20. (a) Zeigen Sie durch vollständige Induktion für $q \neq 1$ und alle $n \in \mathbb{N}_0$:

$$\sum_{k=0}^{n} q^k = \frac{q^{n+1} - 1}{q - 1}.$$

(b) Verwenden Sie Beispielteil (a), um für 0 < q < 1 folgendes zu zeigen:

$$\forall \varepsilon > 0: \exists N: \forall n > N: \frac{1}{1-q} - \varepsilon < \sum_{k=0}^n q^k < \frac{1}{1-q}.$$

21. Es sei $a_j \in \{0,1\}$ für $j=1,2,\ldots$ Zeigen Sie, dass die Intervalle

$$I_n := \left[\sum_{j=1}^n \frac{a_j}{2^j}, \sum_{j=1}^n \frac{a_j}{2^j} + \frac{1}{2^n} \right], \quad n \in \mathbb{N},$$
 (1)

eine Intervallschachtelung bilden.

Zeigen Sie dann, dass es zu jeder reellen Zahl im Intervall [0, 1] eine Intervallschachtelung der Form (1) gibt.

- 22. Es sei f eine Abbildung der Menge M in die Menge N und $A, B \subseteq M$ sowie $C, D \subseteq N$. Zeigen Sie:
 - (a) $f(A \cup B) = f(A) \cup f(B)$
 - (b) $f(A \cap B) \subseteq f(A) \cap f(B)$. Es gilt nicht notwendig "=" (Beispiel!)
 - (c) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
 - (d) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$
- 23. Sei A eine nicht leere Menge und $\mathcal{P}(A)$ die Menge ihrer Teilmengen. Zeigen Sie, dass es keine surjektive Abbildung $f:A\to\mathcal{P}(A)$ gibt.

Hinweis: Betrachten Sie für eine Abbildung $f: A \to \mathcal{P}(A)$ die Menge $\{a \in A \mid a \notin f(a)\}$.

24. (Abstrakter Nonsens.) Gegeben ist eine beliebige Abbildung $f:A\to B$. Auf der Menge A wird eine Äquivalenzrelation \sim erklärt durch:

$$a \sim b :\Leftrightarrow f(a) = f(b)$$
 für alle $a, b \in A$.

Zeigen Sie:

- (a) Die Abbildung $F: A/\sim \to f(A)$ mit $[a]\mapsto f(a)$ für alle $a\in A$ ist eine Bijektion.
- (b) Ist $g: A \to A/\sim$ erklärt durch $a \mapsto [a]$ für alle $a \in A$, dann gilt $f = F \circ g$. Weiters, geben Sie die Umkehrabbildung $F^{(-1)}$ von F an.

Diese Aufgabe ist eine Zusatzaufgabe (Bonuskreuz).