
Game Theory, Summer Term 2018

Exercise Sheet 3

16. A simultaneous congestion game.

There are two drivers, one who will travel from A to C, the other from B to D, see Figure 1.
Each road is labelled (x, y) where x is the cost to any driver who travels the road alone
and y is the cost to each driver if both drivers use this road. Write the game in matrix
form and find all pure Nash equiibria.

17. A market sharing game.

There are k NBA teams, and each of them must decide in which city to locate. Let n ∈ N
and C = {1, 2, . . . , n} be the set of possible locations (cities). Let vj be the profit potential,
e.g. the number of basketball fans, of city j. If l teams select city j than each obtains a
utility of vj/l. Let c = (c1, . . . , ck) denote a strategy profile, where ci is the city selected
by team i, and let nci(c) be the number of teams that select city ci in this profile, for
1 ≤ i ≤ k. Show that the market sharing game is a potential game with potential function

Φ(c) =
∑
j∈C

nci (c)∑
l=1

vj
l

and hence has a pure Nash equilibrium.

18. Consider the following variant of the Consensus game (cf. the lecture). Let G = (V,E)
be an arbitrary undirected graph where each vertex i ∈ V := {1, 2, . . . , n} is a player and
her action consists of choosing a bit in {0, 1}. Let vertex i’s choice be represented by
bi ∈ {0, 1}, for i ∈ V , and write b = (b1, . . . , bn) for the corresponding strategy profile. Let
N(i) be the set of neighbors of i in G, for all i ∈ V . Consider a weight wij on each edge
{i, j} which measures how much the two players i and j care about agreeing with each
other, for all {i, j} ∈ E (since G is an undirected graph graphs we assume that wij = wji,
for all {i, j} ∈ E). The loss Di(b) for player i under strategy profile b is the total weight
of neighbors that she disagrees with, i.e.

Di(b) =
∑

j∈N(i)

|bi − bj |wij .

Show that this variant of the Congestion game is a potential game.

Consider now a slightly different version of the above game played on a directed graph
with weight wij which are not necessarily symmetric, i.e. in general wij 6= wji can hold for
{i, j} ∈ E. Show that in general this variant of the game is not a potential game.

19. Construct an example showing that the Graph Coloring game (c.f. the lecture) has a Nash
equilibrium which uses more than χ(G) colors.

20. The definition of a potential game extends naturally to k player games with infinite strategy
spaces Si as follows. Call ψ : Πk

i=1Si → R a potential function if for all players i the function
si 7→ ψ(si, s−i) − ui(si, s−i) is constant on Si. Show that the game where the k players
send data along a shared channel of capacity 1, as discussed in the lecture, is a potential
game.

Hint: Consider the case of 2 players with strategies x, y ∈ [0, 1]. Then there must exist a
cx depending just on x and a cy depending just on y such that ψ(x, y) = cy +x(1−x−y) =
cx + y(1− x− y), i.e. cy + x(1− x) = cx + y(1− y), for x, y ∈ [0, 1].



21. Infinite strategy spaces: Club Pricing.

Three neighboring colleges have n students each that hit two clubs C1 or C2 on weekends.
Each of the two clubs, which are the players, chooses an entry price in [0, 1]. College A
students go to C1, College C students go to C2 and College 3 students choose to go to
the club with the lowest price that weekend, breaking ties in favor of C1. Let the pure
strategies of C1 and C2 be described by p1 ∈ [0, 1] and p2 ∈ [0, 1], respectively. Write
the utility functions of the two players (by distinguishing the cases p1 ≤ p2 and p1 > p2).
Show that there are no pure Nash equilibria in this game. Show however that there is a
symmetric mixed Nash equilibrium (F, F ), where F is a continuous distribution function
on [0, 1], i.e. F is a best response of C1 (C2) with respect to its expected payoff provided
that the other player C2 (C1) chooses its price according to distribution F .

Hint: Show by domination that w.l.o.g. the support of a mixed Nash equilibrium strategy
(which is a probability distribution on [0, 1]) can be assumed to be equal to [1/2, 1].

22. Price of anarchy.

Let G = (V,E) be a (directed) network where one unit of traffic is routed from a source s to
a destination t. Suppose that the latency function on each edge is linear, i.e. le(x) = aex,
for constants ae ≥ 0, and for all e ∈ E. Show that the price of anarchy of such a network
equals 1.

Hint: Appropriately modify the proof of the analogous result for affine functions (cf. the
lecture) and use the inequality xy ≤ (x2 + y2)/2 therein.

Figure 1: Road network for Exercise No. 16


