Computation of the connectivity number $\kappa(G)$

- G = (V, E) is a graph with n := |V|, m := |E|.
 - (i) Check whether κ(G) ≥ 1 holds (G is connected):
 in linear time O(n + m) time by applying Depth First Search (DFS).
- (ii) Check whether κ(G) ≥ 2 holds (G is 2-connected):
 in linear time O(n + m) time by applying Depth First Search (DFS).
- (iii) Check whether κ(G) ≥ 3 holds (G is 3-connected):
 in linear time O(n + m) time, see e.g J.E.Hopcroft and R.E.Tarjan, Dividing a graph into triconnected components, SIAM J. on Computing 2, 1973, 135–158.
- (iv) compute $\kappa(G)$

in $O(n^4\sqrt{m})$ time applying Menger's theorem and the push-relabel algorithm (PRA) for the max-flow problem (run PRA for every pair of vertices, time complexity $O(n^2\sqrt{m})$ per pair).

Faster: in $O(\sqrt{nm^2})$ time by S. Even and R.E.Tarjan, Network flow and testing graph connectivity, *SIAM J. on Computing* **4**, 1975, 507–518.

Computation of the edge-connectivity number $\lambda(G)$

G = (V, E) is a graph with n := |V|, m := |E|.

Apply Mengers's theorem: $\lambda(G)$ equals the minimum cut in G

A minimum cut in G can be computed in $O(mn + n^2 \log n)$ by the Stoer-and-Wagner algorithm (SVA) M. Stoer and F. Wagner, A simple min-cut algorithm, *Journal of the ACM* **44**, 1997, 585–591.

SVA uses *t*he maximum adjacency order (MA order) and has been discussed in Combinatorial Optimization 1

see also https://en.wikipedia.org/wiki/Stoer-Wagner_algorithm

DFS: definitions and notations

Apply DFS(G, s) for a <u>connected</u> graph G = (V, E) with n := |V|, m := |E|, $s \in V$.

Definition 1.

The edges {parent[v], v} $\in E$, for $v \in V$, are called **tree-edges**. Set $E_{DFS} := \{ \{parent[v], v\} : v \in V \setminus \{s\} \}$ and $T := (V, E_{DFS})$.

Observe: T is a spanning tree in G and is called the **DFS-tree**. T is rooted at s with tree-order \leq :

 $v \leq w$ iff v lies on the unique s-w-path in T.

Definition 2.

If $v \leq w$, then w is a **descendant** of v and v is an **ancestor** of w. For $v \in V$, T_v is the tree formed by the descendants of v, rooted at v. $\{v, w\} \in E \setminus E(T)$ is called a **backward edge** starting at v, if DFSNum[w] < DFSNum[v] at the moment where the DFS explores $\{v, w\}$ for the first time starting at v (in the line FOR $w \in N(v)$ of the pseudocode).

Otherwise, $\{v, w\}$ is a forward edge.

The set of backward edges is denoted by E_B .

DFS: definitions and notations

Observe: All non-tree edges are backward edges, i.e. $E_B = E \setminus E_{DFS}$. For every $\{v, w\} \in B$, $w \prec v$ holds, i.e. w is contained in the *s*-v-path in *T*.

Direction: direct each $\{u, v\} \in E(G)$ from the vertex at which DFS explores it first. **Notation:** (u, v) if the direction is from u to v.

For
$$v \in V(G)$$
 set $LowPoint[v] :=$
min $\left\{ \{DFSNum[v]\} \cup \{DFSNum[z]: v \leq x, (x, z) \in E_B\} \right\}$.
Equivalently: $LowPoint[v] := min(\{DFSNum[v]\} \cup A_v)$, where
 $A_v := \{DFSNum[z]: (v, z) \in E_B\} \cup \{LowPoint[w]: (v, w) \in E(T)\}$.

Definition 3.

A tree-edge $(v, w) \in E(T)$ is called a **leading edge** iff LowPoint $[w] \ge DFSNum[v]$.

Equivalently: (v, w) is a leading edge iff every backward egde starting at T_w ends either at T_w or at v.

Using DFS to recognize blocks and cut-vertices of a graph

Let G be an arbitrary (not necessarily connected) graph.

Lemma 1.

Let T be the output of DFSb. Let H be a connected component of G and s be the root of T[V(H)]. Let $v \in V(H) \setminus \{s\}$, u = parent[v] and $(v, w) \in E(H)$. The following statements are equivalent:

- (i) (u, v) and (v, w) lie in the same block of G.
- (ii) (v, w) is not a leading edge.

Lemma 2.

Let T be the output of DFSb. Let H be a connected component of G and s be the root of T[V(H)]. The following statements hold:

- (i) All tree edges incident with s are leading edges. s is a cut-vertex iff it is incident to at least two leading edges.
- (ii) A vertex v ∈ V(H) \ {s} is a cut-vertex iff there exists at least one leading edge (v, w).

Using DFS to recognize blocks and cut-vertices of a graph (contd.)

Theorem 1 ((Tarjan 1972)).

The blocks and the cut-vertices of G can be determined in linear time, i.e. in O(n + m), where n := |V| and m := |E|.

Corollary 2.

For a given graph G with n := |G| > 3 and m := |E(G)| it can be tested in O(n + m) time whether $\kappa(G) \ge 2$.

Proof: Observe that G is 2-connected iff bc(G) is a singleton.