Diskrete Mathematik, WS 2017/2018, 8. Übungsblatt

- 48. (a) Finden Sie alle Graphen mit ≤ 6 Knoten, in denen jeder Knoten den Grad 2 hat.
 - (b) Finden Sie alle paarweise nicht isomorphen Bäume mit 5 Knoten.
- 49. Das Komplement eines Graphen G = (V, E) ist der Graph $G^C = (V, E')$, wobei E' genau jene Kanten enthält, die nicht in E vorkommen.
 - (a) Zeigen Sie: Wenn zwei Graphen isomorph sind, so sind auch ihre Komplemente isomorph.
 - (b) Wie viele Kanten hat ein Graph mit n Knoten der zu seinem Komplement isomorph ist? Kann ein Graph mit 10 Knoten zu seinem Komplement isomorph sein?
- 50. Zeigen Sie, dass jeder Baum T=(V,E) mit $deg(v)\neq 2$ für alle $v\in V$ und $|V|\geq 3$ einen Knoten v_0 enthält, der zu mindestens zwei Blättern benachbart ist.
- 51. Sei d_1, d_2, \ldots, d_n eine Folge positiver natürlicher Zahlen. Zeigen Sie, dass es genau dann einen Baum mit Knotenmenge $V = \{v_1, v_2, \ldots, v_n\}$ und $deg(v_i) = d_i$, für alle $i \in \{1, 2, \ldots, n\}$, gibt, wenn $\sum_{i=1}^{n} d_i = 2n 2$.
- 52. Eine Brücke in einem zusammenhängenden Graphen G = (V, E) ist eine Kante $e \in E$, für die der Graph $(V, E \setminus \{e\})$ nicht mehr zusammenhängend ist. Beweisen oder widerlegen Sie: Ein Graph, in dem alle Knoten geraden Grad haben, enthält keine Brücke.
- 53. Ein dreiecksfreier Graph ist ein Graph, der keinen Kreis (Zyklus) der Länge 3 enthält. Es sei G = (V, E) ein dreiecksfreier Graph. Beweisen Sie:
 - (a) Ist |V| = 2n, so gilt $|E| \le n^2$.
 - (b) Ist |V| = 2n und $|E| = n^2$, so ist G der vollständige bipartiter Graph $K_{n,n}$.

Hinweis: Der Beweis kann mit Induktion bzgl. der Knotenanzahl geführt werden