29. Sei $f: \mathbb{R} \to \mathbb{R}$ eine 2π -periodische Funktion, die fast überall differenzierbar ist (die Ableitung ist eine Regelfunktion). Dann konvergiert die Fourier-Reihe von f gleichmässig auf \mathbb{R} .

Hinweis: Finden Sie eine Relation zwischen den Fourier-Koeffizienten von f und denen von f'. Verwenden Sie dann die Cauchy-Schwarz Ungleichung.

- 30. Man entwickle die Funktion $f(x) = (x^2 \pi^2)^2$, $-\pi < x < \pi$, $f(x \pm 2\pi) = f(x)$, in eine Fourierreihe und bestimme die Summe der Reihe $s = 1 \frac{1}{2^4} + \frac{1}{3^4} \frac{1}{4^4} \pm \cdots$
- 31. Leiten Sie die Formeln für die Fourier-Reihenentwicklung einer 2T-periodischen Funktion her. Wie lautet die Parsevalsche Identität?
- 32. Bestimmen Sie die Fourier-Reihendarstellung der 2T-periodischen pulsweitenmodulierten Rechteckschwingung: für $0<\tau<2T$,

$$f(x) = f(\tau; x) := \begin{cases} 1 & 0 < x \le \tau \\ 0 & \tau < x \le 2T \end{cases}, \quad 0 \le x \le 2T.$$

Werten Sie die Fourier-Reihe in den Stellen $x=0,\tau,T,2T$ aus. Konvergenzbetrachtung. Bestimmen Sie den Klirrfaktor in Abhängigkeit von der Pulsweite τ .

33. Bestimmen Sie die Fourier-Reihendarstellung der 2T-periodischen Dreiecksschwingung mit variabler Flankensteilheit: für $0 < \tau < 2T$,

$$f(x) = f(\tau; x) := \begin{cases} \frac{x}{\tau} & 0 \le x \le \tau \\ \frac{x - 2T}{\tau - 2T} & \tau \le x \le 2T \end{cases}, \quad 0 \le x \le 2T.$$

Werten Sie die Fourier-Reihe in den Stellen $x=0,\tau,T,2T$ aus. Was passiert im Grenzübergang $\tau\to 0$ bzw. $\tau\to 2T$? Konvergenzbetrachtung.

Bestimmen Sie den Klirrfaktor¹ in Abhängigkeit von $1/\tau$.

¹Der Klirrfaktor ist durch $\sqrt{\sum_{n=2}^{\infty} c_n^2 / \sum_{n=1}^{\infty} c_n^2}$, wobei $c_n^2 = a_n^2 + b_n^2$ und a_n bzw. b_n die Fourierkoeffizienten sind, definiert.