Combinatorial Optimization 2 Summer term 2019 Third work sheet

- 17. Given a graph G and a set $T \subseteq V(G)$, describe a polynomial time algorithm which finds a T-Join in G or decides that none exists. Can you give a linear time algorithm for this problem?
- 18. Consider a graph G = (V, E) with infinite capacities on the edges, i.e. $u(e) = \infty$, $\forall e \in E$), with weights $c: E \to \mathbb{R}$ on the edges and with $b: V \to \mathbb{N}$, such that $\sum_{v \in V} b(v) = O(n)$, where n = |V|). Give a polynomial time algorithm which determines a *b*-matching with maximum weight in *G*.

Hint: Transform the maximum weight b-matching problem to a maximum weight matching problem.

19. Show that the maximum weigh b-matching problem on a graph G = (V, E) with capacities $u: E \to \mathbb{N} \cup \{\infty\}$ on the edges, weights $c: E \to \mathbb{R}$ on the edges and $b: V \to \mathbb{N}$, such that b(v) is even $\forall v \in V(G)$, can be solved in strong polynomial time.

Hint: Transform the particular maximum weight *b*-matching problem desribed above to an appropriate minimum cost flow problem.

20. Consider the graph G in Figure 1 and the set of vertices $T = \{1, 2, 5, 7\}$ in G. Determine a T-join with minimum weight in G. The numbers close to the edges specify the egde weights.

Figure 2: Inputgraph for Exercise 21 and Exercise 23

- 21. Consider the graph G in Figure 2. Apply the approach discussed in the lecture to determine a shortest $P_{s,t}$ path from s to t for any pair of vertices s and t, $s \neq t$, in G. The numbers close to the edges specify the edge weights.
- 22. Give an $O(|E(G)||V(G)|^3)$ algorithm to determine a cycle of minimum weight in an undirected, weighted graph G with conservative weights on the edges. Such an algorithm enables the computation of the girth of a graph in polynomial time. (The girth of an undirected graphen G is defined as the minimum number of edges of a cycle in G.)
- 23. Consider the graph G in Figure 2. Determine a cycle of minimum length in G by appling some systematic approach, e.g. the algorithm mentioned in Exercise 22. The numbers close to the edges specify the edge weights.
- 24. Consider an undirected graph G, a set $T \subseteq V(G)$ with even cardinality |T| and a set of edges $F \subseteq E(G)$. Prove the following statemets:
 - (a) F has a non-empty intersection with every T-join if and only if there exists T-cut $C = \delta(X)$, $X \subset V$, such that $C \subseteq F$.
 - (b) F has a non-empty intersection with every T-cut if and only if there exists a T-join J such that $J \subseteq F$.