.
[32] P. Exner, Leaky quantum graphs: a review in analysis on graphs and its applications, Proc. Symp. , vol. 77, Pure Math. Amer. Math. Soc.,

Providence, RI, 2008, pp. 523–564.
[33] F. Gesztesy and P. Šeba, New analytically solvable models of relativistic point interactions, Lett. Math. Phys. 13 (1987), no. 4, 345–358.
[34] M. Holzmann, On the single layer boundary integral operator for the Dirac equation, Complex Anal. Oper. Theory. 17 (2023), no. 8, 135.
[35] R. J. Hughes, Relativistic point interactions: approximation by smooth potentials, Rep. Math. Phys. 39 (1997), no. 3, 425–432.
[36] R. J. Hughes, Finite-rank perturbations of the Dirac operator, J. Math. Anal. Appl. 238 (1999), no. 1, 67–81.
[37] T. Hytönen, J. v. Neerven, M. Veraar, and L. Weis, Analysis in Banach apaces: Volume I: Martingales and Littlewood–Paley theory, A Series

of Modern Surveys in Mathematics, vol. 48, Springer International Publishing, Cham, 2016.
[38] T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition.
[39] R. de L. Kronig and W. Penney, Quantum mechanics of electrons in crystal lattices, Proc. Roy. Soc. Lond. 130 (1931), 499–513.
[40] W. Kühnel, Differential geometry. Curves surfaces manifolds, American Mathematical Society, Providence, RI, 2002.
[41] J. Marschall, The trace of Sobolev–Slobodeckij spaces on Lipschitz domains, Manuscripta Math. 58 (1987), no. 1–2, 47–65.
[42] A. Mas and F. Pizzichillo, The relativistic spherical 𝛿-shell interaction in ℝ3: spectrum and approximation, J. Math. Phys. 58 (2017), no. 8,

14.
[43] A. Mas and F. Pizzichillo, Klein’s Paradox and the relativistic 𝛿-shell interaction inℝ3, Anal. PDE. 11 (2018), no. 3, 705–744.
[44] W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000.
[45] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and

M. A. McClain (eds.), NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov, Release 1.1.9 of 2023-03-15.
[46] T. Ourmières-Bonafos and L. Vega, A strategy for self-adjointness of Dirac operators: application to the MIT bag model and 𝛿-shell

interactions, Publ. Mat. 62 (2018), no. 2, 397–437.
[47] K. Pankrashkin and S. Richard, One-dimensional Dirac operators with zero-range interactions: spectral, scattering, and topological results,

J. Math. Phys. 55 (2014), no. 6, 17, 062305.
[48] V. Rabinovich, Two-dimensional Dirac operators with interactions on unbounded smooth curves, Russ. J. Math. Phys. 28 (2021), no. 4, 524–

542.
[49] V. Rabinovich, Dirac operators with delta-interactions on smooth hypersurfaces inℝ𝑛, J. Fourier Anal. Appl. 28 (2022), no. 2, 26.
[50] M. Reed and B. Simon,Methods of modern mathematical physics. I. Functional analysis, Academic Press, 1972.
[51] P. Šeba, Klein’s paradox and the relativistic point interaction, Lett. Math. Phys. 18 (1989), no. 1, 77–86.
[52] M. A. Shubin, Spectral theory of elliptic operators on non-compact manifolds, Méthodes Semi-classiques. Volume 1. École d’Été (Nantes,

juin 1991), vol. 207 of Astérisque, Société Mathématique de France, 1992.
[53] E. Stein, Singular integrals and differentiability properties of functions, Monographs in Harmonic Analysis, Princeton University Press,

1970.
[54] B. Thaller, The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992.
[55] L. H. Thomas, The interaction between a neutron and a proton and the structure of𝐻3, Phys. Rev. II. Ser. 47 (1935), 903–909.
[56] M. Tušek, Approximation of one-dimensional relativistic point interactions by regular potentials revised, Lett. Math. Phys. 110 (2020), no.

10, 2585–2601.

How to cite this article: J. Behrndt, M. Holzmann, and C. Stelzer-Landauer, Approximation of Dirac operators
with 𝛿-shell potentials in the norm resolvent sense. I. Qualitative results, Math. Nachr. 298 (2025), 2499–2546.
https://doi.org/10.1002/mana.70004

 15222616, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.70004 by Jussi B
ehrndt - R

eadcube (L
abtiva Inc.) , W

iley O
nline L

ibrary on [14/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://dlmf.nist.gov
https://doi.org/10.1002/mana.70004


2534 BEHRNDT et al.

APPENDIX A: PROPERTIES OF THEMAP 𝜾

In this section, we investigate the map

𝜄 ∶ Σ × ℝ → ℝ𝜃, 𝜄(𝑥Σ, 𝑡) ∶= 𝑥Σ + 𝑡𝜈(𝑥Σ), (A1)

defined in (1.3). The goal is to show that for some 𝜀𝐴 > 0 the mapping 𝜄 and their local counterparts 𝜄𝑙 defined below
in (A2) are bi-Lipschitz on Σ × (−𝜀𝐴, 𝜀𝐴) and ℝ𝜃−1 × (−𝜀𝐴, 𝜀𝐴), respectively, provided that 𝜀𝐴 is sufficiently small. Recall
that 𝑥Σ𝑙 (𝑥

′) = 𝜅𝑙(𝑥
′, 𝜁𝑙(𝑥

′)) for 𝑥′ ∈ ℝ𝜃−1 and 𝑙 ∈ {1, … , 𝑝}, where 𝜅𝑙 is a rotation matrix inℝ𝜃×𝜃 and 𝜁𝑙 ∈ 𝐶2
𝑏
(ℝ𝜃−1;ℝ); cf.

Hypothesis 2.1 and (2.1). Besides the map 𝜄 in (A1) we shall also make use of the maps

𝜄𝑙 ∶ ℝ𝜃−1 × ℝ → ℝ𝜃, 𝜄𝑙(𝑥
′, 𝑡) ∶= 𝑥Σ𝑙 (𝑥

′) + 𝑡𝜈𝑙(𝑥
′), (A2)

where 𝑙 ∈ {1, … , 𝑝} and the unit normal vector field 𝜈𝑙 on Σ𝑙 is given by

𝜈𝑙(𝑥
′) =

𝜅𝑙(−∇𝜁𝑙(𝑥
′), 1)√

1 + |∇𝜁𝑙(𝑥′)|2 , 𝑥′ ∈ ℝ𝜃−1.

Note that if 𝑥′ ∈ ℝ𝜃−1 is such that 𝑥Σ𝑙 (𝑥
′) = 𝑥Σ ∈ Σ, then 𝜈(𝑥Σ) = 𝜈𝑙(𝑥

′) and 𝜄𝑙(𝑥
′, 𝑡) = 𝜄(𝑥Σ, 𝑡) for all 𝑡 ∈ ℝ.

First, we provide a variant of the mean value theorem for vector and matrix-valued functions, which will be used
frequently in the following.

Lemma A.1. Let 𝑘, 𝑙, 𝑛 ∈ ℕ, 𝑈 ⊂ ℝ𝑛 be an open set, and 𝐴 ∈ 𝐶1
𝑏
(𝑈;ℂ𝑘×𝑙). If 𝑥, 𝑦 ∈ 𝑈 and the line segment connecting 𝑥

and 𝑦 is contained in𝑈, then

|𝐴(𝑥) − 𝐴(𝑦)| ≤ sup
𝜇∈[0,1]

(
𝑛∑

𝑗=1

|(𝜕𝑗𝐴)(𝑥 + 𝜇(𝑦 − 𝑥))|2)1∕2|𝑥 − 𝑦| ≤ √
𝑛 sup

𝜇∈[0,1],𝑗∈{1,…,𝑛}
|(𝜕𝑗𝐴)(𝑥 + 𝜇(𝑦 − 𝑥))||𝑥 − 𝑦|.

In particular, if𝑈 = ℝ𝑛 and 𝑙 = 1, then

|𝐴(𝑥) − 𝐴(𝑦)| ≤ ‖𝐷𝐴‖𝐿∞(ℝ𝑛;ℂ𝑘×𝑛)|𝑥 − 𝑦|, 𝑥, 𝑦 ∈ ℝ𝑛.

Proof.Recall that | ⋅ | denotes, depending on the argument, the absolute value, the Euclidean vector norm, or the Frobenius
matrix norm. The fundamental theorem of calculus and the Cauchy–Schwarz inequality lead to

|𝐴(𝑥) − 𝐴(𝑦)| = ||||∫
1

0

𝑛∑
𝑗=1

(𝜕𝑗𝐴)(𝑥 + 𝜇(𝑦 − 𝑥)) (𝑥 − 𝑦)𝑗 𝑑𝜇
|||| ≤ ∫

1

0

𝑛∑
𝑗=1

|(𝜕𝑗𝐴)(𝑥 + 𝜇(𝑦 − 𝑥))||(𝑥 − 𝑦)𝑗|𝑑𝜇
≤ sup

𝜇∈[0,1]

(
𝑛∑

𝑗=1

|(𝜕𝑗𝐴)(𝑥 + 𝜇(𝑦 − 𝑥))|2)1∕2|𝑥 − 𝑦| ≤ √
𝑛 sup

𝜇∈[0,1],𝑗∈{1,…,𝑛}
|(𝜕𝑗𝐴)(𝑥 + 𝜇(𝑦 − 𝑥))||𝑥 − 𝑦|.

The estimate for the special case 𝑈 = ℝ𝑛 and 𝑙 = 1 is an immediate consequence of the above estimate. □

Now, we turn to the properties of the mappings 𝜄 and 𝜄𝑙 in (A1) and (A2), respectively.

PropositionA.2. LetΩ±, Σ ⊂ ℝ𝜃 , 𝜃 ∈ {2, 3}, satisfy Hypothesis 2.1, and let 𝜄 and 𝜄𝑙 , 𝑙 ∈ {1, … , 𝑝}, be as in (A1) and (A2). Then,
there exists 𝜀𝐴 > 0 and constants 𝐶𝐴,1, 𝐶𝐴,2 > 0 such that the following holds:

(i) For all 𝑥′, 𝑦′ ∈ ℝ𝜃−1 and 𝑡, 𝑠 ∈ (−𝜀𝐴, 𝜀𝐴) we have for all 𝑙 ∈ {1, … , 𝑝}

𝐶−1
𝐴,1

(|𝑥′ − 𝑦′| + |𝑡 − 𝑠|) ≤ |𝜄𝑙(𝑥′, 𝑡) − 𝜄𝑙(𝑦
′, 𝑠)| ≤ 𝐶𝐴,1(|𝑥′ − 𝑦′| + |𝑡 − 𝑠|).
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(ii) For all 𝑥Σ, 𝑦Σ ∈ Σ and 𝑡, 𝑠 ∈ (−𝜀𝐴, 𝜀𝐴) we have

𝐶−1
𝐴,2

(|𝑥Σ − 𝑦Σ| + |𝑡 − 𝑠|) ≤ |𝜄(𝑥Σ, 𝑡) − 𝜄(𝑦Σ, 𝑠)| ≤ 𝐶𝐴,2(|𝑥Σ − 𝑦Σ| + |𝑡 − 𝑠|).
Proof. (i) Let 𝑥′, 𝑦′ ∈ ℝ𝜃−1 and 𝑡, 𝑠 ∈ (−𝜀𝐴, 𝜀𝐴) be fixed, where 𝜀𝐴 > 0 is, at the moment, a fixed number. Using (A2),
𝑥Σ𝑙 (𝑥

′) = 𝜅𝑙(𝑥
′, 𝜁𝑙(𝑥

′)), 𝑥Σ𝑙 (𝑦
′) = 𝜅𝑙(𝑦

′, 𝜁𝑙(𝑦
′)), and Lemma A.1 we find

|𝜄𝑙(𝑥′, 𝑡) − 𝜄𝑙(𝑦
′, 𝑠)| ≤ |𝑥Σ𝑙 (𝑥′) − 𝑥Σ𝑙 (𝑦

′)| + |𝑡𝜈𝑙(𝑥′) − 𝑠𝜈𝑙(𝑦
′)| ≤ |𝑥Σ𝑙 (𝑥′) − 𝑥Σ𝑙 (𝑦

′)| + |𝑡||𝜈𝑙(𝑥′) − 𝜈𝑙(𝑦
′)| + |𝑡 − 𝑠|

≤ |𝑥′ − 𝑦′| + |𝜁𝑙(𝑥′) − 𝜁𝑙(𝑦
′)| + 𝜀𝐴|𝜈𝑙(𝑥′) − 𝜈𝑙(𝑦

′)| + |𝑡 − 𝑠|
≤ |𝑥′ − 𝑦′| + ‖∇𝜁𝑙‖𝐿∞(ℝ𝜃−1;ℝ𝜃−1)|𝑥′ − 𝑦′| + 𝜀𝐴‖𝐷𝜈𝑙‖𝐿∞(ℝ𝜃−1;ℝ𝜃×(𝜃−1))|𝑥′ − 𝑦′| + |𝑡 − 𝑠|
≤ (

1 + ‖∇𝜁𝑙‖𝐿∞(ℝ𝜃−1;ℝ𝜃−1) + 𝜀𝐴‖𝐷𝜈𝑙‖𝐿∞(ℝ𝜃−1;ℝ𝜃×(𝜃−1))

)
(|𝑥′ − 𝑦′| + |𝑡 − 𝑠|).

Now, the second estimate in (i) follows if we fix 0 < 𝜀𝐴 ≤ 1 and choose

𝐶𝐴,1 ≥ 1 + max
𝑙∈{1,…,𝑝}

(‖∇𝜁𝑙‖𝐿∞(ℝ𝜃−1;ℝ𝜃−1) + ‖𝐷𝜈𝑙‖𝐿∞(ℝ𝜃−1;ℝ𝜃×(𝜃−1))

)
,

which is finite since we assumed in Hypothesis 2.1 that 𝜁𝑙 ∈ 𝐶2
𝑏
(ℝ𝜃−1;ℝ) for all 𝑙 ∈ {1, … , 𝑝}.

Next, we prove the first inequality in (i). We start by rewriting

|𝜄𝑙(𝑥′, 𝑡) − 𝜄𝑙(𝑦
′, 𝑠)|2 = |𝑥Σ𝑙 (𝑥′) − 𝑥Σ𝑙 (𝑦

′)|2 + 2⟨𝑥Σ𝑙 (𝑥′) − 𝑥Σ𝑙 (𝑦
′), 𝑡𝜈𝑙(𝑥

′) − 𝑠𝜈𝑙(𝑦
′)⟩ + |𝑡𝜈𝑙(𝑥′) − 𝑠𝜈𝑙(𝑦

′)|2. (A3)

We are going to estimate all three terms on the right hand side separately. For the first one, we find with 𝑥Σ𝑙 (𝑥
′) =

𝜅𝑙(𝑥
′, 𝜁𝑙(𝑥

′)), 𝑥Σ𝑙 (𝑦
′) = 𝜅𝑙(𝑦

′, 𝜁𝑙(𝑦
′)), and as 𝜅𝑙 is unitary that

|𝑥Σ𝑙 (𝑥′) − 𝑥Σ𝑙 (𝑦
′)|2 = |𝑥′ − 𝑦′|2 + |𝜁𝑙(𝑥′) − 𝜁𝑙(𝑦

′)|2 ≥ |𝑥′ − 𝑦′|2. (A4)

Next, we consider the second term on the right-hand side of (A3). We start by observing

 ∶= |⟨𝑥Σ𝑙 (𝑥′) − 𝑥Σ𝑙 (𝑦
′), 𝑡𝜈𝑙(𝑥

′)⟩| = |||||𝑡 ⟨𝑥
′ − 𝑦′, −∇𝜁𝑙(𝑥

′)⟩ + 𝜁𝑙(𝑥
′) − 𝜁𝑙(𝑦

′)√
1 + |∇𝜁𝑙(𝑥′)|2

|||||.
The mean value theorem shows 𝜁𝑙(𝑥′) − 𝜁𝑙(𝑦

′) = ⟨𝑥′ − 𝑦′, ∇𝜁𝑙(𝑥
′ + 𝜇(𝑦′ − 𝑥′))⟩ for some 𝜇 ∈ [0, 1]. Using Lemma A.1,

the above expression can be further estimated by

 ≤ sup
𝜇∈[0,1]

|||||𝑡 ⟨𝑦
′ − 𝑥′, ∇𝜁𝑙(𝑥

′) − ∇𝜁𝑙(𝑥
′ + 𝜇(𝑦′ − 𝑥′))⟩√

1 + |∇𝜁𝑙(𝑥′)|2
||||| ≤ sup

𝜇∈[0,1]
𝜀𝐴|𝑦′ − 𝑥′||𝜇(𝑦′ − 𝑥′)|‖𝐷∇𝜁𝑙‖𝐿∞(ℝ𝜃−1;ℝ(𝜃−1)×(𝜃−1))

≤ 𝜀𝐴|𝑥′ − 𝑦′|2‖𝐷∇𝜁𝑙‖𝐿∞(ℝ𝜃−1;ℝ(𝜃−1)×(𝜃−1)).

Similarly, one has

|⟨𝑥Σ𝑙 (𝑥′) − 𝑥Σ𝑙 (𝑦
′), 𝑠𝜈𝑙(𝑦

′)⟩| ≤ 𝜀𝐴|𝑥′ − 𝑦′|2‖𝐷∇𝜁𝑙‖𝐿∞(ℝ𝜃−1;ℝ(𝜃−1)×(𝜃−1)),

and thus

2⟨𝑥Σ𝑙 (𝑥′) − 𝑥Σ𝑙 (𝑦
′), 𝑡𝜈𝑙(𝑥

′) − 𝑠𝜈𝑙(𝑦
′)⟩ ≥ −4𝜀𝐴|𝑥′ − 𝑦′|2‖𝐷∇𝜁𝑙‖𝐿∞(ℝ𝜃−1;ℝ(𝜃−1)×(𝜃−1)). (A5)
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Eventually, to estimate the third term on the right-hand side in (A3), we use Lemma A.1 as well as (𝑎 − 𝑏)2 ≥ 1

2
𝑎2 − 𝑏2

for 𝑎, 𝑏 > 0 and calculate

|𝑡𝜈𝑙(𝑥′) − 𝑠𝜈𝑙(𝑦
′)|2 = |(𝑡 − 𝑠)𝜈𝑙(𝑥

′) − 𝑠(𝜈𝑙(𝑦
′) − 𝜈𝑙(𝑥

′))|2 ≥ (|𝑡 − 𝑠| − |𝑠(𝜈𝑙(𝑦′) − 𝜈𝑙(𝑥
′))|)2

≥ 1

2
|𝑡 − 𝑠|2 − 𝑠2|𝜈𝑙(𝑦′) − 𝜈𝑙(𝑥

′)|2 ≥ 1

2
|𝑡 − 𝑠|2 − 𝜀2

𝐴
|𝑥′ − 𝑦′|2‖𝐷𝜈𝑙‖2𝐿∞(ℝ𝜃−1;ℝ𝜃×(𝜃−1))

.
(A6)

By combining (A4)–(A6) in (A3) we obtain

|𝜄𝑙(𝑥′, 𝑡) − 𝜄𝑙(𝑦
′, 𝑠)|2 ≥ 1

2
|𝑡 − 𝑠|2 + |𝑥′ − 𝑦′|2(1 − 4𝜀𝐴‖𝐷∇𝜁𝑙‖𝐿∞(ℝ𝜃−1;ℝ(𝜃−1)×(𝜃−1)) − 𝜀2

𝐴
‖𝐷𝜈𝑙‖2𝐿∞(ℝ𝜃−1;ℝ𝜃×(𝜃−1))

)
.

As before we conclude from 𝜁𝑙 ∈ 𝐶2
𝑏
(ℝ𝜃−1;ℝ) that for 𝜀𝐴 > 0 sufficiently small and𝐶𝐴,1 > 0 sufficiently large also the first

inequality in (i) is fulfilled.
(ii) We fix 𝑥Σ, 𝑦Σ ∈ Σ and 𝑡, 𝑠 ∈ (−𝜀𝐴, 𝜀𝐴). Let us first assume that 𝑥Σ, 𝑦Σ ∈ Σ𝑙 for some 𝑙 ∈ {1, … , 𝑝}. Then, there exist

𝑥′, 𝑦′ ∈ ℝ𝜃−1 such that 𝑥Σ = 𝑥Σ𝑙 (𝑥
′) and 𝑦Σ = 𝑥Σ𝑙 (𝑦

′), and therefore 𝜄(𝑥Σ, 𝑡) = 𝜄𝑙(𝑥
′, 𝑡) and 𝜄(𝑦Σ, 𝑠) = 𝜄𝑙(𝑦

′, 𝑠). In this case,
we see

|𝑥Σ − 𝑦Σ| = √|𝑥′ − 𝑦′|2 + |𝜁𝑙(𝑥′) − 𝜁𝑙(𝑦′)|2
and therefore combining

|𝑥′ − 𝑦′| ≤ |𝑥Σ − 𝑦Σ| ≤ |𝑥′ − 𝑦′|√1 + ‖∇𝜁𝑙‖2𝐿∞(ℝ𝜃−1;ℝ𝜃−1)

with (i) yields (ii). It remains to consider the case where 𝑥Σ, 𝑦Σ ∈ Σ and there is no 𝑙 ∈ {1, … , 𝑝} such that 𝑥Σ, 𝑦Σ ∈ Σ𝑙.
Then, (ii) and (iii) from Hypothesis 2.1 imply |𝑥Σ − 𝑦Σ| ≥ 𝜀0, where 𝜀0 is the number specified in Hypothesis 2.1. Choose
𝜀𝐴 ≤ 𝜀0∕6. Then, |𝑥Σ − 𝑦Σ| ≥ 6𝜀𝐴, |𝑡𝜈(𝑥Σ) − 𝑠𝜈(𝑦Σ)| ≤ 2𝜀𝐴, and |𝑡 − 𝑠| ≤ 2𝜀𝐴 yield

|𝜄(𝑥Σ, 𝑡) − 𝜄(𝑦Σ, 𝑠)| ≤ |𝑥Σ − 𝑦Σ| + 2𝜀𝐴 ≤ 4

3
|𝑥Σ − 𝑦Σ| ≤ 4

3
(|𝑥Σ − 𝑦Σ| + |𝑡 − 𝑠|)

and

1

2

(|𝑥Σ − 𝑦Σ| + |𝑡 − 𝑠|) ≤ |𝑥Σ − 𝑦Σ|
2

+ 𝜀𝐴 =
|𝑥Σ − 𝑦Σ|

2
+ 3𝜀𝐴 − 2𝜀𝐴 ≤ |𝑥Σ − 𝑦Σ| − 2𝜀𝐴 ≤ |𝜄(𝑥Σ, 𝑡) − 𝜄(𝑦Σ, 𝑠)|,

which imply (ii) also in this case. □

Eventually, we state a useful consequence of Proposition A.2.

Corollary A.3. Assume that Σ,Ω± ⊂ ℝ𝜃 , 𝜃 ∈ {2, 3}, satisfy Hypothesis 2.1 and let 𝜀𝐴 be as in Proposition A.2. Then, the
following holds:

(i) For any 𝑥Σ ∈ Σ and 𝑡 ∈ (0, 𝜀𝐴) one has 𝑥Σ + 𝑡𝜈(𝑥Σ) ∈ Ω−.
(ii) For any 𝑥Σ ∈ Σ and 𝑡 ∈ (−𝜀𝐴, 0) one has 𝑥Σ + 𝑡𝜈(𝑥Σ) ∈ Ω+.

Proof. We show item (i), the proof of assertion (ii) follows the same lines. The claim will be verified by an indirect proof.
Assume that there are 𝑥Σ ∈ Σ and 𝑡 ∈ (0, 𝜀𝐴) such that 𝑥Σ + 𝑡𝜈(𝑥Σ) ∉ Ω−. Since 𝜈 is pointing outward of Ω+, we have for
small 𝜇 > 0 that 𝑥Σ + 𝜇𝑡𝜈(𝑥Σ) ∈ Ω−. By continuity, this implies that there exists 𝜇0 ∈ (0, 1] such that 𝑥Σ + 𝜇0𝑡𝜈(𝑥Σ) ∈ Σ.
However, we obtain from Proposition A.2 for all 𝑦Σ ∈ Σ with a constant 𝐶𝐴,2 > 0 the inequality

|𝑥Σ + 𝜇0𝑡𝜈(𝑥Σ) − 𝑦Σ| ≥ 𝐶−1
𝐴,2

𝜇0𝑡 > 0;

this is a contradiction. □
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BEHRNDT et al. 2537

APPENDIX B: PROOF OF THE ESTIMATE (3.25)
Let 𝑧 ∈ 𝜌(𝐻) and 𝐵𝜀(𝑧) ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) and 𝐵𝜀(𝑧) ∶ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) →

𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) be the operators defined by (3.17) and (3.19), respectively. In this Appendix, we show that
𝐵𝜀(𝑧) − 𝐵𝜀(𝑧) can be extended to a bounded operator from 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) to 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) and that

‖𝐵𝜀(𝑧) − 𝐵𝜀(𝑧)‖0→1∕2 ≤ 𝐶(𝜀 + 𝜀|log(𝜀)|)1∕2 (B1)

for some 𝐶 > 0, which is used in (3.25) in Step 3 in the proof of Proposition 3.10. With (3.18) and (3.23) one obtains for
𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁))

(𝐵𝜀(𝑧) − 𝐵𝜀(𝑧))𝑓(𝑡)(𝑥Σ) =∫
1

−1
∫
Σ

(𝐺𝑧(𝑥Σ − 𝑦Σ + 𝜀𝑡𝜈(𝑥Σ) − 𝜀𝑠𝜈(𝑦Σ)) − 𝐺𝑧(𝑥Σ − 𝑦Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ)))𝑓(𝑠)(𝑦Σ) 𝑑𝜎(𝑦Σ) 𝑑𝑠

(B2)

for a.e. 𝑡 ∈ (−1, 1) and for 𝜎-a.e. 𝑥Σ ∈ Σ, where 𝐺𝑧 is the integral kernel of 𝑅𝑧 = (𝐻 − 𝑧)−1; cf. (2.10)–(2.11). Thus, in order
to show (B1), we proceed as follows: we prove in Proposition B.3 that for fixed 𝑡 ≠ 𝑠 ∈ (−1, 1) the operator formally acting
on 𝜓 ∈ 𝐿2(Σ;ℂ𝑁) as

𝑏𝑡,𝑠,𝜀(𝑧)𝜓(𝑥Σ) =∫
Σ

(𝐺𝑧(𝑥Σ − 𝑦Σ + 𝜀𝑡𝜈(𝑥Σ) − 𝜀𝑠𝜈(𝑦Σ)) − 𝐺𝑧(𝑥Σ − 𝑦Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ)))𝜓(𝑦Σ) 𝑑𝜎(𝑦Σ), 𝑥Σ ∈ Σ, (B3)

gives rise to a bounded operator from 𝐿2(Σ; ℂ𝑁) to 𝐻1∕2(Σ; ℂ𝑁) and we prove an estimate for its operator norm. Then,
we show in Lemma B.4 that the map (𝑠, 𝑡) ↦ 𝑏𝑡,𝑠,𝜀(𝑧) is measurable and use (B2) to transfer the results from 𝑏𝑡,𝑠,𝜀(𝑧) to
𝐵𝜀(𝑧) − 𝐵𝜀(𝑧).
In the following, we always assume 𝜀 ∈ (0, 𝜀2)with 𝜀2 > 0 given by (3.11). Recall that 𝜀1 and 𝜀𝐴 are the numbers that are

specified in Propositions 2.4 and A.2, respectively. Since 𝜀1 < 𝜀𝐴, see the proof of Proposition 2.4, we conclude from (3.11)
that 𝜀2 <

𝜀𝐴

2
. Define for 𝑡 ≠ 𝑠 ∈ (−1, 1) and 𝑥Σ, 𝑦Σ ∈ Σ

Δ𝐺𝑧(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) ∶= 𝐺𝑧(𝑥Σ − 𝑦Σ + 𝜀𝑡𝜈(𝑥Σ) − 𝜀𝑠𝜈(𝑦Σ)) − 𝐺𝑧(𝑥Σ − 𝑦Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ)). (B4)

Moreover, we introduce for 𝑡 ≠ 𝑠 ∈ (−1, 1) and 𝑥Σ, 𝑦Σ ∈ Σ the quantities

𝑧0(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) ∶= 𝑥Σ − 𝑦Σ + 𝜀𝑡𝜈(𝑥Σ) − 𝜀𝑠𝜈(𝑦Σ) = 𝜄(𝑥Σ, 𝜀𝑡) − 𝜄(𝑦Σ, 𝜀𝑠),

𝑧1(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) ∶= 𝑥Σ − 𝑦Σ + 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ) = 𝜄(𝑥Σ, 𝜀(𝑡 − 𝑠)) − 𝜄(𝑦Σ, 0),

𝑧𝜇(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) ∶= 𝜇𝑧0(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) + (1 − 𝜇)𝑧1(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) = 𝜄(𝑥Σ, (𝜇𝜀𝑡 + (1 − 𝜇)𝜀(𝑡 − 𝑠)) − 𝜄(𝑦Σ, 𝜇𝜀𝑠) for 𝜇 ∈ (0, 1),

𝐿(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) ∶= |𝑥Σ − 𝑦Σ| + |𝜀(𝑡 − 𝑠)|.
Then, Δ𝐺𝑧(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) = 𝐺𝑧(𝑧0(𝑥Σ, 𝑦Σ, 𝑡, 𝑠)) − 𝐺𝑧(𝑧1(𝑥Σ, 𝑦Σ, 𝑡, 𝑠)). It follows from Proposition A.2 (ii) that for 𝜇 ∈ [0, 1]

𝐶−1
𝐴,2

𝐿(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) ≤ |𝑧𝜇(𝑥Σ, 𝑦Σ, 𝑡, 𝑠)| ≤ 𝐶𝐴,2𝐿(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) (B5)

holds. To shorten notation, we also set

𝜔 ∶= Im
√
𝑧2 − 𝑚2𝐶−1

𝐴,2
> 0, 𝑧 ∈ 𝜌(𝐻). (B6)

Furthermore, until Lemma B.4 we fix 𝑡 ≠ 𝑠 ∈ (−1, 1) and hence omit the arguments 𝑡, 𝑠 in the functions 𝐿, Δ𝐺𝑧, 𝑧0, 𝑧𝜇,
and 𝑧1.

Lemma B.1. Let 𝐺𝑧 be the integral kernel of 𝑅𝑧 in (2.10)–(2.11), Δ𝐺𝑧 as in (B4), 𝑙 ∈ {1, … , 𝑝}, and 𝑥Σ𝑙 as in (2.1). Then, the
following is true:
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2538 BEHRNDT et al.

(i) There exists 𝐶 > 0 which does not depend on 𝜀, 𝑡, and 𝑠 such that

|Δ𝐺𝑧(𝑥Σ, 𝑦Σ)| ≤ 𝐶𝜀(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
1−𝜃)𝑒−𝜔𝐿(𝑥Σ,𝑦Σ)

for all 𝑥Σ, 𝑦Σ ∈ Σ.
(ii) There exists 𝐶 > 0 which does not depend on 𝜀, 𝑡, and 𝑠 such that

|||| 𝑑

𝑑𝑥′
𝑘

Δ𝐺𝑧(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)

|||| ≤ 𝐶𝜀(𝐿(𝑥Σ𝑙 (𝑥
′), 𝑦Σ) + 𝐿(𝑥Σ𝑙 (𝑥

′), 𝑦Σ)
−𝜃)𝑒−𝜔𝐿(𝑥Σ𝑙 (𝑥

′),𝑦Σ)

for all 𝑘 ∈ {1, … , 𝜃 − 1}, 𝑦Σ ∈ Σ, and 𝑥′ ∈ 𝑥−1Σ𝑙
(Σ).

Proof.Beforewe prove (i) and (ii) we showuseful estimates of the difference 𝑧0(𝑥Σ, 𝑦Σ) − 𝑧1(𝑥Σ, 𝑦Σ) and 𝜕𝑗𝐺𝑧, 𝑗 ∈ {1, … , 𝜃}.
Since 𝜀2 <

𝜀𝐴

2
, it follows from Proposition A.2 (ii) that

|𝑧0(𝑥Σ, 𝑦Σ) − 𝑧1(𝑥Σ, 𝑦Σ)| = |𝜀𝑡𝜈(𝑥Σ) − 𝜀𝑠𝜈(𝑦Σ) − 𝜀(𝑡 − 𝑠)𝜈(𝑥Σ)| = 𝜀|𝑠||𝜈(𝑥Σ) − 𝜈(𝑦Σ)|
≤ 𝜀

𝜀2
(|𝑥Σ − 𝑦Σ| + |𝜄(𝑥Σ, 𝜀2) − 𝜄(𝑦Σ, 𝜀2)|) ≤ 1 + 𝐶𝐴,2

𝜀2
𝜀|𝑥Σ − 𝑦Σ| ≤ 1 + 𝐶𝐴,2

𝜀2
𝜀𝐿(𝑥Σ, 𝑦Σ)

(B7)

for all 𝑥Σ, 𝑦Σ ∈ Σ. Next, we estimate 𝜕𝑗𝐺𝑧, 𝑗 ∈ {1, … , 𝜃}. For 𝜕𝑗𝐺𝑧 we obtain for 𝜃 = 2 and 𝑥 ∈ ℝ2 ⧵ {0} from (2.10)

𝜕𝑗𝐺𝑧(𝑥) =

√
𝑧2 − 𝑚2

2𝜋
𝐾1

(
−i

√
𝑧2 − 𝑚2|𝑥|)( 𝛼𝑗|𝑥| − 𝑥𝑗(𝛼 ⋅ 𝑥)|𝑥|3

)

+ i𝑧
2 − 𝑚2

4𝜋

(
𝐾0

(
−i

√
𝑧2 − 𝑚2|𝑥|) + 𝐾2

(
−i

√
𝑧2 − 𝑚2|𝑥|))𝑥𝑗(𝛼 ⋅ 𝑥)|𝑥|2

+
i
√
𝑧2 − 𝑚2

2𝜋
𝐾1

(
−i

√
𝑧2 − 𝑚2|𝑥|) 𝑥𝑗|𝑥| (𝑚𝛽 + 𝑧𝐼2),

where we used 𝐾′
0
= −𝐾1 and 𝐾′

1
= −

1

2
(𝐾0 + 𝐾2); cf. [45, §10.29(i)]. For 𝜃 = 3 and 𝑥 ∈ ℝ3 ⧵ {0} we obtain from (2.11)

𝜕𝑗𝐺𝑧(𝑥) =

(
i
(
1 − i

√
𝑧2 − 𝑚2|𝑥|)(𝛼𝑗 −

2𝑥𝑗(𝛼 ⋅ 𝑥)|𝑥|2
)
+
√
𝑧2 − 𝑚2

𝑥𝑗(𝛼 ⋅ 𝑥)|𝑥|
+

(
𝑧𝐼4 + 𝑚𝛽 + i

(
1 − i

√
𝑧2 − 𝑚2|𝑥|)𝛼 ⋅ 𝑥|𝑥|2

)(
i
√
𝑧2 − 𝑚2𝑥𝑗|𝑥| − 𝑥𝑗

))ei
√
𝑧2−𝑚2|𝑥|
4𝜋|𝑥|3 .

By thewell-known asymptotic expansions of themodified Bessel functions from [45, Sections 10.25 (ii) and 10.30 (i)], there
exists 𝑅 > 0 such that for all 𝑥 ∈ ℝ𝜃 ⧵ {0} with |𝑥| ≤ 𝑅 one has

|||𝐾𝑛

(
−i

√
𝑧2 − 𝑚2|𝑥|)||| ≤ 𝐶

{|log |𝑥||, 𝑛 = 0,|𝑥|−𝑛, 𝑛 ∈ {1, 2},

and for all 𝑥 ∈ ℝ𝜃 ⧵ {0} with |𝑥| > 𝑅 and 𝑛 ∈ {0, 1, 2}

|||𝐾𝑛

(
−i

√
𝑧2 − 𝑚2|𝑥|)||| ≤ 𝐶e−Im

√
𝑧2−𝑚2|𝑥|.

Using this in the above formulas for 𝜕𝑗𝐺𝑧, one concludes that

sup
𝑗∈{1,… ,𝜃}

|𝜕𝑗𝐺𝑧(𝑥)| ≤ 𝐶(1 + |𝑥|−𝜃)e−Im√
𝑧2−𝑚2|𝑥|, 𝑥 ∈ ℝ𝜃 ⧵ {0}. (B8)
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BEHRNDT et al. 2539

(i) Applying Lemma A.1, (B7), (B8), and (B5) yields

|Δ𝐺𝑧(𝑥Σ, 𝑦Σ)| = |𝐺𝑧(𝑧0(𝑥Σ, 𝑦Σ)) − 𝐺𝑧(𝑧1(𝑥Σ, 𝑦Σ))| ≤ 𝐶 sup
𝜇∈[0,1],𝑗∈{1,… ,𝜃}

|𝜕𝑗𝐺𝑧(𝑧𝜇(𝑥Σ, 𝑦Σ))||𝑧0(𝑥Σ, 𝑦Σ) − 𝑧1(𝑥Σ, 𝑦Σ)|
≤ 𝐶 sup

𝜇∈[0,1],𝑗∈{1,… ,𝜃}
|𝜕𝑗𝐺𝑧(𝑧𝜇(𝑥Σ, 𝑦Σ))|𝜀𝐿(𝑥Σ, 𝑦Σ)

≤ 𝐶 sup
𝜇∈[0,1]

(1 + |𝑧𝜇(𝑥Σ, 𝑦Σ)|−𝜃)e−Im√
𝑧2−𝑚2|𝑧𝜇(𝑥Σ,𝑦Σ)|𝜀𝐿(𝑥Σ, 𝑦Σ)

≤ 𝐶𝜀(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
1−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ)

for all 𝑥Σ, 𝑦Σ ∈ Σ, where 𝜔 is defined in (B6) and 𝐶 > 0 is a constant which does not depend on 𝜀, 𝑡, and 𝑠. Hence, the
claim in (i) is shown.

(ii) For 𝑘 ∈ {1, … , 𝜃 − 1}, 𝑦Σ ∈ Σ, and 𝑥′ ∈ 𝑥−1Σ𝑙
(Σ) we compute

𝑑

𝑑𝑥′
𝑘

Δ𝐺𝑧(𝑥Σ𝑙 (𝑥
′), 𝑦Σ) =

𝑑

𝑑𝑥′
𝑘

(𝐺𝑧(𝑧0(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)) − 𝐺𝑧(𝑧1(𝑥Σ𝑙 (𝑥

′), 𝑦Σ)))

=

𝜃∑
𝑗=1

(𝜕𝑗𝐺𝑧)(𝑧0(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))

𝑑

𝑑𝑥′
𝑘

(𝑧0(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))𝑗 −

𝜃∑
𝑗=1

(𝜕𝑗𝐺𝑧)(𝑧1(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))

𝑑

𝑑𝑥′
𝑘

(𝑧1(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))𝑗

=

𝜃∑
𝑗=1

((𝜕𝑗𝐺𝑧)(𝑧0(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)) − (𝜕𝑗𝐺𝑧)(𝑧1(𝑥Σ𝑙 (𝑥

′), 𝑦Σ)))
𝑑

𝑑𝑥′
𝑘

(𝑧0(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))𝑗

+

𝜃∑
𝑗=1

𝜀𝑠(𝜕𝑗𝐺𝑧)(𝑧1(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))

𝑑

𝑑𝑥′
𝑘

(𝜈𝑙(𝑥
′))𝑗,

where 𝜈𝑙(𝑥′) = 𝜈(𝑥Σ𝑙 (𝑥
′))was used in the last step. To estimate the second sum we use (B5), (B8), 𝜁𝑙 ∈ 𝐶2

𝑏
(ℝ𝜃−1; ℂ𝑁), and

1 + 𝑎−𝜃 ≤ 2(𝑎 + 𝑎−𝜃) for 𝑎 > 0 and obtain

|||||
𝜃∑

𝑗=1

𝜀𝑠(𝜕𝑗𝐺𝑧)(𝑧1(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))

𝑑

𝑑𝑥′
𝑘

(𝜈𝑙(𝑥
′))𝑗

||||| ≤ 𝐶𝜀 sup
𝑗∈{1,…,𝜃}

|(𝜕𝑗𝐺𝑧)(𝑧1(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))|‖𝐷𝜈𝑙‖𝐿∞(ℝ𝜃−1;ℝ𝜃×(𝜃−1))

≤ 𝐶𝜀(1 + 𝐿(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)

−𝜃)e−𝜔𝐿(𝑥Σ𝑙 (𝑥
′),𝑦Σ) ≤ 𝐶𝜀(𝐿(𝑥Σ𝑙 (𝑥

′), 𝑦Σ) + 𝐿(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)

−𝜃)e−𝜔𝐿(𝑥Σ𝑙 (𝑥
′),𝑦Σ).

For the remaining part given by

𝜃∑
𝑗=1

((𝜕𝑗𝐺𝑧)(𝑧0(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)) − (𝜕𝑗𝐺𝑧)(𝑧1(𝑥Σ𝑙 (𝑥

′), 𝑦Σ)))
𝑑

𝑑𝑥′
𝑘

(𝑧0(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))𝑗 (B9)

we proceed in the same way as in the proof of (i). Using Lemma A.1 and 𝜁𝑙 ∈ 𝐶2
𝑏
(ℝ𝜃−1;ℝ) one can show that the absolute

value of the expression in (B9) is bounded by the term

𝐶 sup
𝜇∈[0,1], 𝑛,𝑗∈{1,…,𝜃}

|𝜕𝑛𝜕𝑗𝐺𝑧(𝑧𝜇(𝑥Σ𝑙 (𝑥
′), 𝑦Σ))|𝜀𝐿(𝑥Σ𝑙 (𝑥′), 𝑦Σ).

Moreover, in a similar way as in (B8) one can prove

sup
𝑛,𝑗∈{1,…,𝜃}

|𝜕𝑛𝜕𝑗𝐺𝑧(𝑥)| ≤ 𝐶(1 + |𝑥|−𝜃−1)e−Im√
𝑧2−𝑚2|𝑥|, 𝑥 ∈ ℝ𝜃 ⧵ {0}.

Combining these observations with (B5) yields the claim in (ii). □
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2540 BEHRNDT et al.

To estimate the operator norm of 𝑏𝑡,𝑠,𝜀(𝑧) in Proposition B.3 we will make use of a partition of unity for Σ subordinate
to (𝑊𝑙)𝑙∈{1,…,𝑝} with the additional property that the derivatives are uniformly bounded; the existence of such a partition
of unity (in the case that Σ is unbounded) is shown in the next lemma.

LemmaB.2. LetΣ ⊂ ℝ𝜃 , 𝜃 ∈ {2, 3}, satisfy Hypothesis 2.1. Then, there exists a partition of unity (𝜑𝑙)𝑙∈{1,…,𝑝} forΣ subordinate
to the open cover (𝑊𝑙)𝑙∈{1,…,𝑝} of Σ such that 𝜑𝑙 ∈ 𝐶∞

𝑏
(ℝ𝜃;ℝ) for all 𝑙 ∈ {1, … , 𝑝}.

Proof. According to [52, Appendix A, Lemmas 1.2 and 1.3], there exists a sequence (𝑥𝑛)𝑛∈ℕ ⊂ ℝ𝜃,𝑀 ∈ ℕ, 0 < 𝛿 <
𝜀0

2
, and

a sequence of real-valued 𝐶∞-functions (𝜙𝑛)𝑛∈ℕ such that (𝐵(𝑥𝑛, 𝛿))𝑛∈ℕ is an open cover of ℝ𝜃, (𝜙𝑛)𝑛∈ℕ is a partition of
unity for ℝ𝜃 subordinate to this open cover, supp 𝜙𝑛 ⊂ 𝐵(𝑥𝑛, 𝛿) for all 𝑛 ∈ ℕ, every point 𝑥 ∈ ℝ𝜃 is contained in at most
𝑀 of the sets 𝐵(𝑥𝑛, 𝛿), and the derivatives of the functions 𝜙𝑛 are uniformly bounded. Next, we define the set 𝑌 ∶= {𝑥𝑛 ∶

𝐵(𝑥𝑛, 𝛿) ∩ Σ ≠ ∅}. Note that for all 𝑥𝑛 ∈ 𝑌 there exists 𝑙 ∈ {1, … , 𝑝} such that 𝐵(𝑥𝑛, 𝛿) ⊂ 𝑊𝑙. In fact, since 𝐵(𝑥𝑛, 𝛿) ∩ Σ ≠ ∅,
there exists 𝑦Σ ∈ 𝐵(𝑥𝑛, 𝛿) ∩ Σ and thus, item (ii) in Hypothesis 2.1 implies 𝐵(𝑦Σ, 𝜀0) ⊂ 𝑊𝑙 for an 𝑙 ∈ {1, … , 𝑝}. Hence, for
any 𝑦 ∈ 𝐵(𝑥𝑛, 𝛿) one has

|𝑦 − 𝑦Σ| ≤ |𝑦 − 𝑥𝑛| + |𝑥𝑛 − 𝑦Σ| < 2𝛿 < 𝜀0,

which shows 𝐵(𝑥𝑛, 𝛿) ⊂ 𝑊𝑙. Next, we define 𝐼1 ∶= {𝑛 ∶ 𝑥𝑛 ∈ 𝑌, 𝐵(𝑥𝑛, 𝛿) ⊂ 𝑊1} and for 𝑙 ∈ {2, … , 𝑝} we introduce 𝐼𝑙 ∶=
{𝑛 ∶ 𝑥𝑛 ∈ 𝑌, 𝐵(𝑥𝑛, 𝛿) ⊂ 𝑊𝑙, 𝐵(𝑥𝑛, 𝛿) ⊄ 𝑊𝑘, 𝑘 ∈ {1, … , 𝑙 − 1}}. Then, it is not difficult to see that𝜑𝑙 =

∑
𝑛∈𝐼𝑙

𝜙𝑛 is a partition
of unity having the claimed properties. □

Proposition B.3. Let 𝑡 ≠ 𝑠 ∈ (−1, 1) and 𝜀 ∈ (0, 𝜀2). Then, the operator formally defined by (B3) gives rise to a bounded
operator 𝑏𝑡,𝑠,𝜀(𝑧) ∶ 𝐿2(Σ; ℂ𝑁) → 𝐻1∕2(Σ; ℂ𝑁) and there exists 𝐶 > 0 which does not depend on 𝜀, 𝑡, and 𝑠 such that

‖𝑏𝑡,𝑠,𝜀(𝑧)‖𝐿2(Σ;ℂ𝑁)→𝐻1∕2(Σ;ℂ𝑁)
≤ 𝐶(𝜀 + 𝜀|log(𝜀|𝑡 − 𝑠|)|)1∕2 1|𝑡 − 𝑠|1∕2 . (B10)

Proof.We split this proof into four steps. In Step 1, we verify the preliminary estimate

sup
𝑥Σ∈Σ

∫
Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
𝑗)e−𝜔𝐿(𝑥Σ,𝑦Σ) 𝑑𝜎(𝑦Σ) ≤ 𝐶

{
1 + |log(𝜀|𝑡 − 𝑠|)|, 𝑗 = 1 − 𝜃,

1

𝜀|𝑡−𝑠| , 𝑗 = −𝜃,
(B11)

which will be used in Steps 2 and 3 to obtain bounds for 𝑏𝑡,𝑠,𝜀(𝑧) viewed as an operator from 𝐿2(Σ; ℂ𝑁) to 𝐿2(Σ; ℂ𝑁) and
from 𝐿2(Σ; ℂ𝑁) to 𝐻1(Σ;ℂ𝑁), respectively. Finally, we conclude with an interpolation argument (B10) in Step 4.
Step 1. Let 𝑥Σ ∈ Σ and 𝑗 ∈ {1 − 𝜃,−𝜃}. Recall that Σ satisfies Hypothesis 2.1 and let (𝜑𝑙)𝑙∈{1,…,𝑝} be the partition of unity

from Lemma B.2. Using the definition of the boundary integral, we can write

∫
Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
𝑗)e−𝜔𝐿(𝑥Σ,𝑦Σ) 𝑑𝜎(𝑦Σ)

=

𝑝∑
𝑛=1

∫
𝑥−1
Σ𝑛

(Σ)

(𝐿(𝑥Σ, 𝑥Σ𝑛(𝑦
′)) + 𝐿(𝑥Σ, 𝑥Σ𝑛(𝑦

′))𝑗)e−𝜔𝐿(𝑥Σ,𝑥Σ𝑛 (𝑦
′))𝜑𝑛(𝑥Σ𝑛(𝑦

′))
√
1 + |∇𝜁𝑛(𝑦′)|2 𝑑𝑦′.

Hence, 0 ≤ 𝜑𝑛 ≤ 1, 𝜁𝑛 ∈ 𝐶2
𝑏
(ℝ𝜃−1;ℝ), and 𝑥−1Σ𝑛

(Σ) ⊂ ℝ𝜃−1 yield

∫
Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
𝑗)e−𝜔𝐿(𝑥Σ,𝑦Σ) 𝑑𝜎(𝑦Σ) ≤ 𝐶 max

𝑛∈{1,…,𝑝}∫ℝ𝜃−1

(𝐿(𝑥Σ, 𝑥Σ𝑛(𝑦
′)) + 𝐿(𝑥Σ, 𝑥Σ𝑛(𝑦

′))𝑗)e−𝜔𝐿(𝑥Σ,𝑥Σ𝑛 (𝑦
′)) 𝑑𝑦′

≤ 𝐶 max
𝑛∈{1,…,𝑝}∫ℝ𝜃−1

(𝜔𝐿(𝑥Σ, 𝑥Σ𝑛(𝑦
′)) + 𝜔𝑗𝐿(𝑥Σ, 𝑥Σ𝑛(𝑦

′))𝑗)e−𝜔𝐿(𝑥Σ,𝑥Σ𝑛 (𝑦
′)) 𝑑𝑦′,
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BEHRNDT et al. 2541

where 𝐶 > 0 does not depend on 𝑥Σ, 𝑡, 𝑠, and 𝜀. Next, let 𝑛 ∈ {1, … , 𝑝} and fix 𝑥′𝑛 ∈ ℝ𝜃−1 such that |𝑥Σ − 𝑥Σ𝑛(𝑥
′
𝑛)| =

min𝑦′∈ℝ𝜃−1 |𝑥Σ − 𝑥Σ𝑛(𝑦
′)|. With this choice we obtain for all 𝑦′ ∈ ℝ𝜃−1

1

2
|𝑥′𝑛 − 𝑦′| ≤ 1

2
|𝑥Σ𝑛(𝑥′

𝑛) − 𝑥Σ𝑛(𝑦
′)| ≤ 1

2
(|𝑥Σ − 𝑥Σ𝑛(𝑦

′)| + |𝑥Σ − 𝑥Σ𝑛(𝑥
′
𝑛)|) ≤ |𝑥Σ − 𝑥Σ𝑛(𝑦

′)|.
This implies for any 𝑦′ ∈ ℝ𝜃−1

𝜔𝐿(𝑥Σ, 𝑥Σ𝑛(𝑦
′)) = 𝜔(|𝑥Σ − 𝑥Σ𝑛(𝑦

′)| + 𝜀|𝑡 − 𝑠|) ≥ 𝜔

2
|𝑥′

𝑛 − 𝑦′| + 𝜔𝜀|𝑡 − 𝑠|.
Moreover, 𝑎 ↦ (𝑎 + 𝑎𝑗)𝑒−𝑎, 𝑎 > 0, is a monotonically decreasing function and therefore we get with 𝜌(𝑥′𝑛, 𝑦

′) ∶=
𝜔

2
|𝑥′𝑛 − 𝑦′|

∫
Σ

(𝐿(𝑥Σ, 𝑦Σ)+𝐿(𝑥Σ, 𝑦Σ)
𝑗)e−𝜔𝐿(𝑥Σ,𝑦Σ) 𝑑𝜎(𝑦Σ)

≤ 𝐶 max
𝑛∈{1,…,𝑝}∫ℝ𝜃−1

((𝜌(𝑥′
𝑛, 𝑦

′) + 𝜔𝜀|𝑡 − 𝑠|) + (𝜌(𝑥′
𝑛, 𝑦

′) + 𝜔𝜀|𝑡 − 𝑠|)𝑗)e−𝜌(𝑥′𝑛,𝑦′)−𝜔𝜀|𝑡−𝑠| 𝑑𝑦′
≤ 𝐶 ∫

∞

0

((𝜌 + 𝜔𝜀|𝑡 − 𝑠|) + (𝜌 + 𝜔𝜀|𝑡 − 𝑠|)𝑗)e−𝜌−𝜔𝜀|𝑡−𝑠|𝜌𝜃−2𝑑𝜌
= 𝐶

(
∫

∞

𝜔𝜀|𝑡−𝑠| 𝜌𝜃−1e−𝜌 𝑑𝜌 + ∫
∞

𝜔𝜀|𝑡−𝑠| 𝜌𝑗+𝜃−2e−𝜌 𝑑𝜌
)

≤ 𝐶

{
1 + |log(𝜀|𝑡 − 𝑠|)|, 𝑗 = 1 − 𝜃,

1

𝜀|𝑡−𝑠| , 𝑗 = −𝜃,

where 𝐶 > 0 does not depend on 𝑥Σ, 𝑡, 𝑠, and 𝜀. This proves (B11).
Step 2. In this step, we verify the estimate

‖𝑏𝑡,𝑠,𝜀(𝑧)𝜓‖𝐿2(Σ;ℂ𝑁) ≤ 𝐶𝜀(1 + |log(𝜀|𝑡 − 𝑠|)|)‖𝜓‖𝐿2(Σ;ℂ𝑁), 𝜓 ∈ 𝐿2(Σ; ℂ𝑁). (B12)

In fact, with the help of the Cauchy–Schwarz inequality, Lemma B.1 (i), and (B11) we obtain for 𝜓 ∈ 𝐿2(Σ;ℂ𝑁) and 𝑥Σ ∈ Σ

|𝑏𝑡,𝑠,𝜀(𝑧)𝜓(𝑥Σ)|2 = ||||∫Σ Δ𝐺𝑧(𝑥Σ, 𝑦Σ)𝜓(𝑦Σ) 𝑑𝜎(𝑦Σ)
||||
2

≤ ∫
Σ

|Δ𝐺𝑧(𝑥Σ, 𝑦Σ)|𝑑𝜎(𝑦Σ)∫
Σ

|Δ𝐺𝑧(𝑥Σ, 𝑦Σ)||𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ)
≤ 𝐶𝜀2 ∫

Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
1−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ) 𝑑𝜎(𝑦Σ)∫

Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
1−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ)|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ)

≤ 𝐶𝜀2(1 + |log(𝜀|𝑡 − 𝑠|)|)∫
Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
1−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ)|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ).

(B13)

Now, Fubini’s theorem and (B11) show

∫
Σ

|𝑏𝑡,𝑠,𝜀(𝑧)𝜓(𝑥Σ)|2 𝑑𝜎(𝑥Σ) ≤ 𝐶𝜀2(1 + |log(𝜀|𝑡 − 𝑠|)|)∫
Σ
∫
Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
1−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ)|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ) 𝑑𝜎(𝑥Σ)

= 𝐶𝜀2(1 + |log(𝜀|𝑡 − 𝑠|)|)∫
Σ
∫
Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
1−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ) 𝑑𝜎(𝑥Σ)|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ)

≤ 𝐶𝜀2(1 + |log(𝜀|𝑡 − 𝑠|)|)2 ∫
Σ

|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ),
which yields (B12).
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2542 BEHRNDT et al.

Step 3. Next, we prove the estimate

‖𝑏𝑡,𝑠,𝜀(𝑧)𝜓‖𝐻1(Σ;ℂ𝑁) ≤ 𝐶
1|𝑡 − 𝑠|‖𝜓‖𝐿2(Σ;ℂ𝑁), 𝜓 ∈ 𝐿2(Σ; ℂ𝑁). (B14)

Let 𝜓 ∈ 𝐿2(Σ;ℂ𝑁) and 𝑥Σ𝑙 (𝑥
′) = 𝑥Σ ∈ Σ with 𝑥′ ∈ ℝ𝜃−1. By Lemma B.2 the function 𝜑𝑙 and its derivatives are bounded.

Thus, with 𝜑𝑙 ∶= 𝜑𝑙◦𝑥Σ𝑙 we have

|||| 𝑑

𝑑𝑥′
𝑘

(𝜑𝑙(𝑥
′)(𝑏𝑡,𝑠,𝜀(𝑧)𝜓)(𝑥Σ𝑙 (𝑥

′)))
||||
2

≤ 𝐶

(|||| 𝑑

𝑑𝑥′
𝑘

(𝑏𝑡,𝑠,𝜀(𝑧)𝜓)(𝑥Σ𝑙 (𝑥
′))

||||
2

+ |𝑏𝑡,𝑠,𝜀(𝑧)𝜓(𝑥Σ𝑙 (𝑥′))|2).

Using the dominated convergence theorem and the properties of Δ𝐺𝑧 stated in Lemma B.1, one obtains

𝑑

𝑑𝑥′
𝑘

(𝑏𝑡,𝑠,𝜀(𝑧)𝜓)(𝑥Σ𝑙 (𝑥
′)) = ∫

Σ

𝑑

𝑑𝑥′
𝑘

Δ𝐺𝑧(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)𝜓(𝑦Σ) 𝑑𝜎(𝑦Σ).

Hence, we get with the Cauchy Schwarz inequality, Lemma B.1 (ii), 𝑥Σ = 𝑥Σ𝑙 (𝑥
′), and (B11)

|||| 𝑑

𝑑𝑥′
𝑘

(𝑏𝑡,𝑠,𝜀(𝑧)𝜓)(𝑥Σ𝑙 (𝑥
′))

||||
2

=
||||∫Σ 𝑑

𝑑𝑥′
𝑘

Δ𝐺𝑧(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)𝜓(𝑦Σ) 𝑑𝜎(𝑦Σ)

||||
2

≤ ∫
Σ

|||| 𝑑

𝑑𝑥′
𝑘

Δ𝐺𝑧(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)

||||𝑑𝜎(𝑦Σ)∫Σ|||| 𝑑

𝑑𝑥′
𝑘

Δ𝐺𝑧(𝑥Σ𝑙 (𝑥
′), 𝑦Σ)

|||||𝜓(𝑦Σ)|2𝑑𝜎(𝑦Σ)
≤ 𝐶𝜀2 ∫

Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ) 𝑑𝜎(𝑦Σ)∫

Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ)|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ)

≤ 𝐶
𝜀|𝑡 − 𝑠| ∫Σ(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)

−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ)|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ).
According to (B13), we can estimate

|𝑏𝑡,𝑠,𝜀(𝑧)𝜓(𝑥Σ𝑙 (𝑥′))|2 ≤ 𝐶𝜀2(1 + |log(𝜀|𝑡 − 𝑠|)|)∫
Σ

(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)
1−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ)|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ),

where 𝑥Σ = 𝑥Σ𝑙 (𝑥
′). Moreover, 𝑎 + 𝑎1−𝜃 ≤ 2(𝑎 + 𝑎−𝜃) for 𝑎 > 0 and 1 + |log(𝑏)| ≤ 𝐶

1

𝑏
for 𝑏 ∈ (0, 2𝜀2) yields

|𝑏𝑡,𝑠,𝜀(𝑧)𝜓(𝑥Σ𝑙 (𝑥′))|2 ≤ 𝐶
𝜀|𝑡 − 𝑠| ∫Σ(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)

−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ)|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ).
Thus,

∫
𝑥−1
Σ𝑙

(Σ)

|||| 𝑑

𝑑𝑥′
𝑘

(
𝜑𝑙(𝑥Σ𝑙 (𝑥

′))𝑏𝑡,𝑠,𝜀(𝑧)𝜓
)
(𝑥′)

||||
2

𝑑𝑥′

≤ 𝐶
𝜀|𝑡 − 𝑠| ∫𝑥−1

Σ𝑙
(Σ)

∫
Σ

(𝐿(𝑥Σ𝑙 (𝑥
′), 𝑦Σ) + 𝐿(𝑥Σ𝑙 (𝑥

′), 𝑦Σ)
−𝜃)e−𝜔𝐿(𝑥Σ𝑙 (𝑥

′),𝑦Σ)|𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ)𝑑𝑥′

≤ 𝐶
𝜀|𝑡 − 𝑠| ∫Σ ∫Σ(𝐿(𝑥Σ, 𝑦Σ) + 𝐿(𝑥Σ, 𝑦Σ)

−𝜃)e−𝜔𝐿(𝑥Σ,𝑦Σ) |𝜓(𝑦Σ)|2 𝑑𝜎(𝑦Σ)𝑑𝜎(𝑥Σ).
Therefore, Fubini’s theorem and (B11) yield

∫
𝑥−1
Σ𝑙

(Σ)

|||| 𝑑

𝑑𝑥′
𝑘

(
𝜑𝑙(𝑥Σ𝑙 (𝑥

′))𝑏𝑡,𝑠,𝜀(𝑧)𝜓
)
(𝑥′)

||||
2

𝑑𝑥′ ≤ 𝐶
1|𝑡 − 𝑠|2 ‖𝜓‖2𝐿2(Σ;ℂ𝑁).

This estimate, the definition of the norm in 𝐻1(Σ;ℂ𝑁), see Section 2.1, and (B12) imply (B14).
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BEHRNDT et al. 2543

Step 4. By combining𝐻1∕2(Σ; ℂ𝑁) = [𝐿2(Σ; ℂ𝑁),𝐻1(Σ; ℂ𝑁)]1∕2, see (2.2), and 𝐿2(Σ; ℂ𝑁) = [𝐿2(Σ; ℂ𝑁), 𝐿2(Σ; ℂ𝑁)]1∕2 we
conclude from the bounds (B12) and (B14) together with (1.18) that

‖𝑏𝑡,𝑠,𝜀(𝑧)‖𝐿2(Σ;ℂ𝑁)→𝐻1∕2(Σ;ℂ𝑁) ≤ 𝐶‖𝑏𝑡,𝑠,𝜀(𝑧)‖1∕2𝐿2(Σ;ℂ𝑁)→𝐿2(Σ;ℂ𝑁)
‖𝑏𝑡,𝑠,𝜀(𝑧)‖1∕2𝐿2(Σ;ℂ𝑁)→𝐻1(Σ;ℂ𝑁)

≤ 𝐶(𝜀 + 𝜀|log(𝜀|𝑡 − 𝑠|)|)1∕2 1|𝑡 − 𝑠|1∕2 .
This completes the proof of Proposition B.3. □

Lemma B.4. Let 𝜀 ∈ (0, 𝜀𝐴). Then, the operator-valued function

𝐹 ∶ (−1, 1)
2
→ (𝐿2(Σ; ℂ𝑁),𝐻1∕2(Σ; ℂ𝑁)), 𝐹(𝑡, 𝑠) =

{
𝑏𝑡,𝑠,𝜀(𝑧), if 𝑡 ≠ 𝑠,

0, if 𝑡 = 𝑠,

is measurable.

Proof. It suffices to prove that (𝐹(⋅, ⋅)𝜑, 𝜓)𝐻1∕2(Σ;ℂ𝑁) is measurable on (−1, 1)2 for all 𝜑 ∈ 𝐿2(Σ;ℂ𝑁) and 𝜓 ∈ 𝐻1∕2(Σ; ℂ𝑁);
cf. Definition 2.5. For this, we prove that (𝐹(⋅, ⋅)𝜑, 𝜓)𝐻1∕2(Σ;ℂ𝑁) is continuous on  ∶= (−1, 1)2 ⧵ {(𝑡, 𝑡) ∶ 𝑡 ∈ (−1, 1)}. Let
(𝑡, 𝑠) ∈  be fixed and consider the case 𝑡 > 𝑠. Choose a sequence ((𝑡𝑛, 𝑠𝑛))𝑛∈ℕ ⊂  which converges to (𝑡, 𝑠). It is no
restriction to assume that 3

2
(𝑡𝑛 − 𝑠𝑛) > 𝑡 − 𝑠 >

1

2
(𝑡𝑛 − 𝑠𝑛) holds for all 𝑛 ∈ ℕ. Then,

𝐿(𝑥Σ, 𝑦Σ, 𝑡𝑛, 𝑠𝑛) = |𝑥Σ − 𝑦Σ| + 𝜀|𝑡𝑛 − 𝑠𝑛| < |𝑥Σ − 𝑦Σ| + 2𝜀|𝑡 − 𝑠| ≤ 2𝐿(𝑥Σ, 𝑦Σ, 𝑡, 𝑠)

and in a similar way

𝐿(𝑥Σ, 𝑦Σ, 𝑡𝑛, 𝑠𝑛)
1−𝜃 ≤

(
2

3

)1−𝜃

𝐿(𝑥Σ, 𝑦Σ, 𝑡, 𝑠)
1−𝜃.

Moreover, as |𝑡𝑛 − 𝑠𝑛| ≥ 0 = |𝑡 − 𝑠| − |𝑡 − 𝑠| ≥ |𝑡 − 𝑠| − 2, one has

e−𝜔𝐿(𝑥Σ,𝑦Σ,𝑡𝑛,𝑠𝑛) ≤ e−𝜔(|𝑥Σ−𝑦Σ|+𝜀|𝑡−𝑠|)+2𝜔𝜀 ≤ e2𝜔𝜀𝐴e−𝜔𝐿(𝑥Σ,𝑦Σ,𝑡,𝑠).

Combining Lemma B.1 (i) with the latter three displayed formulas yields the existence of a constant 𝐶 > 0 which is
independent of 𝑥Σ, 𝑦Σ, 𝑡, 𝑠, 𝑡𝑛, 𝑠𝑛, and 𝜀 such that

|Δ𝐺𝑧(𝑥Σ, 𝑦Σ, 𝑡𝑛, 𝑠𝑛)| ≤ 𝐶𝜀
(
𝐿(𝑥Σ, 𝑦Σ, 𝑡𝑛, 𝑠𝑛) + 𝐿(𝑥Σ, 𝑦Σ, 𝑡𝑛, 𝑠𝑛)

1−𝜃
)
e−𝜔𝐿(𝑥Σ,𝑦Σ,𝑡𝑛,𝑠𝑛)

≤ 𝐶𝜀
(
𝐿(𝑥Σ, 𝑦Σ, 𝑡, 𝑠) + 𝐿(𝑥Σ, 𝑦Σ, 𝑡, 𝑠)

1−𝜃
)
e−𝜔𝐿(𝑥Σ,𝑦Σ,𝑡,𝑠) =∶ 𝑀(𝑥Σ, 𝑦Σ).

(B15)

We claim that (𝑏𝑡𝑛,𝑠𝑛,𝜀(𝑧)𝜑)𝑛∈ℕ converges weakly to 𝑏𝑡,𝑠,𝜀(𝑧)𝜑 in 𝐿2(Σ; ℂ𝑁). Let 𝛾 ∈ 𝐿2(Σ; ℂ𝑁) be fixed, then

((𝑏𝑡𝑛,𝑠𝑛,𝜀(𝑧) − 𝑏𝑡,𝑠,𝜀(𝑧))𝜑, 𝛾)𝐿2(Σ;ℂ𝑁)
= ∫

Σ
∫
Σ

⟨(Δ𝐺𝑧(𝑥Σ, 𝑦Σ, 𝑡𝑛, 𝑠𝑛) − Δ𝐺𝑧(𝑥Σ, 𝑦Σ, 𝑡, 𝑠))𝜑(𝑦Σ), 𝛾(𝑥Σ)⟩𝑑𝜎(𝑦Σ) 𝑑𝜎(𝑥Σ).
The integrand on the right-hand side converges pointwise almost everywhere to zero, as 𝑛 → ∞. Moreover, (B15) shows
that the integrand is bounded by 2𝑀(𝑥Σ, 𝑦Σ)|𝜑(𝑦Σ)||𝛾(𝑥Σ)|. Applying the Cauchy–Schwarz inequality twice, Fubini’s
theorem, and the symmetry relation𝑀(𝑥Σ, 𝑦Σ) = 𝑀(𝑦Σ, 𝑥Σ) yields(

∫
Σ
∫
Σ

𝑀(𝑥Σ, 𝑦Σ)|𝜑(𝑦Σ)||𝛾(𝑥Σ)|𝑑𝜎(𝑦Σ) 𝑑𝜎(𝑥Σ))2

≤ ∫
Σ

(
∫
Σ

𝑀(𝑥Σ, 𝑦Σ)|𝜑(𝑦Σ)|𝑑𝜎(𝑦Σ))2

𝑑𝜎(𝑥Σ)‖𝛾‖2𝐿2(Σ;ℂ𝑁)

≤ ∫
Σ
∫
Σ

𝑀(𝑥Σ, 𝑦Σ)|𝜑(𝑦Σ)|2 𝑑𝜎(𝑦Σ)∫
Σ

𝑀(𝑥Σ, 𝑦Σ) 𝑑𝜎(𝑦Σ) 𝑑𝜎(𝑥Σ)‖𝛾‖2𝐿2(Σ;ℂ𝑁)

≤ 𝐶

(
sup
𝑥Σ∈Σ

∫
Σ

𝑀(𝑥Σ, 𝑦Σ) 𝑑𝜎(𝑦Σ)

)2‖𝜑‖2𝐿2(Σ;ℂ𝑁)‖𝛾‖2𝐿2(Σ;ℂ𝑁).
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2544 BEHRNDT et al.

Furthermore, with (B11) we see that sup𝑥Σ∈Σ ∫Σ 𝑀(𝑥Σ, 𝑦Σ) 𝑑𝜎(𝑦Σ) ≤ 𝐶𝜀(1 + |log(𝜀|𝑡 − 𝑠|)|) < ∞. Hence, dominated con-
vergence yields ((𝑏𝑡𝑛,𝑠𝑛,𝜀(𝑧) − 𝑏𝑡,𝑠,𝜀(𝑧))𝜑, 𝛾)𝐿2(Σ;ℂ𝑁)

→ 0 for 𝑛 → ∞. Since, 𝛾 ∈ 𝐿2(Σ; ℂ𝑁) was arbitrary, we conclude that
(𝑏𝑡𝑛,𝑠𝑛,𝜀(𝑧)𝜑)𝑛∈ℕ converges weakly to 𝑏𝑡,𝑠,𝜀(𝑧)𝜑 in 𝐿2(Σ; ℂ𝑁).
Next, we show that (𝑏𝑡𝑛,𝑠𝑛,𝜀(𝑧)𝜑)𝑛∈ℕ converges weakly to 𝑏𝑡,𝑠,𝜀(𝑧)𝜑 in the space 𝐻

1∕2(Σ; ℂ𝑁), which proves the claimed
continuity. For this, we note that Lemma B.3 and 3

2
(𝑡𝑛 − 𝑠𝑛) > 𝑡 − 𝑠 > 0 imply that (𝑏𝑡𝑛,𝑠𝑛,𝜀(𝑧)𝜑)𝑛∈ℕ is a bounded sequence

in𝐻1∕2(Σ; ℂ𝑁). Let us assume that (𝑏𝑡𝑛,𝑠𝑛,𝜀(𝑧)𝜑)𝑛∈ℕ does not converge weakly to 𝑏𝑡,𝑠,𝜀(𝑧)𝜑 in𝐻1∕2(Σ; ℂ𝑁). Then, the𝐻1∕2-
boundedness implies that there exists a weakly convergent subsequence (𝑏𝑡𝑛𝑘 ,𝑠𝑛𝑘 ,𝜀(𝑧)𝜑)𝑘∈ℕ which converges to some 𝜑

′ ∈

𝐻1∕2(Σ; ℂ𝑁) with 𝜑′ ≠ 𝑏𝑡,𝑠,𝜀(𝑧)𝜑. However, in this case (𝑏𝑡𝑛𝑘 ,𝑠𝑛𝑘 ,𝜀(𝑧)𝜑)𝑘∈ℕ would also converge weakly to 𝜑′ in 𝐿2(Σ; ℂ𝑁)

which contradicts the first part of the proof. Hence, (𝑏𝑡𝑛,𝑠𝑛,𝜀(𝑧)𝜑)𝑛∈ℕ converges weakly to 𝑏𝑡,𝑠,𝜀(𝑧)𝜑 in 𝐻1∕2(Σ; ℂ𝑁) and
therefore, ((𝑏𝑡𝑛,𝑠𝑛,𝜀(𝑧)𝜑, 𝜓)𝐻1∕2(Σ;ℂ𝑁)

)𝑛∈ℕ converges to (𝑏𝑡,𝑠,𝜀(𝑧)𝜑, 𝜓)𝐻1∕2(Σ;ℂ𝑁)
. □

After all these preliminary considerations, we are prepared to prove (3.25).
Proof of (3.25). Let 𝑓 ∈ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) be fixed. Using Proposition B.3, the Cauchy–Schwarz inequality, and

Fubini’s theorem we obtain

∫
1

−1

(
∫

1

−1

‖𝑏𝑡,𝑠,𝜀(𝑧)𝑓(𝑠)‖𝐻1∕2(Σ;ℂ𝑁)
𝑑𝑠

)2

𝑑𝑡 ≤ 𝐶 ∫
1

−1

(
∫

1

−1

(𝜀 + 𝜀|log(𝜀|𝑡 − 𝑠|)|)1∕2 1|𝑡 − 𝑠|1∕2 ‖𝑓(𝑠)‖𝐿2(Σ;ℂ𝑁) 𝑑𝑠

)2

𝑑𝑡

≤ 𝐶 ∫
1

−1

(
∫

1

−1

(𝜀 + 𝜀|log(𝜀|𝑡 − 𝑠|)|)1∕2 1|𝑡 − 𝑠|1∕2 𝑑𝑠 ∫
1

−1

(𝜀 + 𝜀|log(𝜀|𝑡 − 𝑠|)|)1∕2 1|𝑡 − 𝑠|1∕2 ‖𝑓(𝑠)‖2𝐿2(Σ;ℂ𝑁) 𝑑𝑠

)
𝑑𝑡

≤ 𝐶 sup
𝑠∈(−1,1)

(
∫

1

−1

(𝜀 + 𝜀|log(𝜀|𝑡 − 𝑠|)|)1∕2 1|𝑡 − 𝑠|1∕2 𝑑𝑡
)2

∫
1

−1

‖𝑓(𝑠)‖2𝐿2(Σ;ℂ𝑁) 𝑑𝑠

≤ 𝐶𝜀(1 + |log(𝜀)|)‖𝑓‖20.
Combined with Lemma B.4 and the discussion below Definition 2.5 this shows that ∫ 1

−1
𝑏𝑡,𝑠,𝜀(𝑧)𝑓(𝑠) 𝑑𝑠 ∈ 𝐻1∕2(Σ; ℂ𝑁)

exists for a.e. 𝑡 ∈ (−1, 1) and that the function 𝑡 ↦ ∫ 1

−1
𝑏𝑡,𝑠,𝜀(𝑧)𝑓(𝑠) 𝑑𝑠 ∈ 𝐻1∕2(Σ; ℂ𝑁) is measurable. Hence, the mapping

 ∶ 𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) → 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)), 𝑓(𝑡) ∶= ∫
1

−1

𝑏𝑡,𝑠,𝜀(𝑧)𝑓(𝑠) 𝑑𝑠,

is well-defined, bounded, and ‖‖0→1∕2 ≤ 𝐶(𝜀 + 𝜀|log(𝜀)|)1∕2. By (B2), (B3), and Proposition 2.7 (iii) we also have
(𝐵𝜀(𝑧) − 𝐵𝜀(𝑧))𝑓(𝑡) = ∫

1

−1

𝑏𝑡,𝑠,𝜀(𝑧)𝑓(𝑠) 𝑑𝑠 = 𝑓(𝑡)

for all 𝑓 ∈ 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)). Hence, 𝐵𝜀(𝑧) − 𝐵𝜀(𝑧) can be extended to a bounded operator from
𝐿2((−1, 1); 𝐿2(Σ; ℂ𝑁)) to 𝐿2((−1, 1);𝐻1∕2(Σ; ℂ𝑁)) and (3.25) is true, that is, all claims are shown. □

APPENDIX C: PROPERTIES OF 𝚽𝒛 AND 𝒛

This Appendix is devoted to the proofs of Propositions 2.8 and 2.9, which are inspired by the abstract notion of boundary
triples, their 𝛾-fields and Weyl functions from the extension theory of symmetric operators in Hilbert spaces; cf. [7, 13, 14,
21, 28–30]. Here, we follow a similar strategy as in [11], where similar results for bounded Σ were shown. We also refer to
[8–10, 16, 46] for related considerations in the context of two- and three-dimensional Dirac operators and to [22, 23] for
one-dimensional Dirac operators.
Throughout this Appendix, let𝑚 ∈ ℝ and let Σ ⊂ ℝ𝜃 satisfy Hypothesis 2.1. We define in 𝐿2(ℝ𝜃; ℂ𝑁) the operator 𝑇 by

Tu ∶= (−i(𝛼 ⋅ ∇) + 𝑚𝛽)𝑢+ ⊕ (−i(𝛼 ⋅ ∇) + 𝑚𝛽)𝑢−, dom𝑇 ∶= 𝐻1(ℝ𝜃 ⧵ Σ;ℂ𝑁) = 𝐻1(Ω+;ℂ
𝑁) ⊕ 𝐻1(Ω−;ℂ

𝑁),
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BEHRNDT et al. 2545

and the mappings Γ0, Γ1 ∶ dom𝑇 → 𝐻1∕2(Σ; ℂ𝑁) by

Γ0𝑢 ∶= i(𝛼 ⋅ 𝜈)(𝒕+
Σ
𝑢+ − 𝒕−

Σ
𝑢−) and Γ1𝑢 ∶=

1

2
(𝒕+
Σ
𝑢+ + 𝒕−

Σ
𝑢−).

Recall that 𝜈 is pointing outward of Ω+. For 𝑢±, 𝑣± ∈ 𝐻1(Ω±;ℂ
𝑁) integration by parts implies

((𝛼 ⋅ ∇)𝑢±, 𝑣±)𝐿2(Ω±;ℂ𝑁) = −(𝑢±, (𝛼 ⋅ ∇)𝑣±)𝐿2(Ω±;ℂ𝑁) ± ((𝛼 ⋅ 𝜈)𝑢±, 𝑣±)𝐿2(Σ;ℂ𝑁)

and one finds in the same way as, for example, in the proof of [11, Theorem 4.3 (i)] that

(𝑇𝑢, 𝑣)𝐿2(ℝ𝜃;ℂ𝑁) − (𝑢, 𝑇𝑣)𝐿2(ℝ𝜃;ℂ𝑁) = (Γ1𝑢, Γ0𝑣)𝐿2(Σ;ℂ𝑁) − (Γ0𝑢, Γ1𝑣)𝐿2(Σ;ℂ𝑁) (C1)

holds for all 𝑢, 𝑣 ∈ dom𝑇. Note that (C1) implies that 𝑇 ↾ ker Γ0 is symmetric. Furthermore, 𝐻1(ℝ𝜃; ℂ𝑁) ⊂ ker Γ0. Since
the free Dirac operator 𝐻 in (2.8) is self-adjoint, this implies that

𝑇 ↾ ker Γ0 = 𝐻. (C2)

Now, we are prepared to prove Propositions 2.8 and 2.9.

Proof of Proposition 2.8. First, Fubini’s theorem shows the representation in (2.13). Hence, the mapping properties of 𝒕Σ
and 𝑅𝑧 prove assertion (iii).
To verify item (i), we note first that by (iii) and anti-duality Φ𝑧 has the bounded extension

Φ̃𝑧 ∶= (Φ∗
𝑧)

′ ∶ 𝐻−1∕2(Σ; ℂ𝑁) → 𝐿2(ℝ𝜃; ℂ𝑁) = 𝐻0(Ω+;ℂ
𝑁) ⊕ 𝐻0(Ω−;ℂ

𝑁). (C3)

Next, we show the statement for 𝑟 =
1

2
. If we manage to do that, then the claim for 𝑟 ∈ [0, 1∕2) follows from (C3)

and interpolation.
To prove the claim for 𝑟 = 1

2
we note that with (C2) one can show for 𝑧 ∈ 𝜌(𝐻) the direct sum decomposition

dom𝑇 = dom𝐻+̇ ker (𝑇 − 𝑧) = ker Γ0+̇ ker (𝑇 − 𝑧),

which allows us to define the auxiliary operator

Φ̂𝑧 ∶= (Γ0 ↾ ker (𝑇 − 𝑧))−1. (C4)

We remark that this is the usual formula for the 𝛾-field corresponding to a (quasi or generalized) boundary triple. Note
that the properties of the trace operator in Proposition 2.2 imply that ran Γ0 = 𝐻1∕2(Σ; ℂ𝑁) and we also have dom𝑇 =

𝐻1(ℝ𝜃 ⧵ Σ;ℂ𝑁). Thus, Φ̂𝑧 is a linear operator from𝐻1∕2(Σ; ℂ𝑁) to𝐻1(ℝ𝜃 ⧵ Σ;ℂ𝑁). Next, we show that Φ̂𝑧 is a restriction
of Φ𝑧. To see this, we observe for 𝑣 ∈ 𝐿2(ℝ𝜃; ℂ𝑁), 𝜑 ∈ 𝐻1∕2(Σ; ℂ𝑁), and 𝑢 = 𝑅𝑧𝑣 = (𝐻 − 𝑧)

−1
𝑣 ∈ dom𝐻 = ker Γ0 with

the help of (C1) that

(Φ̂𝑧𝜑, 𝑣)𝐿2(ℝ𝜃;ℂ𝑁) = (Φ̂𝑧𝜑, (𝐻 − 𝑧)𝑢)𝐿2(ℝ𝜃;ℂ𝑁) = (Φ̂𝑧𝜑,𝐻𝑢)𝐿2(ℝ𝜃;ℂ𝑁) − (𝑧Φ̂𝑧𝜑, 𝑢)𝐿2(ℝ𝜃;ℂ𝑁)

= (Φ̂𝑧𝜑, 𝑇𝑢)𝐿2(ℝ𝜃;ℂ𝑁) − (𝑇Φ̂𝑧𝜑, 𝑢)𝐿2(ℝ𝜃;ℂ𝑁) = −(Γ1Φ̂𝑧𝜑, Γ0𝑢)𝐿2(Σ;ℂ𝑁) + (Γ0Φ̂𝑧𝜑, Γ1𝑢)𝐿2(Σ;ℂ𝑁)

= (𝜑, Γ1𝑅𝑧𝑣)𝐿2(Σ;ℂ𝑁) = (𝜑, Φ∗
𝑧𝑣)𝐿2(Σ;ℂ𝑁) = (Φ𝑧𝜑, 𝑣)𝐿2(ℝ𝜃;ℂ𝑁).

Since this holds for all 𝑣 ∈ 𝐿2(ℝ𝜃; ℂ𝑁) we conclude Φ̂𝑧𝜑 = Φ𝑧𝜑, that is, Φ̂𝑧 = Φ𝑧 ↾ 𝐻1∕2(Σ; ℂ𝑁). In particular, Φ𝑧𝜑 ∈

ker (𝑇 − 𝑧) by (C4), which yields item (ii). Eventually, we show that this restriction of Φ𝑧 is bounded from𝐻1∕2(Σ; ℂ𝑁) to
𝐻1(ℝ𝜃 ⧵ Σ;ℂ𝑁). To see this, we show that Φ̂𝑧 is closed with respect to these spaces. But this follows from the 𝐿2 bound-
edness of Φ𝑧 and the fact that𝐻1∕2(Σ; ℂ𝑁) and𝐻1(ℝ𝜃 ⧵ Σ;ℂ𝑁) are continuously embedded in 𝐿2(Σ; ℂ𝑁) and 𝐿2(ℝ𝜃; ℂ𝑁),
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2546 BEHRNDT et al.

respectively. Thus, the closed graph theorem shows that

Φ̂𝑧 = Φ𝑧 ↾ 𝐻1∕2(Σ; ℂ𝑁) ∶ 𝐻1∕2(Σ; ℂ𝑁) → 𝐻1(Ω+;ℂ
𝑁) ⊕ 𝐻1(Ω−;ℂ

𝑁)

is bounded, which finishes the proof. □

Proof of Proposition 2.9. (i) First, it follows from Proposition 2.8 (i) and (2.14) that 𝑧 is a bounded operator in𝐻1∕2(Σ; ℂ𝑁).
Next, we show that the anti-dual ′

𝑧
of 𝑧, which is a bounded map in 𝐻−1∕2(Σ; ℂ𝑁), is an extension of 𝑧. To see this, let

𝜑, 𝜓 ∈ 𝐻1∕2(Σ; ℂ𝑁). We use (C1), Proposition 2.8 (ii), (C4), and the definition of 𝑧 to obtain
0 = (𝑇Φ̂𝑧𝜑, Φ̂𝑧𝜓)𝐿2(ℝ𝜃;ℂ𝑁) − (Φ̂𝑧𝜑, 𝑇Φ̂𝑧𝜓)𝐿2(ℝ𝜃;ℂ𝑁) = (𝑧𝜑, 𝜓)𝐿2(Σ;ℂ𝑁) − (𝜑,𝑧𝜓)𝐿2(Σ;ℂ𝑁)

= ⟨𝑧𝜑, 𝜓⟩𝐻−1∕2(Σ;ℂ𝑁)×𝐻1∕2(Σ;ℂ𝑁) − ⟨𝜑,𝑧𝜓⟩𝐻−1∕2(Σ;ℂ𝑁)×𝐻1∕2(Σ;ℂ𝑁) = ⟨(𝑧 − ′
𝑧
)𝜑, 𝜓⟩

𝐻−1∕2(Σ;ℂ𝑁)×𝐻1∕2(Σ;ℂ𝑁)
,

where ⟨⋅, ⋅⟩𝐻−1∕2(Σ;ℂ𝑁)×𝐻1∕2(Σ;ℂ𝑁) denotes the sesquilinear duality product, which is anti-linear in the second argument, on
𝐻−1∕2(Σ; ℂ𝑁) × 𝐻1∕2(Σ; ℂ𝑁). Hence, ′

𝑧
is an extension of 𝑧 which is bounded in𝐻−1∕2(Σ; ℂ𝑁), that is, the claim is true

for 𝑟 = −
1

2
. By interpolation, we conclude that 𝑧 gives rise to a bounded map in 𝐻𝑟(Σ;ℂ𝑁) for any 𝑟 ∈ [−1∕2, 1∕2].

(ii) First, for 𝜑 ∈ 𝐻1∕2(Σ; ℂ𝑁) the definition of 𝑧 in (2.14) and the relation (C4) imply

𝑧𝜑 =
1

2
𝒕+Σ (Φ𝑧𝜑)+ +

1

2
𝒕−Σ (Φ𝑧𝜑)− = ∓

1

2
(𝒕+Σ (Φ̂𝑧𝜑)+ − 𝒕−Σ (Φ̂𝑧𝜑)−) + 𝒕±Σ(Φ𝑧𝜑)±

= ±
i

2
(𝛼 ⋅ 𝜈)Γ0Φ̂𝑧𝜑 + 𝒕±Σ(Φ𝑧𝜑)± = ±

i

2
(𝛼 ⋅ 𝜈)𝜑 + 𝒕±Σ(Φ𝑧𝜑)±,

(C5)

which is the claimed identity for 𝜑 ∈ 𝐻1∕2(Σ; ℂ𝑁). If 𝜑 ∈ 𝐻𝑟(Σ;ℂ𝑁) and 𝑟 ∈ (0, 1∕2), then the assertion follows from (C5)
by continuity and density. □

RemarkC.1. We note that the results stated in Propositions 2.8 and 2.9 are not optimal in the sense of themaximal possible
range of Sobolev indices 𝑟; the stated mapping properties can be proved for a wider range of Sobolev indices in a similar
manner as in [11, Proposition 4.4 and Corollary 4.5], but the present formulation is sufficient for the proof of Theorem 1.1.
More precisely, Proposition 2.8 (i) can be extended to 𝑟 ∈ [−1∕2, 1∕2] and (ii) also remains valid for𝜑 ∈ 𝐻𝑟(Σ;ℂ𝑁)with 𝑟 ∈
[−1∕2, 1∕2]. Furthermore, the Plemelj–Sokhotsky formula in Proposition 2.9 (ii) can be generalized to all 𝑟 ∈ [−1∕2, 1∕2].
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