
Computation of the connectivity number κ(G )

G = (V ,E ) is a graph with n := |V |, m := |E |.

(i) Check whether κ(G ) ≥ 1 holds (G is connected):

in linear time O(n+m) time by applying Depth First Search (DFS).

(ii) Check whether κ(G ) ≥ 2 holds (G is 2-connected):

in linear time O(n+m) time by applying Depth First Search (DFS).

(iii) Check whether κ(G ) ≥ 3 holds (G is 3-connected):

in linear time O(n +m) time, see e.g J.E.Hopcroft and R.E.Tarjan,
Dividing a graph into triconnected components, SIAM J. on
Computing 2, 1973, 135–158.

(iv) compute κ(G )

in O(n4
√
m) time applying Menger’s theorem and the push-relabel

algorithm (PRA) for the max-flow problem (run PRA for every pair
of vertices, time complexity O(n2

√
m) per pair).

Faster: in O(
√
nm2) time by S. Even and R.E.Tarjan, Network flow

and testing graph connectivity, SIAM J. on Computing 4, 1975,
507–518.



Computation of the edge-connectivity number λ(G )

G = (V ,E ) is a graph with n := |V |, m := |E |.

Apply Mengers’s theorem:
λ(G ) equals the minimum cut in G

A minimum cut in G can be computed in O(mn + n2 log n)
by the Stoer-and-Wagner algorithm (SVA)
M. Stoer and F. Wagner, A simple min-cut algorithm, Journal of the
ACM 44, 1997, 585–591.

SVA uses the maximum adjacency order (MA order) and
has been discussed in Combinatorial Optimization 1

see also https://en.wikipedia.org/wiki/Stoer-Wagner algorithm



DFS: definitions and notations

Apply DFS(G , s) for a connected graph G = (V ,E ) with n := |V |,
m := |E |, s ∈ V .

Definition 1.
The edges {parent[v ], v} ∈ E , for v ∈ V , are called tree-edges. Set
EDFS :=

{
{parent[v ], v} : v ∈ V \ {s}

}
and T := (V ,EDFS).

Observe: T is a spanning tree in G and is called the DFS-tree.
T is rooted at s with tree-order ⪯:

v ⪯ w iff v lies on the unique s-w -path in T .

Definition 2.
If v ⪯ w , then w is a descendant of v and v is an ancestor of w .

For v ∈ V , Tv is the tree formed by the descendants of v , rooted at v .

{v ,w} ∈ E \ E (T ) is called a backward edge starting at v , if
DFSNum[w ] < DFSNum[v ] at the moment where the DFS explores
{v ,w} for the first time starting at v (in the line FOR w ∈ N(v) of the
pseudocode).
Otherwise, {v ,w} is a forward edge.

The set of backward edges is denoted by EB .



DFS: definitions and notations

Observe: All non-tree edges are backward edges, i.e. EB = E \ EDFS . For
every {v ,w} ∈ B, w ≺ v holds, i.e. w is contained in the s-v -path in T .

Direction: direct each {u, v} ∈ E (G ) from the vertex at which DFS
explores it first. Notation: (u, v) if the direction is from u to v .

For v ∈ V (G ) set LowPoint[v ] :=

min
{{

DFSNum[v ]} ∪
{
DFSNum[z ] : v ⪯ x , (x , z) ∈ EB

}}
.

Equivalently: LowPoint[v ] := min(
{
DFSNum[v ]

}
∪ Av ), where

Av :=
{
DFSNum[z ] : (v , z) ∈ EB

}
∪
{
LowPoint[w ] : (v ,w) ∈ E (T )

}
.

Definition 3.
A tree-edge (v ,w) ∈ E (T ) is called a leading edge iff
LowPoint[w ] ≥ DFSNum[v ].

Equivalently: (v ,w) is a leading edge iff every backward egde starting at
Tw ends either at Tw or at v .



Using DFS to recognize blocks and cut-vertices of a graph

Let G be an arbitrary (not necessarily connected) graph.

Lemma 1.
Let T be the output of DFSb. Let H be a connected component of G
and s be the root of T [V (H)]. Let v ∈ V (H) \ {s}, u = parent[v ] and
(v ,w) ∈ E (H). The following statements are equivalent:

(i) (u, v) and (v ,w) lie in the same block of G .

(ii) (v ,w) is not a leading edge.

Lemma 2.
Let T be the output of DFSb. Let H be a connected component of G
and s be the root of T [V (H)]. The following statements hold:

(i) All tree edges incident with s are leading edges. s is a cut-vertex iff
it is incident to at least two leading edges.

(ii) A vertex v ∈ V (H) \ {s} is a cut-vertex iff there exists at least one
leading edge (v ,w).



Using DFS to recognize blocks and cut-vertices of a graph (contd.)

Theorem 1 ((Tarjan 1972)).
The blocks and the cut-vertices of G can be determined in linear time,
i.e. in O(n +m), where n := |V | and m := |E |.

Corollary 2.
For a given graph G with n := |G | > 3 and m := |E (G )| it can be tested
in O(n +m) time whether κ(G ) ≥ 2.

Proof: Observe that G is 2-connected iff bc(G ) is a singleton.


