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ABSTRACT. We study the variation of the discrete spectrum of a bounded
non-negative operator in a Krein space under a non-negative Schatten class
perturbation of order p. It turns out that there exist so-called extended enu-
merations of discrete eigenvalues of the unperturbed and perturbed operator,
respectively, whose difference is an ¢7-sequence. This result is a Krein space
version of a theorem by T. Kato for bounded selfadjoint operators in Hilbert
spaces.
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1. INTRODUCTION

In this note we prove a Krein space version of a result by T. Kato from [22]
on the variation of the discrete spectra of bounded selfadjoint operators in Hilbert
spaces under additive perturbations from the Schatten-von Neumann ideals &.
Although perturbation theory for selfadjoint operators in Krein spaces is a well
developed field, and compact, finite rank, as well as bounded perturbations have
been studied extensively, only very few results exist that take into account the
particular &-character of perturbations. To give an impression of the variety of
perturbation results for various classes of selfadjoint operators in Krein spaces we
refer the reader to [7, 11, 15, 16, 17, 18, 26] for compact perturbations, to [5, 6, 10,
20, 21] for finite rank perturbations, and to [1, 2, 4, 8, 19, 24, 27, 28] for (relatively)
bounded and small perturbations.

Here we consider a bounded operator A in a Krein space (I, [-,-]) which
is assumed to be non-negative with respect to the indefinite inner product [-, -],
and an additive perturbation C which is also non-negative and belongs to some
Schatten-von Neumann ideal &, that is, C is compact and its singular values
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form a sequence in /7, see, e.g. [14]. Recall that the spectrum of a bounded non-
negative operator in (K, [-,-]) is real. We also assume that 0 is not a singular
critical point of the perturbation C, which is a typical assumption in perturbation
theory for selfadjoint operators in Krein spaces; cf. Section 2 for a precise defini-
tion. Clearly, the non-negativity and compactness of C imply that the bounded
operator

B:=A+C

is also non-negative in (/C, [-,-]) and its essential spectrum coincides with that
of A, whereas the discrete eigenvalues of A and their multiplicity are in general
not stable under the perturbation C. Hence, it is particularly interesting to prove
qualitative and quantitative results on the discrete spectrum. Our main objective
here is to compare the discrete spectra of A and B. For that we make use of the
following notion from [22]: Let A C R be a finite union of open intervals. A
sequence () is said to be an extended enumeration of discrete eigenvalues of A in A
if every discrete eigenvalue of A in A with multiplicity m appears exactly m-times
in the values of (a,) and all other values &, are boundary points of the essential
spectrum of A in A C R. An extended enumeration of discrete eigenvalues of B
in Ais defined analogously. The following theorem is the main result of this note.

THEOREM 1.1. Let A and B be bounded non-negative operators in a Krein space
(IC,[-,]) such that B = A 4 C, where C € &,(K) is non-negative, 0 is not a singular
critical point of C and ker C = ker C2. Then for each finite union of open intervals A
with 0 & A there exist extended enumerations (a,) and (B, ) of the discrete eigenvalues
of A and B in A, respectively, such that

(Bn —an) € LP.

The adjacent figure illustrates the role of
extended enumerations in Theorem 1.1:
[ SRS We consider a gap (4,b) C R in the es-
TTre--lll . sential spectrum and compare the dis-
' crete spectra of A and B therein. Here
------ B3 the discrete spectrum of the unpertur-
bed operator A in (a,b) consists of the
B2 (simple) eigenvalues a1, a2, a3, and the
eigenvalues B, n = 1,2,..., of the
P perturbed operator B accumulate to the
Ao a boundary point b € doess(A). Therefore,
in the situation of Theorem 1.1 the value
= Uess(B) —— b is contained (infinitely many times) in
the extended enumeration (&) of the

0% 0 discrete eigenvalues of A in (a,b).
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For bounded selfadjoint operators A and B in a Hilbert space and an &,-
perturbation C Theorem 1.1 was proved by T. Kato in [22]. The original proof is
based on methods from analytic perturbation theory, in particular, on the proper-
ties of a family of real-analytic functions describing the discrete eigenvalues and
eigenprojections of the operators A(t) = A+ tC, t € R; note that A(1) = B holds.
Our proof follows the lines of Kato’s proof, but in the Krein space situation some
nontrivial additional arguments and adaptions are necessary. In particular, we
apply methods from [26] to show that the non-negativity assumptions on A and
C yield uniform boundedness of the spectral projections of A(t), t € [0,1], cor-
responding to positive and negative intervals, respectively. The non-negativity
assumptions on A and C also enter in the construction and properties of the real-
analytic functions associated with the discrete eigenvalues of A(t).

Besides the introduction this note consists of three further sections. In Sec-
tion 2 we recall some definitions and spectral properties of non-negative op-
erators in Krein spaces. Section 3 contains the proof of our main result Theo-
rem 1.1. As a preparation, we discuss the properties of the family of real-analytic
functions describing the eigenvalues and eigenspaces of A(t) in Lemma 3.1 and
show a result on the uniform definiteness of certain spectral subspaces of A(t) in
Lemma 3.2. Afterwards, by modifying and following some of the arguments and
estimates in [22] we complete the proof of our main result. Finally, in Section 4 we
illustrate Theorem 1.1 with a multiplication operator A and an integral operator
C in a weighted L?-space.

2. PRELIMINARIES ON NON-NEGATIVE OPERATORS IN KREIN SPACES

Throughout this paper let (I, [-,-]) be a Krein space. For a detailed study
of Krein spaces and operators therein we refer to the monographs [3] and [12].
For the rest of this section let || - || be a Banach space norm with respect to which
the inner product [, -] is continuous. All such norms are equivalent, see [3]. For
closed subspaces M and N of K we denote by L(M, ) the set of all bounded
and everywhere defined linear operators from M to N. As usual, we write
L(M) :=L(M, M).

Let T € L(K). The adjoint of T, denoted by T™, is defined by

[Tx,y] =[x, T*y] forallx,y € K.

The operator T is called selfadjoint in (K,[-,-]) (or [-,-]-selfadjoint) if T = T+.
Equivalently, [Tx, x] € R for all x € K. We mention that the spectrum of a self-
adjoint operator in a Krein space is symmetric with respect to the real axis but in
general not contained in R.

The following definition of spectral points of positive and negative type is
from [26].
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DEFINITION 2.1. Let A € L(K) be a selfadjoint operator. A point A €
o(A) NR is called a spectral point of positive type (negative type) of A if for each
sequence (x,) C K with ||x,|| =1,n € N,and (A — A)x, — 0asn — co we have

lim inf [xy,, x,] > 0 (lim sup [x,, x4] <0, respectively).
=0 n—00
The set of all spectral points of positive (negative) type of A is denoted by o (A)
(0—(A), respectively). A set A C R is said to be of positive type (negative type) with
respect to A if each spectral point of A in A is of positive type (negative type,
respectively).

A closed subspace M C K is called uniformly positive (uniformly negative)
if there exists § > 0 such that [x,x] > d|/x|> ([x,x] < —d||x||?, respectively)
holds for all x € M. Equivalently, (M, [-,-]) ((M,—[-,-]), respectively) is a
Hilbert space. For a bounded selfadjoint operator A in K it follows directly from
the definition of 0} (A) and 0_(A) that an isolated eigenvalue Ay € R of A is
of positive type (negative type) if and only if ker(A — Ag) is uniformly positive
(uniformly negative, respectively).

A selfadjoint operator A € L(K) is called non-negative if

[Ax,x] >0 forallx € K.

The spectrum of a bounded non-negative operator A is a compact subset of R
and

2.1) c(A)NR*E C 01 (A)

holds, see [25]. The discrete spectrum o;(A) of A consists of the isolated eigen-
values of A with finite multiplicity. The remaining part of ¢(A) is the essential
spectrum of the nonnegative operator A and is denoted by 0ess(A). Observe that
Tess(A) coincides with the set of A such that A — A is not a Semi-Fredholm op-
erator. Recall that the non-negative operator A admits a spectral function E on
R with a possible singularity at zero, see [25]. The spectral projection E(A) is
defined for all Borel sets A C R with 0 ¢ dA and is selfadjoint. Hence,

K = E(Q)K [+ (I - E(4))K,

which implies that (E(A)KC, [-,]) is itself a Krein space. For A C R*, 0 ¢ A, the
spectral subspace (E(A)K, +[-,-]) is a Hilbert space; cf. [25, 26] and (2.1). Note
that this implies that every non-zero isolated spectral point of A is necessarily an
eigenvalue.

The point zero is called a critical point of a non-negative operator A € L(K)
if 0 € o(A) is neither of positive nor negative type. If zero is a critical point of A,
it is called regular if || E([—1, 1])||, n € N, is uniformly bounded, i.e. if zero is not
a singularity of the spectral function E. Otherwise, the critical point zero is called
singular. It should be noted that the non-negative operator A € L(K) is (similar
to) a selfadjoint operator in a Hilbert space if and only if zero is not a singular

critical point of A and ker A? = ker A.
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3. PROOF OF THEOREM 1.1

Throughout this section let A, B and C be bounded non-negative operators
in the Krein space (IC, [-,-]) as in Theorem 1.1. By assumption 0 is not a singular
critical point of C and C € &,(K). In order to prove Theorem 1.1 we consider the
analytic operator function

A(z) . =A+zC, zeC.

Note that A(t) is non-negative for t > 0 and A(1) = B holds. Moreover, since C
is compact, the essential spectrum of A(z) does not depend on z and hence

(3.1) Tess(A) = Oess(B) = ess(A(2)), z e C.
The following lemma describes the evolution of the discrete spectra of the opera-
tors A(t), t > 0.
LEMMA 3.1. Assume that o4(A(tg)) # & for some tg > 0. Then there exist
intervals Aj C Ry, j=1,...,morj €N, and real-analytic functions
)\]() :A]‘—>R6r and E]() :A]‘—>L(’C),
such that the following holds.

(i) The sets Aj are RJ -open intervals which are maximal with respect to (ii)—(vi)
below.
(ii) Foreach t > 0 we have

oa(A(t)) NRT = {Aj(t) : j € Nsuch that t € Ajand Aj(t) # 0}.
(iii) Forall jandt € Aj the set {k € N : Ar(t) = A;(t)} is finite and
Y, E(®)

k)\k(t):/\](t)
is the [+, -]-selfadjoint projection onto ker(A(t) — A;(t)).
(iv) For all j the value

mj = dim E]'(t)lc, t e A]',
is constant. —

(v) Forall jand t € A; there exists an orthonormal‘ basis {x}(t)}., of the Hilbert
space (E;(t)KC, [-,+]), such that the functions x():A j — K are real-analytic
and the differential equation

(3.2) N(t) = ni] y {Cx{{(t),x{((t)} >0
k=1

holds. In particular, )\}(t) = 0 implies E;j(t)KC C ker C.
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(vi) Let RY \ vess(A) = U, Uy with mutually disjoint open intervals U, C RT.
For every j there exists n € N such that

Aj(t) € Uy forallt € A if O & oy,
Aj(t) € Uy U0} forallt € A;  if 0 € OlUy.

IfsupA; < oo then supUy < coand lim A;(t) = sup Uy. Moreover,
ttsup A;

wliganj Aj(t) = inflUdy  if Ajis open,

ltiir(rJlAj(t) € Uy U {infU,} ifA; =1[0,sup4;).

b E
M(t) —
Ap(t) --
As(t) -
Ag(t)
Tess (A)

Typical situation for the evolution of the discrete eigenvalues of the
operator function A(-) in a gap (a,b) C R of the essential spectrum.

Proof. The proof is based on analytic perturbation theory of the discrete
eigenvalues; cf. [23, Chapter Il and VII], [9] and [22]. We fix some fy > 0 for which
an eigenvalue Ay € 0;(A(tg)) NRT exists and set M(ty) := ker(A(ty) — Ag).
Due to the non-negativity of A and C and since Ay > 0, the inner product space
(M(tp),[-,]) is a (finite-dimensional) Hilbert space; cf. (2.1). Therefore, the de-
composition

K = M(to) [+] M(to)

reduces the operator A(tp). As in [23, Chapter VII, §-3.1] one shows that for z
in an R-symmetric neighborhood D C C of ¢t there exists an analytic operator
function U(-) : D — L(K) with U(z)~! = U(z)*, U(ty) = I and such that
M(t) is U(z) "t A(z)U(z)-invariant, z € D. Hence, there exist a finite number of
(possibly multivalued) analytic functions Ax(-) describing the eigenvalues of the
restricted operators B(z) := U(z) "' A(z)U(z)|M(t) for z € D, see, e.g., [9]. Since
for real t € D the operator B(t) is selfadjoint in the Hilbert space (M(ty), [, ])
it follows from [23, Chapter II, Theorem 1.10] that the functions Ax(-) are in fact
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single-valued. The same is true for the eigenprojection functions E(-),

1

_ _ -1
Fi(z) = —5 - /Fk(z)(A(z) A ldA, zeD,

where I} (z) is a small circle with center A;(z). Now a continuation argument
implies that there exist functions A;(-), E;(-) with the properties (i)-(iv) and (vi);
of. [22].

It remains to prove (v). For this fix j € Nand ¢y € A;. Similarly as above
there exists a function Uj(-) : Aj — Ej(to) K with Uj(t)" = Uj(t)_l, Uj(to) = I,
and E;(t) = U;(t)"Ej(to)U;(t) for every t € A;. We choose an orthonormal basis
{x1, ..., xm; } of the m;-dimensional Hilbert space (E;(ty)K, [-,]) and define

xk(t) = U]‘(l‘)xk, t e A]‘, k=1,.. mj.

For every t € Aj, the set {x1(t), ..., xm;(t)} forms an orthonormal basis of the
subspace (E]-(t)IC, [,+]), since for k,l € {1,..., m]-} we have

[ (8), %1 (8)] = [Uj(t)x, U;(t)x1] = [xx, x1] = -
Letk € {1,..,m;}. Then

[xi (), 2 (8)] + [xic (1), 2 (1)) = %[xk(t),xk(t)] =0
and hence
, d d
Aj(t) = () (8), 2 (8)] = [A(E)xe(8), 2 (1)]
= [Caxr (), 2k (£)] + [A(E) 2 (£), %k (£)] + [A(E)xx (), % (1)]
[Caxr(£), 21 ()] 4+ A (1) [k (£), %k ()] + A (8) [xe (£), 21 (8)]
= [Cxx(t), x(t)] = 0.

This yields (3.2). Finally if we have A;(t) = 0 then [Cxx(t), x¢(t)] = 0 holds for
k =1,..,m;j. Since C is non-negative, the Cauchy-Schwarz inequality applied to
the non-negative inner product [C-, -] yields

ICxi (£) 12 = [Cxg (£), JCxi (£)] < [Coxie (1), 2 (£)]"? [CTCxi (), JCxi (1)]/* = O
for every k € {1,...,m;}. This shows E;(t)C C kerC. 1

In the proof of the following lemma we make use of methods from [26] in
order to show the uniform definiteness of a family of spectral subspaces of A(t).

LEMMA 3.2. Let E 5 ;) be the spectral function of the non-negative operator A(t),
t > 0, and let a > 0. Then there exists § > 0 such that for all t € [0,1] and all
x € Eyp)([a, 00)) K we have

(3.3) [x,x] > (5||x||2.
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Proof. Since maxo(A(t)) < b := ||A| + |C| forall t € [0,1], it is sufficient
to prove (3.3) only for x € E5;)([a, b]). The proof is divided into four steps.

1. In this step we show that there exist ¢ > 0 and an open neighborhood U/ of
[a,b] in C such that for all t € [0,1], all A € U/ and all x € K we have

5.4) 1A = M)xll <ellxll = [x,x] > efx]

Assume that € and U as above do not exist. Then there exist sequences (t,) C
[0,1], (An) € Cand (x,) C K with ||x,|| = 1 and dist(Ay, [a,b]) < 1/n for all
n € N, such that || (A(ty) — An)xy|| < 1/n and [x,, x,] < 1/n. It is no restriction
to assume that A, — Ag € [a,b] and t, — ty € [0, 1] as n — oo. Therefore,

(A(to) — /\0))(;1 = (to — tn)an + (A(tn) — /\n)xn + (/\n — Ao)Xn

tends to zero as n — oo. But by (2.1) we have Ay € o4 (A(fp)) which implies
liminf, e0[xy, x4] > 0, contradicting [x,,, x,] < 1/n,n € N.

2. In the following ¢ > 0 and U/ are fixed such that (3.4) holds, and, in addition, we
assume that |[Im A| < 1 holds for all A € Y. Next, we verify that for all t € [0, 1]

1

(3.5) [cam -1 < £ AeU\R,

= |ImA|’
holds. Indeed, forall t € [0,1], all A € U and all x € K we either have
[(A(t) = A)x|| > e|x]]

or, by (3.4),

e[ Tm A[|x||* < [Tm Alx, x]| = [Tm[(A(t) — A)x, x]| < [[(A(t) = A)x] | x]].
Hence, it follows that for all ¢ € [0,1], all A € U and all x € K we have

[(A(t) = A)x[| = e[ImA[||x]|,

which implies (3.5).

3. In the remainder of this proof we set
d:= dist([a,b],0U) and Tp:= min {sz,g} :

Let A C [a,b] be an interval of length R < 7y and let j be the center of A. We
show that for all t € [0, 1] the estimate

(3.6) [(A(H)|E(A)K) —po| < e
holds. For this let B(t) := (A(t)|E:(A)K) — po, t € [0,1], and note that
(37) o(B(t)) C {—12”21 C (=R,R).

As R < d, forevery A € C\ R with |A| < Rwe have iy + A € U \ R and hence

8_1

[ Im A|

(B =2) [ < [1(AW®) — (o +1) || <
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by (3.5). From [26, Section 2(b)] we now obtain ||B(t)|| < 2&e~!'r(B(t)), where
r(B(t)) denotes the spectral radius of B(t). Now (3.6) follows from (3.7) and
R S T0 S 82.

4. We cover the interval [a, b] with mutually disjoint intervals A4, ..., A, of length
< 9. Let yi; be the center of the interval A;, j = 1,...,n. From step 3 we obtain
forallt € [0,1]:

[(ADEaw (A)K) =il < e
Hence, by step 1 of the proof [xj, x;] > ¢|xj||* for x; € E5(y(4;),j =1,...,n,and
t € [0,1]. But
Eapy([a,0]) = Eq (A1) [+] - [F] Ear) (Bn),
and therefore with x; := E 54y (4;)x,j = 1,...,n, we find that

€

e+l = o ]

€
o] 2 (el + - + ) > 5

holds for all x € E (;)([a,b]) and t € [0,1], i.e. (3.3) holds with § := e/2" 1

Proof of Theorem 1.1. It suffices to prove the theorem for the case that A is
an open interval (a,b) with a > 0. In the case b < 0 consider the non-negative
operators —A, —B and —C in the Krein space (IC, —[-,]).

Suppose that for some ty € [0,1] we have 0;(A(ty)) # @, otherwise the
theorem is obviously true. Then it follows that there exist

A]', A](), E]() and x{(()
as in Lemma 3.1 such that A; N [0,1] # @ for some j € N. By & denote the set of
all j such that A;(t) € (a,b) for some t € A;N[0,1] and for j € & define
Aj={teAn[0,1]: A(t) € (a,b)} = A H((a,0)) N [0,1].

Due to (3.2) and the continuity of A;(-) the set A j is a (non-empty) subinterval of
Ajwhich is openin [0,1]. Forj € &t € [0,1] and k € {1,...,m;} we set

limg e, Aj(s), 0 inf A},
(3.8) Aj(t) = S A(t), tea;,

Ai(s), supANj <t<1,

lim j

sTsupA~]-
Ej(t) := El), ted;
0, te 0,1\ 4

and

o [xm),  tea,
Tl = {of te [0],1} \ 4.
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The functions Xj(-), E i(+),and 55{(() are differentiable in all but at most two points
t € [0,1] and for each j € R the differential equation

(39) X(t) = ’isz [cx,5m)] > 0
=1

holds in all but at most two points t € [0,1]; cf. (3.2). In addition, the projections
E;(t) are [+, -]-selfadjoint for every t € [0,1]. The rest of this proof is divided into
several steps.

1. Basis representations: By Ec denote the spectral function of the non-negative
operator C. Since 0 is not a singular critical point of C, the spectral projections
Ec(R*), Ec(R™) and Ec({0}) exist. In particular, Ec({0})K = ker C?> = kerC is
a Krein space. Let

kerC = H4 [+ H-

be an arbitrary fundamental decomposition of ker C. Then with the definition
K+ := Hy [+] Ec(R*)K we obtain a fundamental decomposition

K=K [+ K-

of K. By | denote the fundamental symmetry associated with this fundamental
decomposition and set (-, -) := [J-,-]. Then (-, -) is a Hilbert space scalar product
on I, and C is a selfadjoint operator in the Hilbert space (K, (-,-)). By || - ||
denote the norm induced by (-,-). Let (y;) be an enumeration of the non-zero
eigenvalues of C (counting multiplicities). Since C € &,(K), we have

(3.10) (m) € 2.

Let {¢;}; be an (-, -)-orthonormal basis of ran C such that ¢; is an eigenvector
of C corresponding to the eigenvalue 7;. Then we have |[¢;, ¢;]| = J);. In the
following we do not distinguish the cases dimranC < o0 and dimranC = oo,
thatis,I =1,...,m for some m € Nand ! € N, respectively.

Consider the basis representation of v € ran C with respect to {¢;};. There
exist a; € Csuch thatv =} a;¢;. Therefore

[v, 91]
[v, x| @1, , and v = .
P = Z 1w ol = aloe oi Zz: oo ¥
Consequently, for x = u 4+ v, u € kerC, v € ranC, we have [x, ¢;| = [v, ¢;] and
[x, ¢l [, ]
Cx, x| = [Cx,v| = [Cx, = Cx,
(2] =[Cx.] [ Llovol | = 2Cm ol Q)
(3.11) — Y, oy L0y oo 1202
;[ 7z [901, <Pl] Z[ mel [(Plr 4’1]

7
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where the non-negativity of C was used in the last equality; cf. (2.1). Let j € R be
fixed, t € Aj and x € K. Then

E(f)x = kzl IEj(6)x, 2 ()l (1) = kzl [, Ef ()X (0] (1) = kzl [, (1)L 1)

(3.12) E(hx =Y. [x7(D]7(1)

holds forall t € [0,1] and all x € K.

2. Norm bounds: In the following we prove that the projections E j(t) are uniformly

bounded in j € Rand t € [0,1]. For x € K we have Ej(t)x € Ep(([a,b])K, and
with Lemma 3.2 we obtain

ITE;()xllllx]l > (JEj(£)x, x) = [E;(H)x, x] = [Ej(t)x, E;(t)x]
> 8|[Ej(t)x* = SIIJE;(#)x||*.

This implies

- 1
(3.13) ITE;() < 5-
Similarly, ||[E4(;((a,b))]| < 1/6 is shown to hold for t € [0,1]. Consequently,
the eigenvalues of ]Ej(t) do not exceed 1/, and from dim ]I:fj(t)lC < mj it fol-
lows that the (-, -)-selfadjoint operator | Ej(t) has at most m; non-zero eigenval-
ues. Hence, its trace tr(]gj(t)) satisfies

m;

/(1) < -

3. The main estimate: Let j € K. For t € [0,1] we have

{Aj(t):j € 8 A; 5t} = (a,b) Noy(A(t) =: E(t),

and it follows from the (strong) c-additivity of the spectral function E ;) (see,
e.g., [26]) that for every x € K

(314) ij(t)x = Z E](t)x = Z EA(t)({)\})x: EA(t)((a,b))x.

jes jEREA; AEE(H)
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From the differential equation (3.9) we obtain for j € &
~ 1 177 o
Aj(1) = A(0) = mj/o k; (cxl(1),7(1)] at
11)1/1g2| \Hj() ”2
R A NES t), ¢ At
R = .
- Z 7/ Z [q)l'xk(t)} xk(t),gol dt

Ty T

(3.15)

Forj € fand [ we set
1 [l
ojl = m]/o [E]‘(t)q)l, g01:| dt and oj = ;0’]’1
Then 0; >0 forallj € R, as o >0 for all I. In fact, we have 0 >0 foreachj € &
Indeed if o; = 0 for some j € & then for every t € [0, 1]

tr (JEj(1)) = Zz: (]Ej(t)fl)l/(l’l) = ; [Ej(f)(/?h(l)z] =0,

which implies | Ej(t) = 0 (and thus E]-(t) = 0), since the (-, -)-selfadjoint oper-
ator | Ej(t) has only non-negative eigenvalues. Therefore, A j = 9, which is not
possible. Moreover,

/Z 901/4’1 /Z JE;(t 901,4’1)

_1 E LI A P
_m]-/o tr (JE;j(t)) dt < m,-/o 5t =5

In addition (cf. (3.13) and (3.14)), for each | we have

Y moj = Z/ ‘Plr(Pl Z/{ZE (pl,(pl]dt

(3.16)

:/0 EA(t)((arb))(Pl/(Pl} dtﬁ/o [Ea) ((a,0))[[llg]|*dt < %

Letj € & Forn € Nwesetc, := ), 0j;/0j < 1. Then the convexity of x — [x|?,
(3.15), and (3.16) imply

p
5 T ml? o - . il
Aj(l)—?\j(o)‘ = lim c} (lzc o ]|71|> < lim ¢} y o ol Inl?

=1 Y

[e0]
<) ool Tl < (5,, — Z%l|’¥z|p
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in the case that ran C is infinite dimensional (that is, [ = 1,...00); otherwise the
above estimate holds with a finite sum on the right hand side. Hence, (3.17) and
(3.10) yield

~ ~ p 1 1
G18) ¥ m 11 -0 < 55 ¥ Emoplnl” < 55 Tlnl? < eo.
jeR jER 1 1

4. Final conclusion: Tt suffices to consider the case [4,b] N 0ess(A) # &, as other-
wise 0, (A) N (a,b) and 0,(B) N (a, b) are finite sets and hence the theorem holds.
We consider the following three possibilities separately: a,b € ess(A), exactly
one endpoint of (a,b) belongs to 0ess(A), and a,b & 0ess(A).

(i) Assume thata,b € 0ess(A). Then, by Lemma 3.1 and (3.8) for all j € & the
values 7\]«(0) and /~\]-(1) either are boundary points of 0ess(A) = Cess(B) (see (3.1))
or points in the discrete spectrum of A and B, respectively. Taking into account
the multiplicities of the discrete eigenvalues of A and B it is easy to construct
sequences

(an) C {7\j(0) :j€ R} and (Bn) C {Xj(l) 1] € R}

such that («,) and (B,) are extended enumerations of discrete eigenvalues of A
and B in (a,b) and (B, — a,) € ¢F by (3.18).

(ii) Suppose that a & 0ess(A) and b € 0ess(A) (the case a € 0ess(A) and
b ¢ 0ess(A) is treated analogously). Then for each j € & the value 7\]-(1) is either
a boundary point of 0ess(B) or a discrete eigenvalue of B. Hence, the sequence
(Bn) in (i) is an extended enumeration of discrete eigenvalues of B in (a,b). But
it might happen that there exist indices j € £ such that 7\]»(0) = a, which is not
a boundary point of 0ess(A) and not a discrete eigenvalue of A in (a,b). In the
following we shall show that the number of such indices is finite. Then we just
replace the corresponding values 7\j(0) in (a,) by a point in doess(A) N (a,b] and
obtain an extended enumeration (&) of discrete eigenvalues of A in (a,b) such
that (B, —ay) € (.

Assume that 7\]'(0) = a for all j from some infinite subset K, of & Then
Xj(t) =aforallt € [0,tj], where t; := ian~j,j € R,. Observe that a € 0;(A(t)))
(cf. Lemma 3.1) and A;(t;) = a, and as a ¢ 0ess(A(t)) for all t € [0,1], the set
{t; 1 j € R4} is an infinite subset of [0, 1]. Hence we can assume that ¢; converges
to some t, t; # to for all j € &;, and that the functions /\]- are not constant. Choose
e > Osuch thata —e > 0 and

([a—ea)U(a,a+e]) No(Alty)) = @.

Either tg ¢ A;ortg € Aj, in which case [Aj(tg) —a| > e holds. As A;(t;) = a for
each j there exists s; between o and ¢; such that [A;(s;) — a| = . Therefore, there
exists ¢; between s; and t; such that

e = [Aj(t) = Aj(sp)] = MGt — sj| < Aj(Ej)It; — tol-
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Hence, A;-(@j) — o0 as j — co. On the other hand, by Lemma 3.2 there exists

o > 0 such that [x,x] > &l|x||* for all x € Ep([a —g00))K and ¢ € [0,1].
Together with (3.2) this implies

IIC I|IC C
A/(§]7|||Z||l€]”2 |||Z €],]€] _H ”

%o

a contradiction. Hence there exist at most finitely many j € £ such that 7\]'(0) =a.

(iii) If a,b & 0ess(A), we choose ¢ € (a,b) N 0ess(A) and construct the ex-
tended enumerations (a,) and (B,) as the unions of the extended enumerations
in (a,¢) and (c, b), which exist by (ii). 1

4. AN EXAMPLE

In this section we discuss an example where the unperturbed operator A
is a multiplication operator and the additive perturbation C is a special integral
operator from the Hilbert Schmidt class.

Fix some ¢ € L®((—1,1)) such that ¢ < 0on (—1,0) and ¢ > 0 on (0,1),
and let A be the corresponding multiplication operator in L2 := L?((—1,1)),

(Ah)(x) :== @(x)h(x), xe(-1,1), hel?
Moreover, let g € L'((—=1,1)), ¢ > 0, and let u and v be the solutions of the
differential equation y”" = g satisfying
u(-1) =0, u'(-1)=1, and o(1)=0, o'(1)=1.
Next, define the integral operator C in L2 by

1
4.1) (Ch)(x) := / Kxph()dy,  xe(-11), hel?,
where the kernel k has the form
K(x,y) — 1 v(x)u(y)sgn(y), —1<y<x,
T o —ud! u(x)o(y)sgn(y), x <y <1
In this situation our main result Theorem 1.1 yields the following corollary.

COROLLARY 4.1. Let A and C be as above and let B = A + C. Then for each
finite union of open intervals A with O & A there exist an extended enumeration (By) of
the discrete eigenvalues of B in A and a sequence (xy,) of boundary points of oess(A) in
R, such that

(Bn —an) € 2.

Proof. Define an indefinite inner product |-, -] on L? by

/ f(x)g(x) sgn(x) dx, f,g el
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It is easy to see that A is selfadjoint and non-negative in (L?,[-,]), and that
0(A) = 0ess(A) = essran ¢ holds. Moreover, as in [29, Satz 13.16] it follows
that C™1f = sgn-(—f" + qf) is the (unbounded) Sturm-Liouville differential op-
erator with Dirichlet boundary conditions at —1 and 1, which is selfadjoint in
(L?,]-,-]) and non-negative since g is assumed to be non-negative. Furthermore,
by [13, Theorem 3.6 (iii)] the point co is a regular critical point of C~!, and hence
0 is a regular critical point of C. Clearly, ker C = ker C?> = {0}, and as k is an
L%-kernel we have C € &,(L?).

Hence, the operators A and B = A + C satisfy the assumptions of Theo-
rem 1.1. Therefore, for each finite union of open intervals A with 0 ¢ A there
exist extended enumerations (a,,) and (B,) of the discrete eigenvalues of A and
B in A, respectively, such that (B, —a,) € (2. But A does not have any discrete
eigenvalues, and hence each «;, is a boundary point of gess(A) inR. 1

We remark that Corollary 4.1 does not claim the existence of a finite or infi-
nite set of discrete eigenvalues of B = A + C, e.g. the extended enumeration (5,)
may consist only of boundary points of 0ess(B). In the next example we consider
the case that ¢ is constant on (—1,0) and (0,1). In this situation it turns out that
every integral operator C of the form (4.1) in fact leads to a sequence of discrete
eigenvalues of A + C accumulating to 0ess(A).

EXAMPLE 4.2. Assume that the function ¢ is equal to a constant ¢ > 0on (0,1)
and ¢— < 0on (—1,0), let g € L'((—1,1)), g > 0, and let C be the corresponding
integral operator in (4.1). Then the discrete eigenvalues of B = A + C accumulate to ¢
and ¢_, and every sequence (By,) of eigenvalues of B, converging to ¢ (@) satisfies

(Bn— 1) €2 ((Bn— @) € 1%, respectively).

In fact, since Oess(B) = 0ess(A) = 0(A) = 0p(A) = {9, ¢4} and every
isolated spectral point of a non-negative operator is an eigenvalue, it is sufficient
to show that ¢ and ¢_ are no eigenvalues of B = A + C. We verify that the
operator A + C — ¢_ is injective; a similar argument shows that A + C — ¢ is
injective. Let f € L? such that (A + C — ¢_)f = 0. Then we have

(- —9+)f(x), x€(0,1),

42 g =(CHE) = (g~ A)f(x) = {0 A

and since C~! is the Sturm-Liouville operator corresponding to the expression
sgn(—d?/dx?* + q) with Dirichlet boundary conditions at +1 (cf. [29, Satz 13.16])
we conclude that ¢ and ¢’ are absolutely continuous on (—1,1) and

43)  f(x) = (CTg)(x) = sgn(x)(=g" (x) +q(x)g(x)), x e (=1,1).

Since g = 0 on (—1,0) we have f = 0 on (—1,0) from (4.3). Moreover, from (4.3)
we obtain f = —¢”" 4 g¢ on the interval (0, 1). Now, (4.2) and the continuity of g
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1

and ¢’ yield
¢+ (a0 + == ) s =0 50 =g (O =0

fora.a. x € (0,1). Therefore, ¢ = 0 on (0,1) and hence also f =0 on (0,1).
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