Advanced and Algorithmic Graph Theory TU Graz, Summer term 2024

1 General terminology and notations

Definition 1 An undirected graph (often also simply called **graph**) G is an ordered pair (V, E), where V is the set of vertices and $E \subseteq \{\{u, v\}: u, v \in V, u \neq v\} =: \mathcal{P}_2(V)$ is the set of edges. Thus the edges of a graph are two-element subsets of its set of vertices.

Notation: Given a set V, we denote by $\mathcal{P}_2(V)$ as above the set of two-element subsets of V.

A directed graph, briefly digraph, G is an ordered pair (V, E), where V is the set of vertices and $E \subseteq V \times V$ is the set of arcs. For a given graph (digraph) G we denote by V(G) and E(G) its set of vertices and its set of edges (arcs), respectively.

The order of a graph (digraph) G is the cardinality |V(G)| of its vertex set.

An edge e of a graph is denoted by $e := \{u, v\}$ and an arc of a digraph is denoted by (u, v); uand v are called **end-vertices** of e. We say that vertex u (v) is **incident** with edge (arc) eand that the vertices u and v are **adjacent vertices** or **neighbors**. Moreover, we say that e is an edge at u (v) or that arc e starts at u and ends at v respectively. Two edges e, f are called **adjacent edges** if $e \neq f$ and $e \cap f \neq \emptyset$. The set of **neighbors of a vertex** v in G is denoted by $N_G(v)$, or briefly by N(v), if there is no ambiguity about the underlying graph G.

Definition 2 The degree $deg_G(v)$ (or deg(v)) of a vertex v in G is defined as deg(v) := |N(v)|. A vertex with degree equal to 0 is called an isolated vertex.

The minimum degree $\delta(G)$ of a graph G is defined as $\delta(G) := \min_{v \in V(G)} deg(v)$.

Analogoulsy, the maximum degree $\Delta(G)$ of a graph G is defined as $\Delta(G) := \max_{v \in V(G)} deg(v)$. The average degree d(G) of a graph G is defined as $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} deg(v)$.

The density $\varepsilon(G)$ of a graph G is defined as $\varepsilon(G) := \frac{|E(G)|}{|V(G)|}$.

Exercise 1 Recall the handshake lemma and derive a simple relationship between d(G) and $\varepsilon(G)$.

Definition 3 For some $k \in \mathbb{Z}_+$, a k-regular graph G is a graph with deg(v) = k, for all $v \in V(G)$. A 3-regular graph is also called a cubic graph.

A graph G is called a complete graph if all vertices in V(G) are pairwise adjacent. For some $n \in \mathbb{N}$, the complete graph of order n is denoted by K_n .

Definition 4 A set $A \subseteq V(G)$ is called an independent set in G if no two vertices of A are adjacent. The independence number of a graph G is denoted by $\alpha(G)$ and is defined as the largest $k \in \mathbb{N}$ such that there exists an independent set of cardinality k in G, i.e.

 $\alpha(G) := \max\{|A| \colon A \subseteq V(G), A \text{ is an independent set in } G\}.$

A set $A \subseteq V(G)$ is called an clique in G if any two vertices of A are adjacent. The clique number of a graph G is denoted by $\omega(G)$ and is defined as the largest $k \in \mathbb{N}$ such that there exists a clique of cardinality k in G, i.e.

 $\omega(G) := \max\{|A| \colon A \subseteq V(G), A \text{ is a clique in } G\}.$

Definition 5 The graphs G and G' are called **isomorphic** iff there exists a bijection $\phi: V(G) \rightarrow V(G')$ such that $\{u, v\} \in E(G)$ if and only if $\{\phi(u), \phi(v)\} \in E(G')$. In this case ϕ is called an **isomorphism** of G and G'. If G and G' are isomorphic we denote $G \simeq G'$. Frequently. we make no difference between two isomorphic graphs and write G = G' instead of $G \simeq G'$. If G = G', then an isomorphism ϕ of G and G' is called an **automorphism**.

A mapping taking graphs as arguments is called **a graph invariant** iff it assigns equal images (values) to isomorphic graphs. For example the number of vertices and the number of edges in a graph are graph invariantes.

Exercise 2 Specify some other graph invariants.

Definition 6 Given two graphs G = (V, E) and G' = (V', E'), we define the union of G and G' as $G \cup G' := (V \cup V', E \cup E')$ and the intersection of G and G' as $G \cap G' := (V \cap V', E \cap E')$.

The graphs G and G' are called disjoint graphs if $V(G) \cap V(G') = \emptyset$. The product G * G' of two disjoint graphs G and G' is obtained from $G \cup G'$ by adding to it the edges of the form $\{v, v'\}$ for all $v \in V(G)$, $v' \in V(G')$.

Exercise 3 Draw the graph $K_2 * K_3$? Is this product a complete graph?

Definition 7 The complement G^C of a graph G is defined as $G^C := (V(G), \mathcal{P}_2(V(G)) \setminus E(G)).$

The line graph L(G) of a graph G is defined as

$$L(G) := \left(E(G), \left\{ \{e, f\} \colon e, f \in E(G), e \cap f \neq \emptyset \right\} \right) .$$

Definition 8 A graph G is a subgraph of a graph G' if $V \subseteq V'$ and $E \subseteq E'$. We denote $G \subseteq G'$ and say that G' is a supergraph of G. If $G \subseteq G'$ and $G \neq G'$ we say that G is a fproper subgraph of G' and denote $G \subsetneq G'$.

If $G \subseteq G'$ and E(G) contains all edges $\{u, v\}$ of E(G') with $u \in V(G)$ and $v \in V(G)$ we call G an **induced subgraph** of G'. In this case we say that V **induces** G **in** G' and denote G = G'[V]. A subgraph G is called **a spanning subgraph** of G' iff $G \subseteq G'$ and V(G) = V(G').

Question 1 Given that G is an induced subgraph of G'. Does the following equality hold

$$E(G) = \{\{u, v\} \colon u \in V, v \in V\} \cap E(G') ?$$

Definition 9 Given a graph G and a set $U \subseteq V(G)$ we denote $G - U := G[V \setminus U]$. If U is a singleton, i.e. $U = \{v\}$ for some $v \in V(G)$ we write G - v instead of $G - \{v\}$. We also write G - G' instead of G - V(G'). For some $F \subseteq \mathcal{P}_2(V(G))$ we write $G - F := (V(G), E(G) \setminus F)$ and $G + F := (V(G), E(G) \cup F)$. If F is a singleton, i.e. $F = \{e\}$ for some $e \in \mathcal{P}_2(V(G))$, we write G + e and G - e instead of $G + \{e\}$ and $G - \{e\}$, respectively.

Definition 10 A graph G is called **edge-maximal** with respect to some graph property P iff G itself has the property P, but the graph $G + \{u, v\}$ does not have property P, for all $u, v \in V(G)$ such that $\{u, v\} \notin E(G)$. We say that a **graph** G **is maximal (minimal) with respect to some property** P if G has the property P but no supergraph (subgraph) of G has it. Analogosly, if we speak of a **maximal or minimal set of vertices of edges** with a certain property, the considered order relation is simply the set-inclusion.

Question 2 Let P be the property "contains a triangle" and let P' the property "does not contain a triangle" or equivalently "is triangle-free". Consider the set \mathcal{G}_6 of all graphs of order 6. Give a graph which is minimal with respect to P and a graph which maximal with respect to P' in \mathcal{G}_6 .

Definition 11 A path P is a graph P = (V, E) with $V = \{x_0, x_1, \dots, x_k\}$ and

 $E = \{\{x_{i-1}, x_i\}: i \in \{1, 2, ..., k\}\}, where k \in \mathbb{Z}_+ and all x_i, i \in \{0, 1, ..., k\}, are pairwise disjoint, except for may be <math>x_0$ and x_k . Analogoulsy, a **directed path (dipath)** P is defined as a digraph P = (V, E) with $V = \{x_0, x_1, ..., x_k\}$ and $E = \{(x_{i-1}, x_i): i \in \{1, 2, ..., k\}\},$ where all $x_i, i \in \{0, 1, ..., k\}$, are pairwise disjoint, except for may be x_0 and x_k . In the latter case the path (dipath) is called **closed**.

The vertices x_1, \ldots, x_{k-1} are called internal vertices of the path (dipath) P. x_0 and x_k are called start-vertex of P and end-vertex of P, respectively, if P is a dipath, and end-vertices of P, otherwise. We say that the end-vertices of path P are joined (connected) by P and P joins (connects) its end-vertices.

The length of the path (dipath) is the number k of its edges (arcs). Thus a path (dipath) of length 0 is just a single vertex (or the complete graph K_1 ; such a path (dipath) is called a trivial path (trivial dipath). Often we refer to the path (dipath) P as above by the natural sequence of its vertices and denote $P = x_0, x_1, \ldots, x_k$. Let $P = x_0, x_1, \ldots, x_k$.

Definition 12 We distinguish the following subpaths of P:

 $Px_i := x_0, x_1, \dots, x_i, x_i P = x_i, x_{i+1}, \dots, x_k, x_i Px_j := x_i, x_{i+1}, \dots, x_{j-1}, x_j, \text{ for } i, j \in \{0, 1, \dots, k\}, and P = x_1, \dots, x_{k-1}.$

Given a graph G and a path P we say that P is a path in G iff $P \subseteq G$, i.e. if the path P is a subgraph of G.

Definition 13 A walk W of length k, $k \in \mathbb{N}$, in a graph G is a non-empty alternating sequence $v_0.e_0, v_1, e_1, \ldots, e_{k-1}, v_k$ of vertices and edges in G such that $e_i = \{v_i, v_{i+1}\} \in E(G)$, for all $i \in \{0, 1, \ldots, k-1\}$. If $v_0 = v_k$ the walk is called a closed walk. If the vertices of the walk W are pairwise distinct, then W defines a path in G.

Consider a graph G and two subsets $A, B \subseteq V(G)$. A path x_0, x_1, \ldots, x_k in G is called **an** A-B-path if $V(P) \cap A = \{x_0\}$ and $V(P) \cap B = \{x_k\}^1$. If $A = \{a\}$ and/or $B = \{b\}$ we write a-B-path, A-b-path or a-b-path, respectively. Two or more paths are **independent paths** iff none of them contains an inner vertex of another.

Given a graph H we call a path $P = x_0, \ldots, x_k$ an H-path if P is non-trivial (i.e. $k \ge 1$) and $V(P) \cap V(H) = \{x_0, x_k\}.$

¹This concept and the further concepts within this definition can be analogously defined for digraphs and dipaths.

Definition 14 If $P = x_0, \ldots, x_{k-1}$ is a path and $k \ge 3$, then $C := P + \{x_{k-1}, x_0\}$ is called a cycle. Sometimes we denote $C = x_0, x_1, \ldots, x_{k-1}, x_0$. The length of a cycle is the number of its edges. A cycle in a graph G is a subgraph of G which is a cycle.

The minimum length of a cycle in a graph G is called the **girth of** G and is denoted by g(G). The maximum length of a cycle in a graph G is called the **circumference of** G and is denoted by circ(G). If G contains no cycle we set $g(G) = \infty$ and circ(G) = 0. An edge joining two vertices of a cycle C which is not an edge of C is called a **chord of the cycle** C. Thus, an induced cycle in G (i.e. a cycle which is an induced subgraph of G) is a cycle without chords.

Proposition 1 Every graph G contains a path of length $\delta(G)$ and a cycle of length $\delta(G) + 1$, provided that $\delta(G) \ge 2.^2$

Definition 15 The distance $d_G(u, v)$ (or d(u, v)) of two vertices u and v in a graph G is the length of a shortest u-v-path in G; if there is no such a path we set $d_G(u, v) = \infty$. The diameter of G is denoted by diam(G) and is defined as $diam(G) := \max_{u,v \in V(G)} d_G(u, v)$.

Given a graph G, a vertex $v \in v(G)$ is called a **central vertex** if its greatest distance form any other vertex is as small as possible. This distance is called the **radius of graph** G and is denoted by rad(G), i.e. $rad(G) := \min_{x \in V(G)} \max_{y \in V(G)} d_G(x, y)$.

Exercise 4 For $k \in \mathbb{Z}$, $k \geq 3$, consider a cycle C^k with k vertices. Determine diam (C^k) and $rad(C^k)$.

Exercise 5 Can a graph have more than one central vertex?

Exercise 6 Do the inequalities $rad(G) \leq diam(G) \leq 2rad(G)$ hold? Are these inequalities best possible. i.e. are there particular graphs for which these inequalities are fulfilled with equality?

Definition 16 A graph G with at least one vertex is called **connected** iff for any two vertices $u, v \in V(G)$ there esists a u-v-path in G. Otherwise G is called **disconnected**. A set $U \subseteq V(G)$ is called a **connected set of vertices in** G iff G[U] is connected.

G is called a k-connected graph iff |G| > k and G - X is connected, for all $X \subset V$ with |X| < k. The largest nonnegative integer k such that G is k-connected is called the connectivity of graph G and is denoted by $\kappa(G)$.

If |G| > 1 and G - F is connected for every set $F \subseteq E(G)$ with $|F| < \ell$, then G is called an ℓ -edge connected graph. The largest nonnegative integer ℓ such that G is ℓ -edge connected is called the edge connectivity of graph G and is denoted by $\lambda(G)$.

Question 3 Which graphs are 0-connected? Does 1-connected mean connected? For which graph does $\kappa(G) = 0$ hold?

Exercise 7 Specify a graph G with |G| = n and $\kappa(G) = n - 1$, for $n \in \mathbb{N}$.

 $^{^{2}}$ In contrast to this statement, the minimum degree and the girth are not related to each other.

Exercise 8 Specify $\lambda(G)$ for a disconnected graph G. Specify a 2-edge connected graph G with |G| = n, for $n \in \mathbb{N}$.

Definition 17 A maximal connected subgraph of a graph G is a **component of graph** G. By definition a graph without vertices has no components.

Question 4 Are the components of G induced subgraphs of G? Do their vertex sets partition V(G)?

If $A, B \subseteq V(G)$ and $X \subseteq V \cup E$ are such that every A-B-path in G contains a vertex or an edge from X, we say that X separates the sets A and B in G. Notice that this implies $A \cap B \subseteq X$.

We say that $X \subset V(G) \cup E(G)$ separates G if G - X is disconnected, i.e. if X separates in G some two vertices that are not in X. A separating set of vertices is called a separator. Separator sets of edges have no generic name, but some of them do (e.g. cuts and bonds, to be defined later).

A vertex which separates two other vertics from the same component is called a **cut-vertex**. An edge which separates its own end-vertices is called a **bridge**.

Exercise 9 Draw some examples of cut-vertices and bridges. Can you characterize bridges by means of cycles?

Definition 18 A graph G is called an **acyclic graph** or a **forest** iff it contains no cycles. A connected forest is called a **tree**. A vertex of degree one in a tree is called a **leaf of the tree**. A **rooted tree** is a tree T with a special vertex r in it, $r \in V(T)$, called **root of the tree**.

In a rooted tree T with root r we define a partial order \leq on V(T), called the tree-order, such that $x \leq y$ iff x lies on the unique r-y-path in T, for all $x, y \in V(T)$.

We think of the tree-order as expressing height, i.e. if x < y (which means that $x \leq y$ and $x \neq y$ hold), we say that x lies below y in T. We denote by $\lceil y \rceil := \{x \in V(T) : x \leq y\}$ the down-closure of y; analogously, we denote by $\lfloor x \rfloor := \{y \in V(T) : y \geq x\}$ the up-closure of x. A set $X \subseteq V(T)$ that equals its up-closure, i.e. which satisfies $X = \lfloor X \rfloor := \bigcup_{x \in X} \lfloor x \rfloor$, is said to be closed-upwards or an up-set. A set which is closed-downwards or a downset is defined analogously. The vetices at distance k from the root are said to have height equal to k and form the k-th level of T.

Question 5 Given a tree T with root $r \in V(T)$. Are the end-vertices of any edge $\{x.y\}$ of T comparable in terms of the tree-order, i.e. does $x \leq y$ or $y \leq x$ hold, for all $e = \{x, y\} \in E(T)$? Is the down-closure of every vertex a chain, i.e. a set of pairwise comparable elements?

Definition 19 A rooted tree T with root r contained in a graph G is called a **normal tree** in G iff for every T-path in G its end-vertices are comparable in the tree-order of T. Normal spanning trees of a graph G are the so called depth first search trees of G (because of the way they arise in computer searches on graphs).

Exercise 10 Give the example of a graph G with |G| = 15 and a normal spanning tree in it. Give the example of another spanning tree of G which is not normal.

Observe that the following statement holds:

Proposition 2 Every connected graph contains a normal spanning tree, with any specified vertex as its root.