
Game Theory, summer term 2018

Exercise Sheet 1

1. Consider a two-persons zero-sum game and check whether the following statements are true
or false. Prove the true statements and a give counterexamples for the false statements.

(a) All sadlle points (assumning that there is at least one) result in the same payoff to
player I.

(b) If the game has a saddle point in every 2× 2 submatrix than it has a saddle point.

2. Find the value of the zero-sum game given by the following payoff matrix and determine
some optimal strategies for each of the players:

A =







0 9 1 1
5 0 6 7
2 4 3 3






.

(A solution by linear programming is not desirable.) Hint: Use domination techniques to
reduce the size of the game.

3. Find the value of the zero-sum game given by the following payoff matrix and determine
all optimal strategies for each of the players:

A =







3 0
0 3
2 2






.

(A solution by linear programming is not desirable.)

4. (a) Given an m × n matrix of a two-persons zero-sum game. How would you quickly
determine by hand if it has a saddle point?

(b) Define a two-persons zero-sum game in which one player’s unique optimal strategy is
pure and all of the other player’s optimal strategies are mixed.

5. Two companies plan to open restaurants in three candidate locations with coordinates
(1, 0), (2, 0) and (3, 0) on a system of coordinates in the plane. The three locations are
called Left, Central and Right, respectively. Company I opens one restaurant at one of
these locations and company II open two restaurants (both restaurants can be at the same
location). A customer is located at a uniformly random point (x, 0) for x ∈ [0, 4]. He
walks to the next closest location at which there is a restaurant and then into one of the
restaurants there, chosen uniformly at random. The payoff of company I or company II is
the probability that the customer visits a company I restaurant or a company II restaurant,
respectively. Represent this situation a two-persons zero-sum game, determine the value
of the game and find some optimal mixed strategies for the companies.

6. Find a two-persons zero-sum game which has at least one Nash equilibrium in pure strate-
gies, but in which iterative elimination of dominated strategies yields a game with no Nash
equilibria in pure strategies.

7. A Nash equilibrium (x∗, y∗) in a two-persons zero-sum game with an m× n payoff matrix
A, m,n ∈ IN, is called strict if any deviation of player I (player II) from the strategy
x∗ (y∗) yields a smaller gain of player I (larger loss of player II), i.e. xtAy∗ < (x∗)tAy∗,
∀x ∈ ∆m \ {x∗} ((x∗)tAy > (x∗)tAy∗, ∀y ∈ ∆n \ {y∗}. Further consider the following



definition of strict dominated strateiges 1: a pure strategy i of player I is dominated by a
strategy i′ of player I iff for any strategy j of player II aij < ai′j holds, i, i

′ ∈ {1, 2, . . . ,m}
and j ∈ {1, 2, . . . , n}.

(a) Prove that if the process of iterative elimination of strictly dominated strategies
results in a unique strategy vector (x∗, y∗), then the later is a strict Nash equilibrium
and, it is the only Nash equilibrium of the game.

(b) Prove that if (x∗, y∗) is a pure strict Nash equilibrium, then none of the pure strategies
x∗, y∗ can be eliminated by iterative elimination of dominated strategies (under either
strict or non-strict domination).

8. Two players each choose a positive integer. The player who chose the lower number pays
one to the player who chose the larger number (with no payment in case of a tie). Show
that this game has no Nash equilibrium. Show that the safety values for players I and II
are −1 and 1, respectively.

9. Player I chooses a positive integer x > 0 and player II chooses a positive integer y > 0.
The player with the lower number pays one unit to the player with the higher number
unless the higher number is more than twice the lower number in which case the payments
are reversed. Thus we have

A(x, y) =











1 if y < x ≤ 2y or x < y/2
−1 if x < y ≤ 2x or y < x/2
0 if x = y

Find the unique optimal strategy in this game.

10. 2 Show that the optimal value of a two-persons zero-sum game with an m×n payoff matrix
A can be determined by solving a linear program. Show moreover that the Minimax
Theorem of von Neumann follows as a consequence of the strong duality theorem of the
linear programming3.

1Note that this definition of strictly dominating strategies is different from the definition given in the lecture.

The definition given in the lecture coincides with the definition in the book Game Theory, alive, by A.R.

Karlin and Y. Peres, American Mathematical Society, 2017, Providence, Rhode Island, USA, wheres

the definition we are adopting in this exercise coincides with the definition in Game Theory, by M. Maschler,

E. Solan and S. Zamir, Cambridge University Press, 2013, Cambridge, UK.
2Some background in linear programming is needed.
3The converse is also true, i.e. the strong duality theorem of linear programming can be derived as a corrollary

of the Minimax Theorem of von Neumann, thus both theorems are equivalent.


