
Theorem 1 ((Menger 1927))

(a) (The edge version) Let s and t be two arbitrary vertices of a
graph G. The maximum number of s-t-paths which do not share an
edge equals the minimum cardinality of a set of edges which
separates s and t in G

(b) (The vertex version) Let s and t be arbitrary vertices of a graph G
such that {s, t} ̸∈ E (G ). The maximum number of independent
s-t-paths equals the minimum cardinality of an s-t-separator G.

Corollary 2
Menger’s Theorem implies an equivalent definition of connectivity:

(a) (Edge connectivity) A graph G with |G | > 1 is ℓ-edge connected,
ℓ ∈ IN, iff (i) every edge set which separates G has at least ℓ
elements, or equivalently (ii) ∀s, t ∈ V (G ) there exists ℓ
edge-disjoint s-t-paths.

(b) (Vertex connectivity) A graph G with |G | > k, k ∈ IN, is k-edge
connected iff (i) every separator of G has at least k elements, or
equivalently (ii) ∀s, t ∈ V (G ) there exists k independent s-t-paths.



Theorem 3
If the graph G is non-trivial, i.e. |G | > 1, then κ(G ) ≤ λ(G ) ≤ δ(G )
holds.

Thus high connectivity implies high minimum degree.

The converse is not true: there are graphs with large δ(G ) which have a
small λ(G ). However a high δ(G ) implies the existence of a highly
connected subgraph.

Proposition 4 ((Mader 1972), no proof)
Let k ∈ IN, k ̸= 0. Every graph G with d(G ) ≥ 4k has a (k+1)

connected subgraph H such that ϵ(H) = |E(H)|
|V (H)| > ϵ(G )− k holds.

Observation 5
The vertices of a connected graph G can always be enumerated as
v1, v2, . . . , v|G | such that the induced subgraph Gi := G [{v1, v2, . . . , vi}]
is connected, for all i ∈ 1, |G |.
(The proof is a homework.)



The block-cut-vertex graph

Definition 1
A maximal connected subgraph without a cut vertex is called a block.

Observation 6
Every block is either (i) a maximal 2-connected subgraph, or (ii) a bridge,
or (iii) an isolated vertex. Conversely, every such graph is a block.

Observation 7
(a) Different blocks of a graph G overlap in at most one vertex which is
then a cut-vertex, (b) every edge of G lies in a unique block, and (c) G is
the union of its blocks.

Definition 2
The block-cut-vertex graph bc(G ) of a given graph G is a graph with
vertex set B ∪ C, where B is the set of blocks of G and C is the set of
cut-vertices of G. The edge set of bc(G ) consists of edges {b, c} with
b ∈ B, c ∈ C, and c ∈ b.

Theorem 8 ((Gallai 1964, Harary and Prins 1966))
The block-cut-vertex graph bc(G ) of a connected graph C is a tree.



2-connectivity and 3-connectivity

Theorem 9 ((Ear decomposition, Whitney 1932, Halin & Jung

1963))
A graph G is 2-connected iff it can be represented as
G = C ∪ P1 ∪ P2 ∪ . . . ∪ Pk , for some k ∈ IN, where C is a cycle and Pi

1 ≤ i ≤ k, are paths which have only their end-vertices in common with
C ∪ P1 ∪ . . . ∪ Pi−1.

Definition 3 (Contraction of an edge)
Let e = {x , y} be an edge of a graph G = (V ,E ). We denote by G/e
the graph obtained from G by contracting the edge e into a new vertex
ve which becomes adjacent to all the former neighbors of x and of y .
Formally G/e := (V ′,E ′), where

V ′ := V \ {x , y} ∪ {ve} and

E ′ :=
{
{v ,w} ∈ E : {v ,w}∩{x , y} = ∅

}
∪
{
{ve , u} : {x , u} ∈ E or (y , u} ∈ E

}
.



Definition 4 (Minor)
Let X , G be graphs and let {Vx : x ∈ V (X )} be a partition of V (G ) such
that (i) G [Vx ] is connected for all x ∈ X and (ii) for any two vertices
x , y ∈ X there is a Vx -Vy -edge in G iff {x , y} ∈ E (X ). Then we denote
G = MX. The sets Vx are called the branch sets of G = MX.

Thus, X is obtained from G by contracting every branch set to a single
vertex and deleting any parallel edges or loops that may arise.

If MX = G is a subgraph of Y , i.e. G ⊆ Y , we call X a minor of Y and
denote X ⪯ Y .

Definition 5 (Contraction of a set of vertices)
If Vx = U ⊂ V (G ) is one of the branch sets and every other branch set
consists just of a single vertex, we also write G/U for the graph X and
VU for the vertex x ∈ V (X ) to which U contracts and think of the rest
of X as an induced subgraph of G. The contraction of edge {u, u′}
corresponds to the simple case U = {u, u′}.



Proposition 10
G is an MX iff X can be obtained from G by a series of edge
contractions, i.e. iff there exist an n ∈ IN, the graphs G0, G1, . . ., Gn and
the edges ei ∈ E (Gi ) such that G0 = G, Gn ≃ X and Gi+1 = Gi/ei for
0 ≤ i ≤ n − 1.

Proof: Induction on |G | − |X |, homework.

Lemma 11
If G is 3-connected and |G | > 4, then G has an edge e such that G/e is
again 3-connected.

Theorem 12 ((Tutte 1961) )
A graph G is 3-connected iff there exits an n ∈ IN and sequence of
graphs G0, G1, . . ., Gn with the following properties:

(i) G0 = K4 and Gn = G

(ii) Gi+1 has an edge {x , y} with degGi+1(x) ≥ 3, degGi+1(y) ≥ 3, and
Gi = Gi+1/{x , y}, for all 0 ≤ i ≤ n − 1.


