Übungsblatt 03

Aufgabe 03-1 Eine Gruppendynamik-Studie zeigt, dass eine Klasse von fünf Studierenden $\{V_1, V_2, \dots, V_5\}$ sich so in eine Gruppe von drei Leuten $\{V_1, V_2, V_3\}$ und einer Gruppe von zwei Leuten $\{V_4, V_5\}$ aufteilt, dass jedes Mitglied einer Gruppe nur mit den Mitgliedern der anderen Gruppe spricht. Innerhalb jeder der beiden Gruppen gibt es keine Kommunikation.

- (a) Zeichnen Sie einen Beziehungsgraphen, indem Sie fünf Punkte auf ein Blatt Papier zeichnen und diese mit V_1 bis V_5 benennen. Das sind die Knoten des Graphen, die die Studierenden symbolisieren. Dann verbinden Sie zwei Knoten mit einem Geradenstück falls die betreffenden Studierenden miteinander sprechen. Das sind die Kanten des Graphen.
- (b) Geben Sie die Adjazenzmatrix **A** an, wobei $a_{ij} = 1$, falls die Knoten V_i und V_j verbunden sind und sonst ist $a_{ij} = 0$.
- (c) Berechnen Sie A^2 .
- (d) **Zusatz:** Berechnen Sie A^k . Interpretieren Sie die Einträge dieser Matrix.

Aufgabe 03-2 Gegeben ist das folgende inhomogene lineare Gleichungssystem:

$$\begin{cases} x_1 + 2x_2 + x_3 + 2x_4 = 1 \\ x_1 + 4x_2 + 3x_3 + 7x_4 = 3 \\ -3x_1 - 6x_2 + 3x_4 = 0. \end{cases}$$

- (a) Ohne zu rechnen, wieviele Lösungen würden Sie erwarten?
- (b) Benutzen Sie Gauß-Jordan Elimination zum Auffinden aller Lösungen.
- (c) Welcher Teil Ihrer Lösung löst das zugehörige homogene System?

Aufgabe 03-3 Beispiel 2 in der Übungsbeispielsammlung.

Aufgabe 03-4 Beispiel 4 in der Übungsbeispielsammlung.