CAPACITY SCALING ALGORITHM

Input: A digraph G with infinite capacities $u(e) = \infty$ $(e \in E(G))$, numbers $b: V(G) \to \mathbb{Z}$ with $\sum_{v \in V(G)} b(v) = 0$, and conservative weights $c: E(G) \to \mathbb{R}$.

Output: A minimum cost b-flow f.

- ① Set b' := b and f(e) := 0 for all $e \in E(G)$. Set $\gamma = 2^{\lfloor \log b_{\max} \rfloor}$, where $b_{\max} = \max\{b(v) : v \in V(G)\}$.
- ② If b' = 0 then stop, else:

Choose a vertex s with $b'(s) \ge \gamma$.

Choose a vertex t with $b'(t) \leq -\gamma$ such that t is reachable from s in G_f .

If there is no such s or t then go to \Im .

- Find an s-t-path P in G_f of minimum weight.
- 4 Set $b'(s) := b'(s) \gamma$ and $b'(t) := b'(t) + \gamma$. Augment f along P by γ . Go to 2.
- (5) If $\gamma = 1$ then stop. (There exists no *b*-flow.) Else set $\gamma := \frac{\gamma}{2}$ and go to ②.