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Abstract— The well-known relation between the scattering matrix of he Lax-Phillips scattering theory and the characteristic
function of Foias and Sz.-Nagy found by Adamyan and Arov is ebended to a scattering theory of singular perturbations
which includes the usual ones as a special case.
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I. INTRODUCTION

For the needs of acoustic scattering a new type of scattéhiegry was created by Lax and Phillips in [16] which
differed essentially from the classical scattering theafy [5], [6], [19]. Instead of an unperturbed and a pertarbe
selfadjoint operator a Lax-Phillips scattering systemsists only of a “perturbed” operatat acting in a separable
Hilbert spaceg. It is assumed that the operatéradmits an incoming subspad@®, C £ and an outgoing subspace
D_ C £ satisfying the conditions

(i) e ™Dy C DL, £t>0, (i) [)e "Dy = {0},
teR

(i) | Je ™ D=2 and (iv) Dy LD_,
teR

cf. [6], [16]. An “unperturbed” operator is not explicitlyigen. It was shown in [17] (see also [6, Theorem 12.3]) that
under the above assumptions (i)-(iv) the isometric semigso

Us(t) :=e L 1Dy, £t >0,
admit a minimal unitary coupling, that is, there exists atamyi groupe=70, t € R, in the Hilbert space
R=D_6D,CL
such that

Us(t)=e o Dy, +t>0  and U e D, = R
teR
holds. It turns out that the self-adjoint operaf@ris unitarily equivalent to the differentiation operatet% in L2(R, ¥),

wheret is some auxiliary Hilbert space.
The Lax-Phillips wave operators are defined by

Q4 = S-t liim et Je o g ¢
where J. is the embedding of the subspads into £, and the Lax-Phillips scattering operatff p is given by
Sep =20 R — A

Since Spp is unitary and commutes witll; one obtains thatyp is unitarily equivalent to a multiplication operator
in L2(R, ¥) induced by a measurable famify5,»(\)} of unitary operators which is called the Lax-Phillips sesttg
matrix.

Denoting byP§ the orthogonal projection frong onto §) := £ © K one defines a contractiafi;-semigroup by

Z(t) = Pj%:e*itl‘ I 9, t>0,
and it follows that there is a completely non-selfadjointximzal dissipative operataol in $ such that the representation
Z(t)=e Mt ¢>0,

J. Behrndt is with Institute of Mathematics MA 6-4, Techmisc Universiait Berlin, StraBe des 17. Juni 136, 10623 Berlin, Germany
behr ndt @mt h. t u- berl i n. de

M.M. Malamud is with the Department of Mathematics, DonetSlational University, Universitetskaya 24, 83055 Donetdlkraine
mm@ el enet . dn. ua

H. Neidhardt is with the Weierstral-Institutirf Angewandte Analysis und Stochastik, Mohrenstr. 39, D170 Berlin, Germany
nei dhard@i as- berlin. de



holds. We note that and H are related via
PS(L—z)'19=(H-2)"", =zeC,. (1.2)

By [13] the operatorH is determined up to unitary equivalence by its characterfsinction Wy () : C_ — L(¥),
wheret is an auxiliary Hilbert space, see above, abd@) denotes the space of bounded linear operators defindd on
Recall thatW(+) is holomorphic and contraction-valued. In [1], [2], [3],] [# was shown by Adamyan and Arov that
the scattering matriX.S.p(\)} of Lax and Phillips and the characteristic functitry (A — <0) of Foias and Sz.-Nagy
are related by

Srp(A) = Wg(A—i0)* fora.eleR. (1.2)

This unexpected connection offers a nice possibility tawalte the Lax-Phillips scattering matrix via the chargstie
function of a maximal dissipative operator.

In this note we consider scattering systefis Ly}, where it is assumed thdt, coincides with the orthogonal sum
of two self-adjoint operatorsl, and 7, in the Hilbert spaces) and g, respectively, and thak is special self-adjoint
singular perturbation ofy in £ = § ® K. Moreover we suppose thdt and L, are self-adjoint extension of some
symmetric operatord @ T in £, where bothA and T' are one-dimensional restrictions df, and 7y in $ and £,
respectively. Then we obtain a famify (z)}.cc, of maximal dissipative operators # such that the relation

PE(L—2)"'19H=(H(z)—2)"", zeCy, (1.3)

holds, cf. Theorem 3.1. Note that (I.3) can be regarded aximsion of the relation (1.1). The familfH (z)}.cc, of
extensions of4 is calledStrauss familyNaturally, the question arises whether the family of chemastic functions of
the Strauss family is related to the usual scattering mdtsi\)} of the complete scattering systefi, Ly} (see [6],
[15], [19] and Section Ill) like the characteristic funatiof H is related to the Lax-Phillips scattering matfis, »(\)}

by (1.2). In fact, under the additional assumption that thecsrum of A, is purely singular, here we are able to prove
that the scattering matrixS(\)} admits the representation

S(A) = Whagio)(A —140)" for a.e.X € R,
where H (A +i0) is a suitable defined continuation of the Strauss famil and W (».0)(-) denotes the characteristic
function of H (A + 40).
[I. EXTENSION THEORY OF SYMMETRIC OPERATORS
A. Boundary triples and closed extensions

Let A be a densely defined closed symmetric operator in the sdpatilbert space with equal deficiency indices
ny(A) = dimker(A* F i) < oo. Recall that a tripldl = {H,T',,T";} is said to be éoundary triplefor the adjoint
operatorA* if (H, (-,-)) is a Hilbert space anfly,I'; : dom (A*) — H are linear mappings such that

(A*fv g) - (fa A*g) = (Flfv Pog) - (Fofa Flg)
for all f,g € dom (A*), and the mapping

I'y

is surjective, see [14] and e.g. [9], [10], [12].
We refer to [9], [10] and [12] for a detailed study of bounddriples and recall only some important facts. If
ITI={H,Ty,I'1} is a boundary triple ford*, then the mapping

.= (FO> : dom (A*) — H xH

Iyf

establishes a bijective correspondence between th@(%) of closed linear relations i{ and the set of closed
extensionsdg C A* of A. Moreover the extensiomlg is symmetric (self-adjoint, dissipative, maximal dissiypa)
if and only if © is symmetric (resp. self-adjoint, dissipative, maximadsijtative). Note that in particular the operator
Ag := A* | ker(T'y) is a self-adjoint extension od. Here a linear relatio® is calleddissipativeif Sm (h’, h) < 0 for
all (h, )T € © and it is calledmaximal dissipativef it is dissipative and has no dissipative extensions.

Let N, = ker(A* — \) be the defect subspace df at the point\. The operator valued functions

V() p(Ao) = L(H,H) and  M(): p(Ao) — L(H)

O Ag:=T"'0 = {f € dom (A") : (Fof) € @}



defined by
YA == Tol M), A€p(do), and  M(A):=Ti1y(\), A€ p(Ao),

are called they-field and theWeyl function respectively, corresponding to the boundary trifdlecf. [9], [10], [12]. We
note thatM (-) is a so-called Nevanlinna function with the additional pp 0 € p(Sm (M (X)) for A € C\R.

The spectrum and the resolvent set of a proper (not neclyssalfiadjoint) extensiomg C A* of A can be described
with the help of the Weyl function. Namely a pointe p(Ap) belongs top(4e) (0:(Ae), i = p,c,r) if and only if
0€p(®—M(N)) (resp.0 € 0;,(© — M(N)), i = p,c,r). Moreover, forh € p(A4g) N p(Ae) the well-known resolvent
formula

(Ao — A" = (Ag = N+ (W) (0 — M(N) (V)

holds, see [9], [10], [12]. II© € L(H) is a dissipative operator, then the closed extension
A@ = A* [ ker(I‘1 - @FQ)
of A is maximal dissipative an@ . belongs top(Ag). It follows from [11] that thecharacteristic functiorof Ag is
given by
Wag :C — L(He), p— Ing —2iV—SmO (0" — M(u))  vV—Sm8, (I1.1)

whereHg = clo{ran (Sm (0))}.
B. The Strauss family and its characteristic function

Let now A be a densely defined closed symmetric operator with defigiemticesn (4) = 1 and letll = {C, Ty, I";}
be a boundary triple ford* with corresponding (scalar) Weyl functial/ (-). Further, letr(-) be a scalar Nevanlinna
function. The family{H (\)} ec, of maximal dissipative extensions df defined by

H(A) = A*| {f €dom (A*) : T\ f = —7(\)Tof},

A € Cg, is called theStrauss family ofd (associated with the function), cf. [18]. It follows from (ll.1) that for any
A € C; with Sm (7(X)) # 0 the characteristic function of () is given by
T(A) + M(p)
T(A) + M(p)
In the following we make the convention thBty ) (1) = 1 if Sm (7())) = 0.

Sincer is a Nevanlinna function the limit(\ + ¢0) = lim._, o 7(A + i¢) from the upper half-plane exists for a.e.
A € R. We set

Waony(p) = peC. (1.2)

Y= {AeR: 7()) = lim 7(A +ie) exists}.

Then the Strauss famil{H (\)} cc. admits a continuation t&€ , U X" which is also denoted by7 (), A € C; U X",
If Sm (7(X+10)) # 0, then the characteristic functigni— Wy (x) (1), p € C_, will be defined as in (11.2). The next
proposition shows thail/; () (A — i0) exists for a.eA € X7 with Sm (7(X +i0)) # 0.

Proposition 2.1:Let A be a densely defined closed symmetric operator with defigiémdices ny(A) = 1, let
ITI = {C,Ty,I'1} be a boundary triple forA* and letM(-) be the corresponding Weyl function. Further, tét) be
a Nevanlinna function and lgt — Wy (1), © € C_, be the family of characteristic functions (I1.2) of the &itss
family {H(\)}. Then for a.eX € X7 the limit 7(\) + M ()) exists, is invertible and

(r(A) + M(N) = lim (7(A + i€) + M(A + ie)) "
holds. Moreover, the boundary value
WH()\)()\ — 20) = el—i}—I&-lO WH()\)(/\ — ’LE)

of the characteristic functiodl/;; () (1), 1 € C_, exists and is given by

oy T+ FI0Y
B PRSPy

for a.e.\ € ¥7, where we have used the conventidfy;y)(A —i0) = 1 if Sm (7(A)) = 0.



[1l. SCATTERING SYSTEMS
A. Coupling of symmetric operators

Let A and T' be densely defined closed simple symmetric operators in ¢iparable Hilbert space$ and R,
respectively, assume that their deficiency indices raréA) = ny(T) = 1, and letll, = {C,Ty, Ty} andIl; =
{C, Yy, Y1} be boundary triples forl* and T* with

AO = A" [ker(I‘O) and To := T* [ker(To).
The next theorem can be found in a slightly different form &h [

Theorem 3.1:Let A, T, 114 andIlr be as above and denote the correspondifigglds and Weyl functions by, v
and M andr, respectively. Then the following assertions (i)-(iv) thol

() Iy &Iy = {CQ,fo,fl}, Wherefo == (T, Yo) " and [, = (I'1, Y1) T, is a boundary triple for the operator
A* @ T with correspondingy-field 7 and Weyl function) given by

Ao ) = (V(OA) V(OA)) and A M(\) = (Mé” T(OA))

(i) The closed extensiod := A* & T* | IO corresponding to the relation

0:= {<( (U’U)T)T) Lo, w € C} € C(C?)

w, —Ww
is self-adjoint in the Hilbert spac® ® & and is given by
L=A"a&T"| {fl © focdom (A" ©T*):Tofs = Yofe=T1fi+Tifo= 0}-

(i) For A € C\R we have
-1

T, (In.1)
whereLy := Ag® Ty = A* & T* | ker fo. The compressed resolvent pfonto ) is given by

Po(L=2) 19 = (Ao = X)L = 1) (M) +7(0) ()"
(iv) The Strauss familyH (\) = A* | ker(T'; + 7(X\)T) satisfies

(L=X)""= (Lo =N +75(N) (6 — M(Y)

(HA) =N '=Ps(L-2)"" 19

forall A e C,.

B. Coupling and scattering
In this section we consider the scattering systel Ly} consisting of the self-adjoint operatofs and L, in the
Hilbert spacef) ¢ K defined in Theorem 3.1. Since by (Ill.1) the resolventd.odnd L, differ by a rank two operator
the wave operators
Wi(L,Lg) =s— lim e'Femihopac(fg)

t—doo

exist and are complete, whe®““(L,) denotes the orthogonal projection onto the absolutelyitootis subspace
$H?¢(Ly) of Ly. Completeness means that the range$taf(L, Ly) coincide with the absolutely continuous subspace
H*(L) of L, cf. [6], [15], [19]. Thescattering operatorS of the scattering systeriL, Ly} is then defined by

S =W, (L,Lo)*W_(L, Lo). (I11.2)

Since the scattering operatSrcommutes withL it follows that S is unitarily equivalent to a multiplication operator
induced by a family{.S(\)} of unitary operators in a spectral representation of

Lgc = LO r dom (Lo) N f)ac(Lo).

With the help of Theorem 3.1 and [7, Theorem 3.8] we obtainpmesentation of the scattering matg$(\)} of
the scattering systefiL, Ly} in the next theorem.

Theorem 3.2:Let A, T, 114 andIly be as in Theorem 3.1 and let v and M andr be the corresponding-fields
and Weyl functions, respectively. Assume thit has no absolutely continuous spectrum, llgt= Ay ® T and letL



be the coupling of the operators, and T, defined in Theorem 3.1 (ii). Then there is a direct integrakesentation
L?(R,d\, H,) of the absolutely continuous pdf© of Ty,

Hy — C if Sm(r(\)#0
{0} if Sm(r(\)=0"

such that the scattering matrpS(\)} of the scattering systefiL, Ly} admits the representation

T(A) + M(X)

T(A) + M(X)

fora.e\ € R, wherer(\) = 7(A+40), M () = M (A+i0) and we have used the conventi&\) = 1 if Sm (7(\)) = 0.
Proof: Let IT4 @ Il = {C2,T, 1}, where

Lo = (o, To)" and Ty = (', 11)",

S(A) = (I11.3)

be the boundary triple fod* @& 7™ from Theorem 3.1. Then the corresponding Weyl function xa2-matrix function
given by

A= M(A) = <M(§A) T(OA)> , A€ p(Lo),

and a simple calculation shows that

C (MO () + M)
(O=MQ) =~ <<T<A> LM () + M(A))*) (1-4)

holds for all\ € p(Lo) N p(L). By [7, Theorem 3.8] there is a direct integral represeoiafi’ (R, dA,ﬁA), where

H, := ran (Sm (M + iO))),

of the absolutely continuous pak© of L, such that the scattering matrpS(\)} admits the representation

~ 1/2

S(A\) = I, +2i(Sm (M(X+10))) 1/2

(6 — M(X+i0)) " (Sm (M (A +10)))

for a.e.\ € R. Sinceo(Ay) is purely singular we geLg® = 0@ T¢< and therefore we have

~ . 0 0
Cx —
Sm (M (X +i0)) = (0 Sm (r(A —i—iO))) (11.5)
for a.e.\ € R and hence by inserting (I1l.4) and (Ill.5) we conclude tha scattering matrix admits the representation
(111.3). [

In the following theorem we establish a connection betwdensdcattering matri{.S(\)} of the scattering system
{L, Ly} and the characteristic functions of the Strauss farpfi§(\)}. In the framework of Lax-Phillips scattering theory
relation (111.6) below can be regarded as a generalizatioth® Adamyan-Arov result discussed in the introduction. A
more detailed exposition with illustrating examples wid published elsewhere.

Theorem 3.3.Let A, T, 114 and II; be as in Theorem 3.1 and Theorem 3.2 andrletr and M and r be the
correspondingy-fields and Weyl functions, respectively. Assume thgt= A* | ker(I'y) has no absolutely continuous
spectrum, letLy = Ay @ Ty and let L be the coupling of the operators, and 7, defined in Theorem 3.1 (ii). Then
the scattering matri{S(\)} of the scattering systeri, Lo} is connected with the characteristic functiong; ) (-)
of the the Strauss familyH (\)}xex-, cf. (11.2), by

SO\ = Wy (A —i0) (111.6)
for a.e.\ € R where we have used the conventiS\) = Wy (y)(A —i0) = 1 if Sm (7(A)) = 0.
Proof: By Proposition 2.1 the characteristic functioi;,)(-) of the Strauss family{ ()} \ex- satisfy

o T+ 300

for a.e.\ € R. SinceA, has no absolutely continuous spectrum one Wgs\) = M () for a.e.\ € R. Comparing this
with relation (111.3) we obtain (l1.6). [ |
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