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Singular Indefinite Sturm-Liouville Operators with a Spectral Gap
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Singular Sturm-Liouville operators with the indefinite weight sgn(·) and a symmetric potential which has a positive limit at
∞ have a gap in the essential spectrum. Under an additional condition it is shown that in this gap are no eigenvalues.

Copyright line will be provided by the publisher

1 Introduction and main result

In this note we consider the maximal differential operator in L2(R) associated to the indefinite Sturm-Liouville differential
expression

τ = sgn(·)
(
− d2

dx2
+ q

)
, (1)

where q ∈ L1
loc(R) is real-valued, symmetric with respect to 0, i.e., q(x) = q(−x), x ∈ R, and limx→±∞ q(x) = q∞ exists

and is positive, q∞ > 0. Note that the differential expression τ is not formally symmetric with respect to the scalar product in
L2(R). The maximal differential operator A associated to τ is defined as

(Af)(x) = sgn(x)
(
−f ′′(x) + q(x)f(x)

)
, x ∈ R, f ∈ dom A = D,

where D denotes the usual maximal domain given by D = {f ∈ L2(R) : f, f ′ absolutely continuous, τf ∈ L2(R)}.
Spectral properties of indefinite Sturm-Liouville operators play an important role in various applications and have attracted

a lot of attention in the recent past, we refer the reader to [2, 4–6, 8, 10] for more details and further references. The following
theorem summarizes some facts on the spectrum σ(A) and the essential spectrum σess(A) of A. A proof can be found in,
e.g., [1, 4, 7]. We emphasize that the assumption limx→∞ q(x) = q∞ > 0 is essential for this statement.

Theorem 1.1 σ(A)∩ (C \R) consists of at most finitely many pairs {µ, µ̄} of eigenvalues and σess(A) = R \ (−q∞, q∞).
The main objective of this note is to study the spectrum of A in the gap (−q∞, q∞) of the essential spectrum. For this it is

convenient to introduce the maximal operator B associated to the definite Sturm-Liouville expression ` = −d2/dx2 + q,

(Bf)(x) = −f ′′(x) + q(x)f(x), x ∈ R, f ∈ dom B = D.

It is well known that under the above assumptions on q the differential expression ` is in the limit point case at both endpoints
±∞ and therefore B is a selfadjoint operator in the Hilbert space L2(R), see, e.g., [3, 9, 10]. Furthermore, B is semibounded
from below and the essential spectrum σess(B) is the whole interval [q∞,∞). The next well known statement is a refinement
of Theorem 1.1. The set of eigenvalues of B is denoted by σp(B).

Theorem 1.2 If σp(B) ∩ (−∞, 0) = ∅, then σ(A) ⊂ R and σess(A) = R \ (−q∞, q∞).
The following theorem is the main result of this note. Under slightly stronger assumptions on σp(B) we get a precise

description of the spectrum of A.
Theorem 1.3 If σp(B) ∩ (−∞, q∞) = ∅, then σp(A) ∩ (−q∞, q∞) = ∅ and σ(A) = σess(A) = R \ (−q∞, q∞).

2 Proof of Theorem 1.3

The statements in Theorem 1.3 follow from Theorem 1.2 if we show that A has no eigenvalues in the interval (−q∞, q∞). The
proof of this is based on elementary facts on solutions of linear ordinary differential equations, see, e.g. [3, 9]. Furthermore,
the observations in Lemma 2.1 and Lemma 2.2 below are essential ingredients in the proof of Theorem 1.3.

We define D+ and D− in the same way as D, where R is replaced by R+ and R−, respectively, and τ is replaced by the
restrictions τ+ = −d2/dx2 + q and τ− = d2/dx2 − q of τ onto R+ and R−, respectively. Since ` = −d2/dx2 + q is in
the limit point case and σess(B) = [q∞,∞) it follows that for each λ ∈ C \ [q∞,∞) there exists (up to a constant multiple)
exactly one solution gλ ∈ D+ of τ+u = λu; cf. [9, Satz 13.22]. The same is true for each λ ∈ C \ (−∞,−q∞] and the
solutions hλ ∈ D− of τ−v = λv.
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Lemma 2.1 Let λ ∈ (−q∞, q∞) and let gλ ∈ D+ and hλ ∈ D− be nontrivial solutions of τ+u = λu and τ−v = λv,
respectively. Then each of the numbers gλ(0), g′λ(0), hλ(0), and h′λ(0) is nonzero.

P r o o f. Suppose gλ ∈ D+ is a nontrivial solution of τ+u = λu such that gλ(0) = 0. Then the function

fλ(x) =

{
gλ(x), x ∈ R+,

−gλ(−x), x ∈ R−,
(2)

and its derivative are continuous at 0 and hence fλ ∈ D. Furthermore, the equation −f ′′λ + qfλ = λfλ holds and hence
fλ ∈ ker(B − λ), fλ 6= 0; a contradiction to the assumption σp(B) ∩ (−∞, q∞) = ∅. The same argument with −gλ(−x),
x ∈ R−, in (2) replaced by gλ(−x), x ∈ R−, shows g′λ(0) 6= 0. The claim for hλ ∈ D− can be proved analogously, but
follows also by observing that the function R+ 3 x 7→ hλ(−x) inD+ is a solution of τ+u = −λu and−λ ∈ (−q∞, q∞).

Lemma 2.2 For λ ∈ (−q∞, q∞) the following assertions are equivalent:

(i) λ is an eigenvalue of A;

(ii) there exist nontrivial solutions gλ ∈ D+ and hλ ∈ D− of τ+u = λu and τ−v = λv, respectively, such that

g′λ(0)
gλ(0)

− h′λ(0)
hλ(0)

= 0. (3)

P r o o f. (i)⇒ (ii) Let fλ ∈ ker(A − λ), fλ 6= 0, be an eigenfunction corresponding to λ ∈ (−q∞, q∞). Then the
restrictions gλ = fλ|R+ ∈ D+ and hλ = fλ|R− ∈ D− are nontrivial solutions of the equations τ+u = λu and τ−v = λv,
respectively. Furthermore, since fλ ∈ dom A it is clear that hλ(0) = gλ(0) and h′λ(0) = g′λ(0) holds. By Lemma 2.1 we also
have 0 6= gλ(0) = hλ(0). This implies (ii).

(ii)⇒ (i) If gλ ∈ D+ and hλ ∈ D− are nontrivial solutions of τ+u = λu and τ−v = λv, respectively, then by Lemma 2.1
gλ(0) 6= 0 and hλ(0) 6= 0. Since both terms in (3) do not depend on the particular choice of gλ ∈ D+ and hλ ∈ D− it is no
restriction to assume that gλ(0) = hλ(0) holds. Then (3) implies g′λ(0) = h′λ(0) and therefore the function

fλ(x) =

{
gλ(x), x ∈ R+,

hλ(x), x ∈ R−,

belongs to D and is a nontrivial solution of τw = λw, i.e., fλ ∈ ker(A− λ) and λ is an eigenvalue of A.

Remark 2.3 The statements in Lemma 2.1 and Lemma 2.2 hold also for λ ∈ C \ R and Lemma 2.1 is also valid for gλ

(hλ) if λ ∈ (−∞,−q∞] (λ ∈ [q∞,∞), respectively).

Proof of Theorem 1.3. Let λ ∈ (−q∞, q∞) and let gλ ∈ D+ be a nontrivial solution of τ+u = λu. We consider the
function m defined by

(−q∞, q∞) 3 λ 7→ m(λ) =
g′λ(0)
gλ(0)

. (4)

We mention that the function m is (a restriction) of the usual Titchmarsh-Weyl m-function associated to τ+; cf. [3]. It follows
from λ ∈ R that the values of m are real and by Lemma 2.1 the function m has no poles or zeros in (−q∞, q∞). Since
λ 7→ gλ(0) and λ 7→ g′λ(0) are continuous also m is continuous. Therefore m does not change its sign in (−q∞, q∞).

Let λ ∈ (−q∞, q∞) and let hλ ∈ D− be a nontrivial solution of τ−v = λv. Then the function g−λ(x) := hλ(−x),
x ∈ R−, in D+ is a nontrivial solution of τ+u = −λu and we conclude

m(−λ) =
g′−λ(0)
g−λ(0)

= −h′λ(0)
hλ(0)

, λ ∈ (−q∞, q∞). (5)

By (4) and (5) the left hand side of (3) coincides with m(λ) + m(−λ), and as m does not change its sign in (−q∞, q∞) the
function λ 7→ m(λ) + m(−λ) has no zeros in (−q∞, q∞). Now Lemma 2.2 implies σp(A) ∩ (−q∞, q∞) = ∅.
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