36. Die Folge $(a_n)_{n\geq 0}$ ist rekursiv definiert durch

$$a_0 := 0,$$
 $a_1 := 2,$ $a_{n+2} = \frac{a_{n+1}}{3} + \frac{2a_n}{3},$ $n \in \mathbb{N}_0.$

Zeigen Sie, dass diese Folge konvergent ist und bestimmen Sie den Grenzwert.

- 37. Gegeben sei die rekursiv definierte Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_{n+1}=1-\frac{1}{4}x_n^2$ und $x_1=1$. Zeigen Sie
 - (a) Diese Folge ist beschränkt und zwar $3/4 \le x_n \le 1$.
 - (b) Diese Folge ist nicht monoton.
 - (c) Diese Folge ist eine Cauchy-Folge und daher konvergent.
 - (d) Bestimmen Sie den Grenzwert dieser Folge.
- 38. Sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge. Zeigen Sie, dass dann auch die Folge

$$c_n = \frac{1}{n} \sum_{k=1}^n a_k$$

gegen den selben Grenzwert konvergiert. Geben Sie eine nichtkonvergente Folge $(a_n)_{n\in\mathbb{N}}$ an, für die die zugehörige Folge $(c_n)_{n\in\mathbb{N}}$ konvergiert.

39. Untersuchen Sie die Folge $(b_n)_{n\in\mathbb{N}}$ mit

$$b_n := \sum_{k=1}^n \frac{3n^2 + k}{2n^3 + k}, \qquad n \in \mathbb{N},$$

auf Konvergenz und bestimmen Sie den Grenzwert, falls dieser existiert.

Anleitung: Finden Sie zwei geeignete Folgen $(a_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ mit gemeinsammen Grenzwert a so, dass $a_n \leq b_n \leq c_n$ für alle $n \in \mathbb{N}$.

- 40. Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ beschränkte Folgen in \mathbb{R} . Zeigen Sie:
 - (a) $\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$,
 - (b) $\liminf (a_n + b_n) \ge \liminf a_n + \liminf b_n$.

Geben Sie ein Folgenpaar an, für welches sowohl in (a) als auch in (b) strikte Ungleichheit gilt.

41. Eine nichtnegative Folge $(a_n)_{n\in\mathbb{N}}$ heisst *subadditiv*, wenn

$$a_{n+m} \le a_n + a_m$$
 für alle $n, m \in \mathbb{N}$.

Zeigen Sie: Für jede nichtnegative subadditive Folge $(a_n)_{n\in\mathbb{N}}$ gilt

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \in \mathbb{N}} \frac{a_n}{n}.$$

Anleitung: Zeigen Sie

- (1) $\inf_{n\in\mathbb{N}} \frac{a_n}{n}$ existiert;
- (2) $\limsup_{n\to\infty} \frac{a_n}{n}$ existiert;
- (3) $a_{\ell k+m} \leq \ell a_k + a_m \text{ für alle } \ell, k, m \in \mathbb{N};$
- (4) für $k \in \mathbb{N}$ fest und n > k gilt $\frac{a_n}{n} \leq \frac{\ell k}{n} \frac{a_k}{k} + \frac{a_m}{n}$, wobei $\ell = \ell_n$ und $1 \leq m = m_n \leq k 1$, sodass $\limsup_{n \to \infty} \frac{a_n}{n} \leq \frac{a_k}{k}$;
- (5) $\limsup_{n\to\infty} \frac{a_n}{n} \le \inf_{k\in\mathbb{N}} \frac{a_k}{k};$
- (6) $\inf_{k \in \mathbb{N}} \frac{a_k}{k} \le \limsup_{n \to \infty} \frac{a_n}{n}$.