- 6. Stellen Sie die Wahrheitstafeln für folgende Ausdrücke auf.
 - (a) $a \wedge \neg b$.
 - (b) $(a \wedge \neg b) \vee (\neg a \wedge b)$.
 - (c) $a \vee \neg b$.
 - (d) $(a \wedge b) \vee (\neg a \wedge \neg b)$.
- 7. Es sei $J \subset \mathbb{N}$ eine nichtleere Indexmenge. Weiters ist

$$\mathcal{F} := \{ M_j | j \in J \}$$

eine Familie von Mengen mit $\bigcap_{j \in J} M_j = \emptyset$.

Gibt es stets je zwei Indizes $j_1, j_2 \in J$ so, dass $M_{j_1}, M_{j_2} \in \mathcal{F}$ mit $M_{j_1} \cap M_{j_2} = \emptyset$? (Beweis oder Gegenbeispiel).

- 8. Zeigen Sie, dass folgende beiden Aussagen wahr sind:
 - (a) $\forall a, b, m \in \mathbb{N} : a < b \Rightarrow ma < mb$.
 - (b) $\forall a, b, m \in \mathbb{N} : a < b \Rightarrow m + a < m + b$.
- 9. Zeigen Sie die Gültigkeit der Gleichung

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

für alle $n \in \mathbb{N}$.

10. Beweisen Sie für alle $n \in \mathbb{N}$ die Identität

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k} \right)^k = \frac{(n+1)^n}{n!}.$$