48. Sei $b \in \mathbb{N}$, $b \ge 2$. Zeigen Sie, dass jedes $x \in [0,1)$ in der Form

$$x = \sum_{k=1}^{\infty} \frac{\epsilon_k}{b^k}$$

mit $\epsilon_k \in \{0, 1, \dots, b-1\}$ geschrieben werden kann.

Hinweis: Setzen Sie $T_b: [0,1) \to [0,1): x \mapsto bx - \lfloor bx \rfloor$. Dann ist $\epsilon_k = \lfloor b T_b^{(k-1)}(x) \rfloor$, wobei $T_b^{(k)}(x)$ die k-malige Anwendung von T_b auf x bezeichnet und $T_b^0(x) = x$ ist. Der Spezialfall b = 10 ist die wohlbekannte Dezimaldarstellung.

49. Bestimmen Sie die Häufungswerte der Folge $(x_n)_{n\in\mathbb{N}}$ mit

$$x_n := \sum_{k=0}^{\infty} \frac{\epsilon_k(n)}{10^{k+1}}, \quad n \in \mathbb{N},$$

und $\epsilon_0(n), \epsilon_1(n), \epsilon_2(n), \ldots \in \{0, 1, \ldots, 9\}$ sind die Ziffern von n in der Dezimaldarstellung $n = \sum_{k=0}^{\infty} \epsilon_k(n) \, 10^k$; z.B.: $x_{123} = 0.321$.

- 50. Es sei $||x|| := \sqrt{x_1^2 + x_2^2}$ für jedes $x = (x_1, x_2) \in \mathbb{R}^2$. Zeigen Sie: Für $s \in \mathbb{Q}$ ist die Familie $a : \mathbb{Z}^2 \setminus \{(0,0)\} \to \mathbb{R}$, $a_n := ||n||^{-s}$, genau dann summierbar, wenn s > 2 ist. Hinweis: Interpretieren Sie die Menge \mathbb{Z}^2 geometrisch als die Menge der ganzzahligen Gitterpunkte in der Ebene. Zeigen Sie, dass die Partialsummen der Familie a auf den punktierten Quadraten $W_\ell^* := \{(n_1, n_2) \in \mathbb{Z}^2 \setminus \{(0,0)\} \mid |n_1| \leq 2^\ell, |n_2| \leq 2^\ell\}$, $\ell \in \mathbb{N}$, genau dann beschränkt bleiben, wenn s > 2 gilt. Folgern Sie daraus, dass die Familie a genau dann summierbar ist, wenn s > 2. Für die Abschätzung von $\sum_{n \in W_\ell^*} a_n$ benützen Sie die Indexteilmengen $V_k := W_k^* \setminus W_{k-1}^*$, $k = 2, 3, \ldots$ Finden Sie obere und untere Abschätzungen für die Anzahl der Gitterpunkte in V_k und für $a_n, n \in V_k$.
- 51. Für jede der folgenden Funktionen

(i)
$$f(x) = \frac{1}{x}$$
, $D(f) = (0, \infty)$ (ii) $f(x) = \frac{x}{4 + x^2}$, $D(f) = \mathbb{R}$

mit gegebenen Definitionsbereichen D(f) führen Sie folgendes Programm durch:

- (a) Zeigen Sie mittels Folgenkriterium, dass f stetig auf D(f) ist.
- (b) Sei $x_0 \in D(f)$ beliebig aber fest. Bestimmen Sie zu jedem $\epsilon > 0$ ein $\delta_{\epsilon} > 0$ so, dass aus $|x x_0| < \delta_{\epsilon}$ die Beziehung $|f(x) f(x_0)| < \epsilon$ folgt.
- 52. Sei f eine reelle auf dem Interval [a,b] stetige Funktion mit f(a) < 0 und f(b) > 0. Führen Sie folgenden alternativen Beweis des Nullstellensatzes aus: Setzen Sie $\xi := \sup\{x \in [a,b] \mid f(x) \le 0\}$ und zeigen Sie, dass dann $f(\xi) = 0$ gilt.