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Abstract

The asymptotic behavior of exponential sums
∑N

k=1 exp(2πinkα) for Hadamard
lacunary (nk) is well known, but for general (nk) very few precise results exist, due
to number theoretic difficulties. It is therefore natural to consider random (nk), and
in this paper we prove the law of the iterated logarithm for

∑N
k=1 exp(2πinkα) if

the gaps nk+1 − nk are independent, identically distributed random variables. As
a comparison, we give a lower bound for the discrepancy of {nkα} under the same
random model, exhibiting a completely different behavior.

1 Introduction

It is well known that the behavior of lacunary series resembles that of independent
random variables. The following classical result was proved by Erdős and Gál [8].

Theorem. Let (nk) be a sequence of positive numbers satisfying

nk+1/nk ≥ q > 1, k = 1, 2, . . . . (1.1)

Then

lim sup
N→∞

∣∣∣∑N
k=1 e

2πinkx
∣∣∣

√
N log logN

= 1 for almost all x. (1.2)

Note that here the nk need not be integers. As was shown by Takahashi [20], [21],
for integers nk the gap condition (1.1) can be weakened, and an optimal condition
was obtained by Berkes [4]: relation (1.2) remains valid if nk are positive integers
and

nk+1/nk ≥ 1 + (log log k)γ/
√
k, γ > 1/2

for k ≥ k0, and this becomes false for γ = 1/2. In particular, there exist sequences

nk ≥ e
√
k such that (1.2) is not true. This does not mean, however, that for
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sequences (nk) growing at a slower speed, (1.2) cannot be true. From the results
of Salem and Zygmund [18] it follows that there exists a sequence (nk) of integers
with nk = O(k) such that (1.2) holds, and Aistleitner and Fukuyama [2] showed
the existence of an integer sequence (nk) with nk+1 − nk = O(1) satisfying (1.2).
For other, related constructions see [1], [3], [10], [13]. Note, however, that all these
constructions use random (nk) and no explicit polynomially growing (nk) satisfying
(1.2) seems to be known. Indeed, proving (1.2) for a “concrete” sequence (nk)
requires precise estimates for the number of solutions of the Diophantine equation

±nk1 ± · · · ± nkr = M, 1 ≤ k1, . . . , kr ≤ N,

which is a notoriously difficult problem of additive number theory; see e.g. Halber-
stam and Roth [11], Chapters II and III. Thus proving precise asymptotic results for
exponential sums

∑N
k=1 exp(2πinkx) is more or less restricted to random sequences

(nk), and the purpose of the present paper is to study the law of the iterated loga-
rithm in the random case.

Naturally, there are many different types of random sequences; we will consider
the simplest case when the gaps nk+1 − nk are independent, identically distributed
(i.i.d.) random variables. As in [8], we will not assume that the nk are integers,
although, as we will see, this is the most interesting case. We will not assume
either that the sequence (nk) is increasing. To avoid confusion between random and
non-random sequences, in the random case the sequence (nk) will be denoted by
(Sk); the assumption that the gaps Sk+1 − Sk are i.i.d. means that Sk =

∑k
j=1Xj

is a random walk. Schatte [19] showed that in the case when X1 is absolutely
continuous, for any fixed x 6= 0 the sequence {Skx} (where {·} denotes fractional
part) has strong independence properties implying the LIL for the discrepancy of
{Skx}. For the same class of random walks, the almost everywhere convergence
of
∑∞

k=1 ckf(Skx) under
∑∞

k=1 c
2
k < +∞ where f is a smooth periodic function

was proved in Berkes and Weber [6, Theorem 4.2]. Whether this remains valid for
integer valued (nk) remains open; for a partial result see [6, Theorem 4.3]. Upper
bounds for the discrepancy of {Skx}, which is closely related to the behavior of the
corresponding exponential sum, are given in Weber [22] and Berkes and Weber [6];
the bounds depend on the distribution of the variable X1 defining the random walk
and on the rational approximation properties of x. Improving the tools in [6], [22]
and determining the precise asymptotics of high moments of the exponential sum∑n

k=1 exp(2πiSkx), in this paper we will prove the law of the iterated logarithm for
the exponential sum for arbitrary random walks (Sn).

Theorem 1.1. Let X1, X2, . . . be i.i.d. random variables with characteristic func-
tion ϕ, let Sk =

∑k
j=1Xj, and let α ∈ R. Suppose that exp(2πiX1α) is non-

degenerate.

(i) If P(2X1α ∈ Z) < 1, then with probability 1

lim sup
n→∞

1√
n log logn

∣∣∣∣∣
n∑
k=1

e2πiSkα

∣∣∣∣∣ =

√
1− |ϕ(2πα)|2
|1− ϕ(2πα)|

. (1.3)

(ii) If P(2X1α ∈ Z) = 1, then with probability 1

lim sup
n→∞

1√
n log log n

∣∣∣∣∣
n∑
k=1

e2πiSkα

∣∣∣∣∣ =
√

2

√
1− |ϕ(2πα)|2
|1− ϕ(2πα)|

. (1.4)
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Note that the variable x in the sum
∑n

k=1 exp(2πiSkx) was replaced by α to
emphasize that, unlike in (1.2), in (1.3) α is fixed and the relation holds with
probability 1 in the space of the random walk (Sk). From now on, we will use the
abbreviation “a.s.” (almost surely) instead of “with probability 1”.

If exp(2πiX1α) is degenerate, i.e., if there exists a constant c ∈ C such that
exp(2πiX1α) = c a.s., then exp(2πiSkα) = ck a.s. In this case clearly no law of
the iterated logarithm with a non-zero limsup can hold for exp(2πiSkα). Note that
exp(2πiX1α) is degenerate if and only if P((X1 −X2)α ∈ Z) = 1 or alternatively if
and only if |ϕ(2πα)| = 1.

A random variable X1 is called a lattice variable if there exist a, b ∈ R such that
X1 ∈ a+bZ a.s. IfX1 is not a lattice variable (e.g. if it has a continuous distribution),
then for any α 6= 0 the random variable exp(2πiX1α) is non-degenerate. Moreover
we have P(2X1α ∈ Z) < 1, and thus (1.3) holds.

In the case of a lattice variable X1 there are only countably many exceptional
values of α for which exp(2πiX1α) is degenerate. Even though the law of the
iterated logarithm holds whenever exp(2πiX1α) is non-degenerate, the structure
of the sequence exp(2πiSkα) can be very different for different values of α. For
example, if X1 is integer valued and non-degenerate and α is irrational, then the
possible values of the sequence exp(2πiSkα) form a countable dense subset of the
unit circle, while for rational α the corresponding set is finite (in fact comprised of
certain roots of unity). The law of the iterated logarithm in the last case follows
relatively easily from Markov chain theory, in contrast to the case of a non-lattice
X1, which lies considerably deeper.

Note that the condition P(2X1α ∈ Z) = 1 in (ii) is equivalent to exp(2πiX1α) =
±1 a.s. In this case the terms exp(2πiSkα) of the random exponential sum are all
±1 a.s. If, on the other hand, P(2X1α ∈ Z) < 1, then the terms are not all purely
real.

It is interesting to note that in Theorem 1.1 no assumptions were made about
the moments of |X1| and the distribution of X1 enters the theorem only through
arithmetic conditions on (X1 − X2)α and 2X1α. The moments of |X1| or, more
generally, the tail behavior of |X1|, influences only the growth of the sequence |Sn|.
Assume for example that

P(|X1| > t) ∼ ct−β as t→∞

for some c > 0, 0 < β < 2, and in the case β ≥ 1 assume also that EX1 = 0 (in the
case β = 1 in the sense of the Cauchy principal value). Then E|X1|γ is finite for
γ < β and infinite for γ > β and by Petrov [16, Theorem 6.9] the relation

|Sn| = O(n1/β+ε) a.s.

holds for ε > 0, but not for ε < 0. Hence in this case Sk has polynomial growth. The
case β = 1/2 is of particular interest, since the corresponding non-random sequence
nk = k2 is the only “concrete” polynomial case when the precise asymptotics of
the exponential sum

∑N
k=1 exp(2πinkα) is known. In this case Fiedler, Jurkat, and

Körner [9] showed that given any positive non-decreasing function g(n), for almost
all α the relation

n∑
k=1

exp(2πik2α)�
√
ng(n) (1.5)

3



holds if and only if
∞∑
n=1

1

ng4(n)
<∞. (1.6)

In particular, (1.5) holds if g(n) = (logn)1/4+ε for ε > 0, but not for ε = 0. The
criterion (1.5)-(1.6) also shows that if (1.5) holds with some g(n), then it also holds
for g(n)h(n) for some h(n)→ 0 depending on g(n), and thus for

∑n
k=1 exp(2πik2α)

no law of the iterated logarithm type result can hold. As Hardy and Littlewood [12]
showed, for fixed α the behavior of the sum is connected to the rational approxi-
mation properties of α. We stress, however, that in the random case exhibiting the
same growth of (Sk), the LIL holds for

∑n
k=1 exp(2πiSkα).

In view of Koksma’s inequality (see [14, p. 143]), under the assumptions of
Theorem 1.1 the discrepancy DN ({Skα}) of the first N terms of the sequence {Skα}
satisfies with probability 1

DN ({Skα})� N−1/2(log logN)1/2

for infinitely many N . By the results of Schatte [19], for absolutely continuous X1

this estimate is sharp, but as the remark at the end of our paper will show, if X1 is
integer valued, has mean 0 and finite variance, and∣∣∣∣α− p

q

∣∣∣∣ < C

qγ
(1.7)

for infinitely many rationals p/q with some constants C > 0 and γ > 2, then with
probability 1 we have

DN ({Skα})� N−1/(2γ−2)−ε

for any ε > 0 and infinitely many N . Thus for irrational numbers α allowing a very
good approximation by rational numbers, the order of magnitude of the discrepancy
can be much greater than N−1/2(log logN)1/2. The precise order of magnitude of
DN ({Skα}) remains open.

2 A moment estimate

We use ‖x‖ to denote the distance of a real number x from the nearest integer.
Recall that ‖−x‖ = ‖x‖ and ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for any x, y ∈ R. We will also
frequently use the fact that the characteristic function ϕ of an arbitrary distribution
satisfies ϕ(−x) = ϕ̄(x) and |ϕ(x)| ≤ 1 for any x ∈ R.

First, we find a simple upper bound for |ϕ|.

Proposition 2.1. Let X1, X2 be independent random variables with characteristic
function ϕ. For any t ∈ R we have

1− |ϕ(πt)| ≥ (E ‖t(X1 −X2)‖)2 .

Proof. Since X1, X2 are independent, we have

Eeπit(X1−X2) = EeπitX1Ee−πitX2 = |ϕ(πt)|2
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for any t ∈ R. After taking the real part and using |ϕ| ≤ 1 we obtain

1− |ϕ(πt)| ≥ 1− |ϕ(πt)|2

2
= E

1− cos(πt(X1 −X2))

2
.

Let us now use the general estimate

1− cos(πx)

2
≥ sin2(πx)

4
≥ ‖x‖2 ,

valid for all x ∈ R, to get

1− |ϕ(πt)| ≥ E ‖t(X1 −X2)‖2 .

Applying Jensen’s inequality finishes the proof.

The following result, giving a sharp asymptotic bound for the high moments of∑n
k=1 exp(2πiSkα), is the crucial ingredient of the proof of Theorem 1.1.

Proposition 2.2. Let X1, X2, . . . be i.i.d. random variables with characteristic
function ϕ, and let Sk =

∑k
j=1Xj. Let α ∈ R be such that

P (4α(X1 −X2) ∈ Z) < 1, (2.1)

and let

R =
16

(E ‖4α(X1 −X2)‖)2
.

For any integers p ≥ 1, m ≥ 0, and n ≥ 1 we have∣∣∣∣∣∣E
∣∣∣∣∣
m+n∑
k=m+1

e2πiSkα

∣∣∣∣∣
2p

−
(

1− |ϕ(2πα)|2

|1− ϕ(2πα)|2

)p
p!2
(
n

p

)∣∣∣∣∣∣ ≤(2pR)2p max
0<q<p

q2p−qnq

q!Rq−1

+ (pR)p+1np−1.

Note that assumption (2.1) is stronger than the non-degeneracy condition in
Theorem 1.1 and implies that

E ‖4α(X1 −X2)‖ > 0.

If (2.1) fails, then, as we will see, {e2πiSkα, k ≥ 1} is an exponentially mixing Markov
chain and Theorem 1.1 can be deduced from the theory of mixing processes.

Proof. Expanding the power we get

E

∣∣∣∣∣
m+n∑
k=m+1

e2πiSkα

∣∣∣∣∣
2p

=
∑

m+1≤`1,...,`2p≤m+n

Ee2πiα
(
S`1
−S`2

+···+S`2p−1
−S`2p

)
. (2.2)

For any positive integer N let [N ] = {1, 2, . . . , N}. We call B = (B1, . . . , Bs) an
ordered partition of [2p] if B1, . . . , Bs are pairwise disjoint, non-empty subsets of
[2p], the union of which is [2p]. For any 2p-tuple ` = (`1, . . . , `2p) let us define an
ordered partition B(`) of [2p] in the following way. If

{`1, . . . , `2p} = {k1, . . . , ks} (2.3)
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with k1 < · · · < ks, then let

Bj(`) = {i ∈ [2p] : `i = kj}

and B(`) = (B1(`), . . . , Bs(`)). We will estimate the sum of the terms in (2.2) for
which B(`) is a given ordered partition B of [2p]. Let us thus introduce the notation

Σ(B) =
∑

m+1≤`1,...,`2p≤m+n
B(`)=B

Ee2πiα
(
S`1
−S`2

+···+S`2p−1
−S`2p

)
.

Fix an ordered partition B = (B1, . . . , Bs), and let ` be such that B(`) = B.
Let k1 < · · · < ks be as in (2.3). Then

S`1 − S`2 + · · ·+ S`2p−1 − S`2p = ε1Sk1 + · · ·+ εsSks ,

where ε1, . . . , εs are integers depending only on B; in fact

εj =
∑
i∈Bj

(−1)i+1 (2.4)

for all 1 ≤ j ≤ s. Let q = q(B) denote the maximum number of non-empty intervals
I1, . . . , Iq partitioning [s] such that

∑
j∈Ik εj = 0 for every 1 ≤ k ≤ q. From (2.4) we

obtain that whenever I ⊆ [s] is a non-empty interval such that
∑

j∈I εj = 0, then∑
i∈∪j∈IBj

(−1)i+1 = 0.

Thus ∪j∈IBj contains both an even and an odd integer in [2p], and so its cardinality
is at least 2. Since B is a partition of [2p], we have

2q ≤
q∑

k=1

|∪j∈IkBj | =
s∑
j=1

|Bj | = 2p.

Hence q ≤ p. Moreover, we have q = p if and only if there exists a partition of [s]
into non-empty intervals I1, . . . , Ip such that ∪j∈IkBj contains precisely one even
and one odd integer for every 1 ≤ k ≤ p.

We first compute Σ(B) in the case q = p, which, as we will see, gives the
main contribution. Let πe and πo be arbitrary permutations of the even and odd
integers in [2p], respectively, and let σ ∈ {−1, 0, 1}p also be arbitrary. Let us
construct an ordered partition B = B(πe, πo, σ) = (B1, . . . , Bs) of [2p] in exactly
p steps the following way. In the first step consider πo(1), πe(2). If σ1 = −1,
then let B1 = {πo(1)} and B2 = {πe(2)}. If σ1 = 1, then let B1 = {πe(2)} and
B2 = {πo(1)}. If σ1 = 0, then let B1 = {πo(1), πe(2)}. We proceed in a similar way.
In step k we add the sets {πo(2k − 1)} and {πe(2k)}, or {πe(2k)} and {πo(2k − 1)},
or {πo(2k − 1), πe(2k)} to the end of the list of previously chosen sets, depending
on whether σk = −1, 1, or 0.

It is easy to see that for an ordered partition B of [2p] we have q = p if and only
if B = B(πe, πo, σ) for some πe, πo, σ as above. Indeed, the desired partition of [s]
into intervals I1, . . . , Ip is that Ik is the set of indices of (B1, . . . , Bs) chosen in step
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k of the construction. In particular, there are exactly p!23p ordered partitions B for
which q = p.

Fix πe, πo, σ as above, let B = B(πe, πo, σ), and consider Σ(B). For any 1 ≤ k ≤
p let mk = min

{
`πo(2k−1), `πe(2k)

}
and Mk = max

{
`πo(2k−1), `πe(2k)

}
. Note that

m+ 1 ≤ m1 ≤M1 < m2 ≤M2 < · · · < mp ≤Mp ≤ m+ n, (2.5)

and

S`1 − S`2 + · · ·+ S`2p−1 − S`2p = σ1(SM1 − Sm1) + · · ·+ σp(SMp − Smp).

Using the fact that X1, X2, . . . are i.i.d. random variables, we obtain

Σ(B) =
∑

m1,...,mp

M1,...,Mp

ϕ(σ12πα)M1−m1 · · ·ϕ(σp2πα)Mp−mp , (2.6)

where the summation is over all m1, . . . ,mp and M1, . . . ,Mp satisfying (2.5), with
the extra conditions that mk < Mk if σk 6= 0 and mk = Mk if σk = 0, for all
1 ≤ k ≤ p.

Fix M1, . . . ,Mp. Then (2.6) factors into p factors, the kth factor being a sum
over mk. If σk 6= 0, then the kth factor is∑

Mk−1<mk<Mk

ϕ(σk2πα)Mk−mk =
ϕ(σk2πα)

1− ϕ(σk2πα)
− ϕ(σk2πα)Mk−Mk−1

1− ϕ(σk2πα)
,

where we use the convention that M0 = m. If σk = 0, then the extra condition
mk = Mk shows that the kth factor is simply 1. Let A(σk) = ϕ(σk2πα)

1−ϕ(σk2πα) if σk 6= 0,

and let A(σk) = 1 if σk = 0. Let, moreover

E(σk) = E(σk,Mk−1,Mk) = −ϕ(σk2πα)Mk−Mk−1

1− ϕ(σk2πα)

if σk 6= 0, and E(σk) = 0 if σk = 0. With this notation we thus have

Σ(B) =
∑

m+1≤M1<···<Mp≤m+n

p∏
k=1

(A(σk) + E(σk)) . (2.7)

Let us now expand the product in (2.7). The main term will come from
∏p
k=1A(σk).

Indeed, all other terms are of the form
∏p
k=1 ak, where ak is either A(σk) or E(σk)

for all 1 ≤ k ≤ p, and ak = E(σk) for at least one k. Let k∗ denote the largest index
k such that ak = E(σk). If σk∗ = 0, then E(σk∗) = 0 and so

∏p
k=1 ak = 0. Else, by

summing over Mk∗ first, we can use the estimate∣∣∣∣∣∣
∑

Mk∗−1<Mk∗<Mk∗+1

ϕ(σk∗2πα)Mk∗−Mk∗−1

1− ϕ(σk∗2πα)

∣∣∣∣∣∣ ≤ 2

|1− ϕ(σk∗2πα)|2
,

where Mp+1 = m + n + 1 by convention in the case k∗ = p. Applying Proposition
2.1, the subadditivity of ‖·‖, and the definition of R we obtain

1− |ϕ(σk∗2πα)| ≥ (E ‖2α(X1 −X2)‖)2 ≥
1

4
(E ‖4α(X1 −X2)‖)2 =

4

R
,
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2

|1− ϕ(σk∗2πα)|2
≤ R2

8
.

We similarly get |ak| ≤ R
4 . Since there are

(
n
p−1
)

ways to fix M1, . . . , Mk∗−1, Mk∗+1,
. . . , Mp, we have ∣∣∣∣∣∣

∑
m+1≤M1<···<Mp≤m+n

p∏
k=1

ak

∣∣∣∣∣∣ ≤
(

n

p− 1

)
Rp+1

2 · 4p
.

Note that the main term
∏p
k=1A(σk) does not depend on M1, . . .Mp and that there

are 2p terms in the expansion. Therefore

Σ(B) =

(
n

p

) p∏
k=1

A(σk)±
Rp+1np−1

2 · 2p(p− 1)!
. (2.8)

Let us fix πe, πo as before and sum (2.8) over σ ∈ {−1, 0, 1}p to get

∑
σ∈{−1,0,1}p

Σ(B(πe, πo, σ)) =

(
n

p

) p∏
k=1

1∑
σk=−1

A(σk)±
3pRp+1np−1

2 · 2p(p− 1)!
.

Here
1∑

σk=−1
A(σk) =

ϕ̄(2πα)

1− ϕ̄(2πα)
+ 1 +

ϕ(2πα)

1− ϕ(2πα)
=

1− |ϕ(2πα)|2

|1− ϕ(2πα)|2
.

Since nothing depends on πe and πo, summing over them simply introduces a new
factor of p!2. By checking that

3pp!2

2 · 2p(p− 1)!
≤ pp+1,

we thus get

∑
B
q=p

Σ(B) =

(
1− |ϕ(2πα)|2

|1− ϕ(2πα)|2

)p
p!2
(
n

p

)
± (pR)p+1np−1. (2.9)

Now we estimate Σ(B) in the case q < p. Using the fact that X1, X2, . . . are
i.i.d. random variables and k1 < · · · < ks, it is easy to see that

Ee2πiα(ε1Sk1
+···+εsSks) = ϕ(2c1πα)k1ϕ(2c2πα)k2−k1 · · ·ϕ(2csπα)ks−ks−1 ,

where cj = εj + · · ·+ εs. Hence

Σ(B) =
∑

m+1≤k1<···<ks≤m+n

ϕ(2c1πα)k1ϕ(2c2πα)k2−k1 · · ·ϕ(2csπα)ks−ks−1 . (2.10)

Consider the set

A =

{
k ∈ Z : E ‖2kα(X1 −X2)‖ <

1

4
E ‖4α(X1 −X2)‖

}
.

8



Note that A does not contain any two consecutive integers. Indeed, if k, k + 1 ∈ A,
then the subadditivity of ‖·‖ implies that

‖4α(X1 −X2)‖ ≤ 2 ‖2kα(X1 −X2)‖+ 2 ‖2(k + 1)α(X1 −X2)‖ .

Taking the expected value of both sides we would thus get

E ‖4α(X1 −X2)‖ <
(

2 · 1

4
+ 2 · 1

4

)
E ‖4α(X1 −X2)‖ ,

a contradiction. Clearly A is symmetric (i.e., k ∈ A implies −k ∈ A), 0 ∈ A, and
±1,±2 6∈ A. Let

{j ∈ [s] : cj ∈ A} = {j1, j2, . . . , jM} ,

where j1 < j2 < · · · < jM . Note that c1 = ε1 + · · · + εs = 0 ∈ A; therefore j1 = 1.
For any 1 ≤ r ≤M − 1 let Ir = [jr, jr+1) and let IM = [jM , s]. By the definition of
cj we have

cjr − cjr+1 =
∑
j∈Ir

εj , cjM =
∑
j∈IM

εj . (2.11)

We claim M < p. Consider the following two cases.
Case 1. Assume cj1 = cj2 = · · · = cjM = 0. Then (2.11) shows that I1, I2, . . . , IM
is a partition of [s] into M intervals such that

∑
j∈Ir εj = 0 for every r. By the

definition of q = q(B) this means M ≤ q < p.
Case 2. Assume cj1 , cj2 , . . . , cjM are not all zero. Recalling that cj1 = c1 = 0,
(2.11) shows that there exists an r such that

∑
j∈Ir εj = a for some non-zero a ∈ A.

Note that |a| ≥ 3. From the definition (2.4) of εj we thus obtain∣∣∣∣∣∣
⋃
j∈Ir

Bj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
∑
j∈Ir

εj

∣∣∣∣∣∣ = |a| ≥ 3 (2.12)

for this particular r. For any other r′ (2.11) shows that
∑

j∈Ir′
εj is the difference

of two elements of A. Since A does not contain any two consecutive integers, this
difference cannot be ±1. From the definition (2.4) of εj it is thus easy to see that∣∣∣∣∣∣

⋃
j∈Ir′

Bj

∣∣∣∣∣∣ ≥ 2. (2.13)

Summing (2.13) over r′ 6= r and adding (2.12), we get

2p =
s∑
j=1

|Bj | ≥ 2M + 1;

hence M < p in this case as well.
We have thus proved that M < p. Set Φ = 1− 1

R . According to Proposition 2.1,
for any j 6= j1, . . . , jM we have

|ϕ(2cjπα)| ≤ 1− (E ‖2cjα(X1 −X2)‖)2 .

Since cj 6∈ A, we have

(E ‖2cjα(X1 −X2)‖)2 ≥
1

16
(E ‖4α(X1 −X2)‖)2 =

1

R
,
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showing that |ϕ(2cjπα)| ≤ Φ.
Let us now apply the triangle inequality to (2.10), and let us use the estimate

|ϕ(2cjπα)| ≤ Φ whenever j 6= j1, . . . , jM and the trivial estimate |ϕ(2cjπα)| ≤ 1 for
j = j1, . . . , jM . We get

|Σ(B)| ≤
∑

m+1≤k1<···<ks≤m+n

1 · Φkj2−1−kj1 · 1 · Φkj3−1−kj2 · · · 1 · Φks−kjM .

Fix kj1 , . . . , kjM and the exponent

k = (kj2−1 − kj1) + (kj3−1 − kj2) + · · ·+ (ks − kjM ) (2.14)

of Φ. Then for all j 6= j1, . . . , jM the integer kj belongs to the set

[kj1 + 1, kj1 + k] ∪ [kj2 + 1, kj2 + k] ∪ · · · ∪ [kjM + 1, kjM + k]

of cardinality at most Mk. Hence for fixed kj1 , . . . , kjM the number of s-tuples

(k1, . . . , ks) for which (2.14) holds is at most
(
Mk
s−M

)
≤ (Mk)s−M

(s−M)! , and so we get

|Σ(B)| ≤
∑

m+1≤kj1<···<kjM≤m+n

∞∑
k=0

(Mk)s−M

(s−M)!
Φk ≤ nM

M !
· M s−M

(s−M)!

∞∑
k=0

ks−MΦk.

Here 0 ≤ Φ < 1; therefore we can use a well-known Taylor expansion to obtain the
estimate

∞∑
k=0

ks−MΦk ≤
∞∑
k=0

(k + s−M) · · · (k + 2)(k + 1)Φk =
(s−M)!

(1− Φ)s−M+1
.

Since R = (1− Φ)−1, we get

|Σ(B)| ≤ RsM
s−MnM

M !RM−1
.

Here s ≤ 2p, and 0 < M < p. The total number of ordered partitions B of [2p] is
at most (2p)2p; hence

∑
B
q<p

|Σ(B)| ≤ (2pR)2p max
0<q<p

q2p−qnq

q!Rq−1
. (2.15)

Since

E

∣∣∣∣∣
m+n∑
k=m+1

e2πiSkα

∣∣∣∣∣
2p

=
∑
B
q=p

Σ(B) +
∑
B
q<p

Σ(B),

combining (2.9) and (2.15) finishes the proof.
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3 Proof of Theorem 1.1

We distinguish between two main cases. First, we will assume that

P (4α(X1 −X2) ∈ Z) < 1, (3.1)

in which case the proof will rely on Proposition 2.2. Note that (3.1) implies that
exp(2πiX1α) is non-degenerate, and it also implies condition P(2αX1 ∈ Z) < 1 from
(i). Thus we will need to prove that (3.1) implies (1.3). Next, we will assume that
P (4α(X1 −X2) ∈ Z) = 1 and that exp(2πiX1α) is non-degenerate. In this case we
will use the theory of ϕ-mixing Markov chains in the proof.

Let us thus assume that (3.1) holds. Put Tm,n =
∑m+n

k=m+1 e
2πiSkα, Tn = T0,n.

Let 1 ≤ p ≤ 3 log log n, and apply Proposition 2.2 to Tm,n. It is easy to see that the
error term in Proposition 2.2 satisfies

(2pR)2p max
0<q<p

q2p−qnq

q!Rq−1
+ (pR)p+1np−1 � np−1+ε

for any ε > 0, with an implied constant depending only on α, ε and the distribution
of X1. For the main term we have(

1− |ϕ(2πα)|2

|1− ϕ(2πα)|2

)p
p!2
(
n

p

)
∼
(

1− |ϕ(2πα)|2

|1− ϕ(2πα)|2

)p
p!np.

Indeed, we only need to check that the limit of the sequence

1

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− p− 1

n

)
is 1. Standard computation shows that this sequence can be approximated by
e−(1+2+···+(p−1))/n, and hence by e−p

2/n, which clearly has limit 1. We thus have

E|Tm,n|2p ∼cpp!np as n→∞,
uniformly for m ≥ 0, 1 ≤ p ≤ 3 log log n

(3.2)

with

c =
1− |ϕ(2πα)|2

|1− ϕ(2πα)|2
.

We now show that (1.3) holds. We break the argument into lemmas. We follow the
method of [8].

Lemma 3.1. We have for any 0 < ε < 1,

P{|Tm,n| ≥ ((1 + 2ε)cn log log n)1/2} � exp(−(1 + ε) log log n),

where the constant implied by � depends on the sequence (Xk), α and ε.

Proof. Clearly, multiplying the terms of Tm,n by c−1/2, (3.2), (1.3), and the conclu-
sion of Lemma 3.1 will be satisfied with c = 1, and thus without loss of generality
we can assume that c = 1. Let

Gm,n(t) = P{|Tm,n| ≥ (tn log log n)1/2}, t > 0

11



and
Zm,n = |Tm,n|2/(n log log n). (3.3)

Using Stirling’s formula, we get from (3.2) for m ≥ 0, n ≥ n0, and 1 ≤ p ≤ 3 log log n
that √

p(p/e)p(log log n)−p � EZpm,n �
√
p(p/e)p(log log n)−p. (3.4)

Here and in what follows, the constants implied by �, � depend (at most) on
(Xk), α and ε. Thus by the Markov inequality

Gm,n(t) = P(Zm,n ≥ t) ≤ t−pEZpn � t−p
√
p(p/e)p(log log n)−p.

If t ≥ 3, we choose p = [e log logn] to get

Gm,n(t)� t−p(log log n)1/2 � t−2 log logn, t ≥ 3. (3.5)

For 0 < t < 3 we choose p = [t log logn] to get

Gm,n(t)� (log log n)1/2 exp(−t log log n) 0 < t < 3, (3.6)

and choosing t = 1 + 2ε, Lemma 3.1 is proved.

Lemma 3.2. We have for any 0 < ε < 1,

P{|Tm,n| ≥ ((1− ε)cn log log n)1/2} � exp(−(1− ε2/8) log log n).

Proof. As before, we can assume that c = 1. We set

D1 = {1− ε ≤ Zm,n ≤ 1}, D2 = {0 ≤ Zm,n < 1− ε}, D3 = {1 < Zm,n ≤ 3},
D4 = {Zm,n > 3},

where Zm,n is defined by (3.3). Then by (3.4) we have for m ≥ 0, n ≥ n0, and
1 ≤ p ≤ 3 log log n,

Gm,n(1− ε) = P(Zm,n ≥ 1− ε) ≥ P(D1) ≥
∫
D1

Zpm,n dP

≥ A√p(p/e)p(log log n)−p − (I2 + I3 + I4) (3.7)

where A is a constant and

Ik =

∫
Dk

Zpm,n dP, k = 2, 3, 4.

We choose p = [(1− ε/2) log log n] and estimate I2, I3 and I4 from above. First we
get, using Gm,n(t) = P (Zm,n ≥ t) and (3.6),

I2 ≤ p
∫ 1−ε

0
tp−1Gm,n(t)dt

� p(log log n)1/2
∫ 1−ε

0
tp−1 exp(−t log log n)dt

= p(log log n)−(p−1/2)
∫ (1−ε) log logn

0
up−1e−udu.

12



Since up−1e−u reaches its maximum at u = p− 1, which exceeds the upper limit of
the last integral by the choice of p, we get

I2 � p(log log n)1/2(1− ε)pe−(1−ε) log logn

� (log log n)3/2 · (1− ε)(1−ε/2) log logn(log n)−(1−ε)

= (log log n)3/2 (log n)−γ ,

where
γ = 1− ε− (1− ε/2) log(1− ε).

Similarly as above, we get

I3 � p(log log n)−(p−1/2)
∫ 3 log logn

log logn
up−1e−udu.

Now the maximum of the integrand is reached at a point which is smaller than the
lower limit of the integral, and we get

I3 � (log log n)3/2 (log n)−1.

Finally, to estimate I4 we proceed as with I2, but instead of (3.6) we use (3.5) to
get

I4 � p

∫ ∞
3

tp−1Gm,n(t)dt� p

∫ ∞
3

tp−1t−2 log logndt

� (log log n)e− log logn = (log log n)(log n)−1.

Now using p = [(1 − ε/2) log log n] we see that the first term in the second line of
(3.7) is

A
√
p(p/e)p(log log n)−p � (p/e)p

(
p

1− ε/2

)−p
� (log n)−γ

′
,

where
γ′ = (1− ε/2)− (1− ε/2) log(1− ε/2).

For 0 < ε < 1 we have γ′ < γ and γ′ < 1− ε2/8. Indeed, after some simplification
the inequality γ′ < γ is equivalent to

log

(
1− ε/2

1− ε/2

)
< − ε/2

1− ε/2
,

which follows from the general inequality log(1− x) < −x, valid for any 0 < x < 1.
To see γ′ < 1−ε2/8, since their values are equal at ε = 0, it will be enough to check
that their derivatives with respect to ε satisfy

1

2
log (1− ε/2) < −ε/4

for all 0 < ε < 1. This again follows from log(1 − x) < −x. This implies that all
of I2, I3 and I4 are of smaller order of magnitude than the first term in the second
line of (3.7). Thus we get

Gm,n(1− ε)� (log n)−γ
′ � (log n)−(1−ε

2/8),

and Lemma 3.2 is proved.
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Lemma 3.3. Let Fn denote the σ-algebra generated by Sj , 1 ≤ j ≤ qn, and let
0 < ε < 1. Then there exists a number q0(ε) such that for any n ≥ 1 and any
integer q ≥ q0(ε) we have

P
(
|Tqn | ≥ ((1− ε)cqn log log qn)1/2 | Fn−1

)
� exp(−(1− ε2/32) log log qn), (3.8)

with the exception on a set in the probability space with measure � n−100.

Proof. Choosing again c = 1, as we may, we first note that by (3.2) and the Markov
inequality we have, choosing p = [log log n],

P
(
|Tn| ≥ B(n log logn)1/2

)
≤

E
∣∣∑n

k=1 e
2πiαSk

∣∣2p
B2p(n log log n)p

� p!np

B2p(n log logn)p
≤ ppnp

B2p(np)p
= B−2p ≤ e−100p

� e−100 log logn = (log n)−100

(3.9)

provided we choose the constant B large enough. Call a point ω ∈ Ω “good” or
“bad” according as the inequality

|Tqn−1(ω)| ≤ B(qn−1 log log qn−1)1/2 (3.10)

holds or not. By (3.9) the set of bad ω’s has total measure (probability) � n−100.
Consider now a good ω ∈ Ω. Letting S∗k =

∑k
j=1Xqn−1+j , we have

Tqn = Tqn−1 + e2πiαSqn−1

qn−qn−1∑
k=1

e2πiαS
∗
k

= Tqn−1 + e2πiαSqn−1Wn (3.11)

where

Wn =

qn−qn−1∑
k=1

e2πiαS
∗
k

is a shifted analogue of the sum Tqn−qn−1 . Clearly Tqn−1 and e2πiαSqn−1 are Fn−1
measurable, and thus the conditional probability in (3.8) at ω can be evaluated
by using (3.11) and substituting the values of these variables at ω. Since ω is a
good point, for Tqn−1 we have the estimate (3.10). Further, |e2πiαSqn−1 | = 1, and
observing that Wn is independent of Fn−1, we get

P
(
|Tqn | ≥ ((1− ε)qn log log qn)1/2 | Fn−1

)
≥ P

(
|Wn| ≥ ((1− ε)qn log log qn)1/2 +B(qn−1 log log qn−1)1/2|Fn−1

)
= P

(
|Wn| ≥ ((1− ε)qn log log qn)1/2 +B(qn−1 log log qn−1)1/2

)
≥ P

(
|Wn| ≥ ((1− ε/2)qn log log qn)1/2

)
� exp(−(1− ε2/32) log log qn)

provided q ≥ q0(ε), where in the last step we used Lemma 3.2 for the exponential
sum Wn belonging to the i.i.d. sequence {Xj , j = qn−1 + 1, qn−1 + 2, . . .}. This
completes the proof of Lemma 3.3.
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The following is Lévy’s conditional form of the Borel–Cantelli lemma; see e.g.
[23, p. 124].

Lemma 3.4. Let A1, A2, . . . be arbitrary events, let F1 ⊂ F2 ⊂ . . . be σ-algebras
such that An is Fn measurable, and assume

∑∞
n=1 P(An|Fn−1) = +∞ a.s. Then

with probability 1, infinitely many An occur.

We are now in a position to prove (1.3). We first observe that Lemma 3.1 and
the Borel–Cantelli lemma imply that

lim sup
n→∞

(c[θn] log log[θn])−1/2T[θn] ≤ 1 a.s. (3.12)

for any real θ > 1. On the other hand, (3.2) and the Erdős–Stechkin inequality (see
[15, Theorem A]) imply that

E max
1≤`≤[θn+1]−[θn]

|T[θn],`|2p ≤ Kcpp!([θn+1]− [θn])p

with some constant K > 0. Thus by the Markov inequality we get, choosing p ∼
log log[θn] ∼ log n,

P
{

max
1≤`≤[θn+1]−[θn]

|T[θn],`| ≥ A(c([θn+1]− [θn]) log log([θn+1]− [θn]))1/2
}

� Kcpp!([θn+1]− [θn])p

A2pcp([θn+1]− [θn])p(log log([θn+1]− [θn]))p
� Kpp

A2p(log n)p

� K(2A−2)p � n−2

provided A is large enough. Choosing θ sufficiently close to 1, we have [θn+1]−[θn] ≤
ε2[θn] for n ≥ n0(ε), and thus the previous probability bound and the Borel–Cantelli
lemma imply that

max
1≤`≤[θn+1]−[θn]

|T[θn],`| � ε([θn] log log[θn])1/2 a.s.

The last relation and (3.12) together imply the ≤ inequality in (1.3). To prove the
≥ inequality, fix 0 < ε < 1 and let q ≥ q0(ε) be an integer, where q0(ε) is the
threshold number in Lemma 3.3. Put

An =
{
|Tqn | ≥ ((1− ε)cqn log log qn)1/2

}
and let Fn = σ{S1, . . . , Sqn}. Then Lemma 3.3 shows that for any n ≥ 1 the
inequality

P(An|Fn−1)� exp(−(1− ε2/32) log log qn) (3.13)

holds with probability ≥ 1−Cn−100 for some constant C. By the (ordinary) Borel–
Cantelli lemma this implies that with probability 1 the inequality (3.13) holds for
sufficiently large n and thus

∑∞
n=1 P(An|Fn−1) = +∞ a.s. Thus the inequality ≥

in (1.3) follows from Lemma 3.4, completing the proof of Theorem 1.1 in the case
when (3.1) holds.

Next we assume that

P(4α(X1 −X2) ∈ Z) = 1, (3.14)
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and that exp(2πiX1α) is non-degenerate. Recall that a sequence (ξk) of C- or
Rd-valued random variables is called ϕ-mixing with mixing rate ϕ(n) if

ϕ(n) := sup
k

sup
A∈F1,k,B∈Fk+n,∞

|P(B|A)− P(B)| → 0

as n → ∞, where Fa,b denotes the σ-algebra generated by the random variables
{ξj : a ≤ j ≤ b}. We claim that (exp(2πiSkα)) is ϕ-mixing with exponential rate

ϕ(n) = O(e−λn) for some positive constant λ.
We first note that (3.14) implies that there exists a constant a ∈ R such that

P
(
e2πiX1α ∈

{
±e2πia,±ie2πia

})
= 1. (3.15)

Without loss of generality we may assume that

P
(
e2πiX1α = e2πia

)
> 0. (3.16)

Let ξk = exp(2πi(Skα− ka)).
First, suppose that

P
(
e2πiX1α ∈

{
±ie2πia

})
> 0. (3.17)

Using (3.15), we get that ξk ∈ {±1,±i}. Since X1, X2, . . . are i.i.d., the sequence
(ξk) is in fact a Markov chain with state space {±1,±i}. The assumption (3.17)
implies that it is possible to get from any state to any other state, i.e., that this
Markov chain is irreducible. From (3.16) we can see that P(ξk+1 = ξk) > 0. This
clearly implies that given any state, the greatest common divisor of the possible
number of steps to return to the same state is 1, i.e., that this Markov chain is
aperiodic. By a basic result for Markov chains (see e.g. Lemma 3 in [17, p. 209]),
(ξk) is geometrically ergodic and thus ϕ-mixing with exponential rate. Replacing ξk
by exp(2πiSkα) = e2πikaξk, the finite state space property of (ξk) can be destroyed,
but the dependence properties of (ξk) do not change, and thus exp(2πiSkα) is also
ϕ-mixing with exponential rate.

Suppose now that
P
(
e2πiX1α ∈

{
±ie2πia

})
= 0.

This, together with (3.15), shows that in fact

P
(
e2πiX1α ∈

{
±e2πia

})
= 1.

Therefore we now have ξk ∈ {±1}. Since X1, X2, . . . are i.i.d., the sequence (ξk)
is again a Markov chain, this time with state space {±1}. Since exp(2πiX1α) is
non-degenerate, we have

P
(
e2πiX1α = e2πia

)
> 0, P

(
e2πiX1α = −e2πia

)
> 0,

i.e., P(ξk+1 = ξk) > 0 and P(ξk+1 = −ξk) > 0. Hence the Markov chain (ξk) is also
irreducible and aperiodic and therefore ϕ-mixing with exponential rate. As before,
exp(2πiSkα) is also ϕ-mixing with exponential rate.

We have thus proved that (exp(2πiSkα)) is ϕ-mixing with exponential rate. We
are going to use the following law of the iterated logarithm for weakly dependent
random vectors.
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Lemma 3.5. Let ξ1, ξ2, . . . be a sequence of uniformly bounded random vectors in
Rd, d ≥ 1, satisfying Eξk = 0 for all k ≥ 1, and assume that the sequence (ξk) is
ϕ-mixing with exponential rate. Assume that for some matrix Σ we have

lim
n→∞

1

n
Cov (ξm+1 + . . .+ ξm+n) = Σ (3.18)

for any m ≥ 0, uniformly in m, where Cov(ξ) denotes the covariance matrix of a
vector ξ. Then with probability 1 the set of accumulation points of{

1

(2n log log n)1/2

n∑
k=1

ξk, n = 1, 2, . . .

}

is the unit ball K of the reproducing kernel Hilbert space defined by the matrix Σ.
In particular, if Σ is diagonal with diagonal elements σ2j , 1 ≤ j ≤ d, then K is the

ellipsoid {(x1, . . . , xd) :
∑d

j=1 x
2
j/σ

2
j ≤ 1}.

Proof. Split N into consecutive blocks I1, J1, I2, J2, . . . such that the cardinality of
Ik is [k1/2] and the cardinality of Jk is [k1/4]. Put

Uk =
∑
j∈Ik

ξj , Vk =
∑
j∈Jk

ξj .

Since the gap between Ik and Ik+1 is [k1/4] and (ξk) is ϕ-mixing with exponential
rate, by Theorem 2 of [5] there exist independent random vectors U∗k, k = 1, 2, . . .,
such that U∗k has the same distribution as Uk and

P(|Uk −U∗k| ≥ Ce−λk
1/4

) ≤ Ce−λk1/4 , k = 1, 2, . . .

for some positive constants C, λ. Thus by the Borel–Cantelli lemma

|Uk −U∗k| = O(e−λk
1/4

) a.s. (3.19)

Since EUk = 0 and U∗k has the same distribution as Uk, we have EU∗k = 0. Put
Cov (Uk) = Cov (U∗k) = Σk. Then by the assumption (3.18) we have

Σk ∼ k1/2Σ, as k →∞

uniformly in all entries of Σk, where Σ is the limit matrix in (3.18). It follows then
that

1

k3/2
(Σ1 + . . .+ Σk)→ Σ as k →∞.

Since |Uk| = O(
√
k) and U∗k has the same distribution as Uk, we have |U∗k| =

O(
√
k), and thus applying Theorem 1 of Berning [7] with sn = n3/4 it follows that

with probability 1 the set of accumulation points of{
(2n3/2 log log n)−1/2

n∑
k=1

U∗k, n ≥ 1

}

is the unit ball K of the reproducing kernel Hilbert space determined by the matrix
Σ. By (3.19) the same holds if U∗k is replaced with Uk. Repeating the argument for
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the short block sums Vk, V
∗
k, we get that with probability 1 the set of accumulation

points of {
(2n5/4 log logn)−1/2

n∑
k=1

V∗k, n ≥ 1

}
is K and thus

lim
n→∞

(2n3/2 log logn)−1/2
n∑
k=1

V∗k = 0 a.s.

We thus see that almost surely the set of accumulation points of{
(2n3/2 log log n)−1/2

n∑
k=1

(U∗k + V∗k), n ≥ 1

}

and its analogue for Uk + Vk is K, proving Lemma 3.5 along the indices n = Nk,
where Nk =

∑k
j=1([j

1/2] + [j1/4]). By the uniform boundedness of the ξk, the

maximal fluctuation of
∑n

j=1 ξj for Nk ≤ n ≤ Nk+1 is O(Nk+1 − Nk) = O(k1/2),
and thus Lemma 3.5 holds for all indices n.

Set
Yk = cos(2πSkα), Zk = sin(2πSkα).

For any 1 ≤ k ≤ ` the random variables Sk and S` − Sk are independent; hence

E cos(2πSkα) cos(2πS`α) =
1

2
E cos(2π(S` − Sk)α) +

1

2
E cos(2π(S` + Sk)α)

=
1

2
Re
[
E(e2πi(S`−Sk)α) + E(e2πi(S`+Sk)α)

]
=

1

2
Re
[
E(e2πi(S`−Sk)α)

+ E(e2πi(S`−Sk)α)E(e4πiSkα)
]

=
1

2
Re
(
ϕ(2πα)`−k + ϕ(2πα)`−kϕ(4πα)k

)
,

and thus

EYkY` =
1

2
Re
(
ϕ(2πα)`−k + ϕ(2πα)`−kϕ(4πα)k

)
.

Therefore

E

(
m+n∑
k=m+1

Yk

)2

=Re
∑

m+1≤k<`≤m+n

(
ϕ(2πα)`−k + ϕ(2πα)`−kϕ(4πα)k

)

+
1

2
Re

(
n+

m+n∑
k=m+1

ϕ(4πα)k

)
(3.20)

and similarly

E

(
m+n∑
k=m+1

Zk

)2

=Re
∑

m+1≤k<`≤m+n

(
ϕ(2πα)`−k − ϕ(2πα)`−kϕ(4πα)k

)

+
1

2
Re

(
n−

m+n∑
k=m+1

ϕ(4πα)k

)
(3.21)
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and

E

(
m+n∑
k=m+1

Yk

)(
m+n∑
k=m+1

Zk

)
=Im

 ∑
m+1≤k<`≤m+n

ϕ(2πα)`−kϕ(4πα)k


+

1

2
Im

(
m+n∑
k=m+1

ϕ(4πα)k

)
. (3.22)

Now we prove (i). Assume that exp(2πiX1α) is non-degenerate, that P (2X1α ∈ Z)
< 1, and that (3.14) holds. The first two conditions imply that |ϕ(2πα)| < 1 and
that ϕ(4πα) 6= 1. We claim that∑

m+1≤k<`≤m+n

ϕ(2πα)`−kϕ(4πα)k = O(1) uniformly in m. (3.23)

Indeed, if ϕ(4πα) 6= ϕ(2πα), then by fixing the index k first, we get that the sum
in (3.23) is ∑

m+1≤k<m+n

ϕ(4πα)kϕ(2πα)
ϕ(2πα)m+n−k − 1

ϕ(2πα)− 1
.

Here we have a partial sum of two geometric series with quotients ϕ(4πα) 6= 1 and
ϕ(2πα)
ϕ(4πα) 6= 1; therefore it is easy to see that∑

m+1≤k<`≤m+n

ϕ(2πα)`−kϕ(4πα)k = O(1) uniformly in m.

If, on the other hand, ϕ(4πα) = ϕ(2πα), then the sum in (3.23) is∑
m+1<`≤m+n

(`−m− 1)ϕ(2πα)` = ϕ(2πα)m+2
n−1∑
r=1

rϕ(2πα)r−1.

Here |ϕ(2πα)|m+2 < 1, and the sum is also O(1), because it is a partial sum of a
convergent series. Since we clearly also have

m+n∑
k=m+1

ϕ(4πα)k = O(1) uniformly in m,

formulas (3.20)–(3.22) simplify to

E

(
m+n∑
k=m+1

Yk

)2

= E

(
m+n∑
k=m+1

Zk

)2

= Re
∑

m+1≤k<`≤m+n

ϕ(2πα)`−k +
n

2
+O(1),

E

(
m+n∑
k=m+1

Yk

)(
m+n∑
k=m+1

Zk

)
= O(1),

both uniformly in m. Here we have∑
m+1≤k<`≤m+n

ϕ(2πα)`−k =

n−1∑
r=1

(n− r)ϕ(2πα)r

= n

n−1∑
r=1

ϕ(2πα)r +O(1)

= n
ϕ(2πα)

1− ϕ(2πα)
+O(1) uniformly in m;
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therefore

lim
n→∞

1

n
E

(
m+n∑
k=m+1

Yk

)2

= lim
n→∞

1

n
E

(
m+n∑
k=m+1

Zk

)2

=
1

2
+ Re

ϕ(2πα)

1− ϕ(2πα)

=
1− |ϕ(2πα)|2

2|1− ϕ(2πα)|2

(3.24)

and

lim
n→∞

1

n
E

(
m+n∑
k=m+1

Yk

)(
m+n∑
k=m+1

Zk

)
= 0 (3.25)

uniformly in m.
Now let Y ∗k = Yk − EYk, Z∗k = Zk − EZk. Clearly EYk = Reϕ(2πα)k, EZk =

Imϕ(2πα)k, and since |ϕ(2πα)| < 1, there exists a 0 < ρ < 1 such that |EYk| ≤ ρk,
|EZk| ≤ ρk. From this it follows that (3.24) and (3.25) remain valid if we replace
Yk and Zk by Y ∗k and Z∗k , respectively; and thus letting

ξk = (Yk, Zk), ξ∗k = (Y ∗k , Z
∗
k)

it follows that the sequence (ξ∗k) satisfies the assumptions of Lemma 3.5 in dimension
d = 2 with a diagonal matrix Σ. Thus by Lemma 3.5 the set of accumulation points
of {

1

(2n log logn)1/2

n∑
k=1

ξ∗k, n = 1, 2, . . .

}
is, with probability 1, the circle around the origin with radius√

1− |ϕ(2πα)|2√
2|1− ϕ(2πα)|

.

By the exponential decrease of E|ξk|, the same holds if ξ∗k is replaced by ξk, and
thus (1.3) is proved.

Finally, we prove (ii). Assume that exp(2πiX1α) is non-degenerate and that
P(2X1α ∈ Z) = 1. Note that the latter condition in fact implies (3.14). In this case

Zk = sin(2πSkα) = 0 a.s.,

which means that exp(2πiSkα) = Yk ∈ R. We also have ϕ(4πα) = 1. Thus (3.20)
simplifies to

E

(
m+n∑
k=m+1

Yk

)2

= 2Re
∑

m+1≤k<`≤m+n

ϕ(2πα)`−k + n.

As before, we have

∑
m+1≤k<`≤m+n

ϕ(2πα)`−k =

n−1∑
r=1

(n− r)ϕ(2πα)r = n

n−1∑
r=1

ϕ(2πα)r +O(1)

= n
ϕ(2πα)

1− ϕ(2πα)
+O(1) uniformly in m;
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therefore

lim
n→∞

1

n
E

(
m+n∑
k=m+1

Yk

)2

=
1− |ϕ(2πα)|2

|1− ϕ(2πα)|2
(3.26)

uniformly in m.
Now let Y ∗k = Yk − EYk. Clearly EYk = Reϕ(2πα)k, and since |ϕ(2πα)| < 1,

there exists a 0 < ρ < 1 such that |EYk| ≤ ρk. From this it follows that (3.26)
remains valid if we replace Yk by Y ∗k , and thus it follows that the sequence (Y ∗k )
satisfies the assumptions of Lemma 3.5 in dimension d = 1. Thus by Lemma 3.5
the set of accumulation points of{

1

(2n log logn)1/2

n∑
k=1

Y ∗k , n = 1, 2, . . .

}

is, with probability 1, the closed interval centered at zero with radius√
1− |ϕ(2πα)|2
|1− ϕ(2πα)|

.

By the exponential decrease of E|Yk|, the same holds if Y ∗k is replaced by Yk and
thus (1.4) is proved.

In conclusion we prove, using a standard argument in uniform distribution theory
(see e.g. [14, p. 124–125]), the remark made at the end of the Introduction concerning
the discrepancy of {Skα}. Assume that X1 is integer valued, that it has mean zero
and finite variance, and that (1.7) holds for infinitely many rationals p/q with some
C > 0, γ > 2. Take such a rational p/q, fix ε > 0, and set N = [qβ], where β =
(γ−1)/(1/2+ε). By the law of the iterated logarithm we have |Sn| = O(n(1+ε)/2) a.s.
Pick a point ω in the probability space for which this holds. Then α = p/q+Cθ/qγ

with |θ| ≤ 1, and thus for 1 ≤ n ≤ N we have Snα = Snp/q + θn with

|θn| ≤ C ′N (1+ε)/2q−γ < C ′qβ(1+ε)/2−γ = C ′q−1−δ

where δ = γ − 1− β(1 + ε)/2 > 0. Since Sn is an integer, none of the numbers

{S1α}, {S2α}, . . . , {SNα} (3.27)

lie in the interval [C ′q−1−δ, 1/q−C ′q−1−δ], and thus the discrepancy of the sequence
(3.27) is ≥ 1/(2q). Since the choice of N implies that q ≤ (2N)1/β, if follows
that, given any ε > 0, the discrepancy of the sequence (3.27) exceeds C ′′N−1/β =
C ′′N−(1/2+ε)/(γ−1). Since ε can be chosen to be arbitrarily small, our claim is proved.
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