
Game Theory, Summer Term 2018

Exercise Sheet 4

23. Let c > 0 and let fc be a function defined as follows

fc(x) =

{

1

c−x
if 0 ≤ x < c

∞ otherwise
.

Consider a selfisch routing network where all latency functions are in L with L := {fc(·) : c > 0}.
For every edge e in the network let its latency function be fce(x) for some ce > 0. Supose
moreover that in equilibrium, the edge flow Fe satisfies Fe ≤ (1 − β)ce for every edge e,
where β ∈ (0, 1) is a given constant. Derive a finite upper bound for the price of anarchy
in this case.

24. Let G = (V,E) be a selfish routing network where r units of traffic are routed from origin
s to destination t, with s, t ∈ V . Suppose that le(·) is the latency function associated with
edge e ∈ E. Consider now a selfisch routing instance with the same network G, the same
origin s and the same destination t, as well as the same amount r of flow to be routed,
and the latency function is l′e(·), is given as

l′e(x) :=
le(x/2)

2
, ∀e ∈ E.

Suppose that f∗ is an optimal flow in the original instance and f ′ is an equilibrium flow
in the instance with modified latency functions. Prove that L(f ′) ≤ L(f∗), where L(f ′) is
the total latency of f ′ in the modified instance and L(f∗) is the total latency of f∗ in the
original instance.

25. Show that the price of anarchy bound for the market sharing game considered in the
lecture and also in Exercise No. 17 can be improved to 2 − 1/k, when there are k teams.
Show that this bound is tight.

26. Consider atomic selfish routing in a Pigou network (cf. the lecture) where 2 drivers want
to travel from the origin to the destination. Let the latency function on the top edge be
given by x, where x is the number of drivers using that edge, and let the latency function
be a constant equal to 2 on the bottom edge. What is the total latency for the optimal
routing? Find all Nash equilibria for this instance of the atomic selfish routing game and
determine the price of anarchy.

27. Consider the following network formation game. There are n vertices each representing a
player. The pure strategies of a player consist of choosing which other vertices to create
an edge to. A strategy profile induces then a graph where each edge is associated with the
vertex that “created” it. Given a strategy profile s the cost incurred by player i is

costi(s) := α · ni(si) +
∑

j 6=i

ds(i, j) ,

where ni(si) is the number of links created by vertex i (each link costs α to create), ds(i, j)
is the distance from i to j in the graph resulting from strategy profile s (i.e. the number of
edges of an i-j-path with the smallest possible number of edges), and α > 0 is a constant
representing the cost of setting up an edge.



(a) Show that if α ≥ 2, then the graph which minimizes
∑

i costi is a star, whereas when
α < 2 then it is a complete graph1. The graph which minimizes the total cost as
above is called the optimum graph.

(b) Show that if α ≤ 1 or α ≥ 2, there is a Nash equilibrium with total cost equal to that
of the optimum graph.

(c) Show that for 1 < α < 2 there is a Nash equilibrium with total cost at most 4/3 that
of the optimum graph.

28. (Evolutionary stable strategies)

Consider a two-player symmetric game. A mixed strategy x∗ ∈ R
2 in a two player symm-

teric game is called an evolutionary stable strategy (ESS) if for every mixed strategy x ∈ R
2

that differs from x∗, there exists an ǫ0 := ǫ0(x) > 0 such that the following holds:

∀ǫ ∈ (0, ǫ0), (1− ǫ)u1(x, x
∗) + ǫu1(x, x) < (1− ǫ)u1(x

∗, x∗) + ǫu1(x
∗, x, ) .

This definition is motivated by biological applications and its interpretation is the follow-
ing. Consider a population mostly composed of “normal” individuals with a minority of
mutations. Interprete x∗ as the distribution of behavior types among the normal individ-
uals and x as the distribution of behavior types in a mutation, where the proportion of
this mutation in the population is ǫ. Every mutated individual will encounter a normal
individual with probability (1− ǫ) and a mutated individual with probability ǫ, obtaining
thereout a payoff of u1(x, x

∗) and u1(x, x), respectively. So the above inequality says that
the expected payoff of a mutated individual is smaller than the expected payoff of a normal
individual, and hence the proportion of mutations will decrease and eventually disappear
over time, with the type behavior of the population remaining mostly x∗.

Observe that if x∗ is an ESS in a two-player symmetric game, then (x∗, x∗) is a symmetric
Nash equilibrium in this game. Show that a strategy x∗ is an ESS if and only if for each
x 6= x∗ only one of the following two conditions hold:

u1(x, x
∗) < u1(x

∗, x∗) or

u1(x, x
∗) = u1(x

∗, x∗) and u1(x, x) ≤ u1(x
∗, x) .

Conclude from the above conditions that if (x∗, x∗) is a strict symmetric Nash equilibrium

in a symmetric game, than x∗ is an ESS. Recall that a strict symmetric Nash equilibrium
is a Nash equilibrium for which any unilateral deviation leads to a deterioration of the
utility of the deviating player.

29. Suppose that a particular animal species can exhibit one of the two possible behaviours:
agressive behaviour or peaceful behaviour. We call this behaviours Hawk (behaviour) and
Dove (behaviour), respectively. The two types of behaviour are expressed when an animal
invades the territory of an other animal of the same species. Consider two different species
and let the payoff matrices in the cases (a) and (b) below describe the expected number
of offsprings of each type of animal for each species, respectively. Find all Nash equilibria
of the game and also an ESS in both cases.

(a)

Defender
Dove Hawk

Dove (4,4) (2,8)
Invader Hawk (8,2) (1,1)

(b)

Defender
Dove Hawk

Dove (4,4) (1,3)
Invader Hawk (3,1) (2,2)

1A star is a graph G = (V,E), where there is a particular vertex v0 ∈ V , called the central vertex, such that
E = {(v0, v) : v ∈ V \ {v0}}. A complete graph is a graph in which every pair of vertices is connected by an edge.


