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28. Consider the following local search algorithm for the Maximum Cut Problem (i.e. the problem of
finding a cut with maximum cardinality in a given undirected graph). Start with an arbitrary
nonempty proper subset S ⊂ V (G) of the input graph G. Check iteratively if some vertex can be
added to S or deleted from S such that |δ(S)| increases. Stop if no such improvement is possible.

(a) Show that any undirected graph has a cut containing at least half of the edges.

(b) Prove that the local search algorithm described above is a 2-approximation algorithm.

(c) Can the algorithm be extended to the Maximum Weight Cut Problem with nonnegative weights
on the edges?

(d) Does the above local search algorithm always find an optimal solution for bipartite graphs?

29. Show that the following graphs are perfect:

(a) bipartite graphs

(b) interval graphs defined as graphs G = (V,E) with V = {v1, . . . , vn} and

E =
{

{i, j}: i, j ∈ {1, 2, . . . , n}, [ai, bi] ∩ [aj, bj ] 6= ∅
}

,

for some n ∈ IN and a set of intervals [ai, bi] on the real line with ai < bi, for i ∈ {1, 2, . . . , n}.

(c) chordal graphs defined as graphs having no cycles of length at least 4 as induced subgraphs (an
equivalent characterization of chordal graphs is given at the end of this work sheet).

30. Consider the linear time algorithm for the Weighted Median Problem discussed in the lecture.

(a) Prove the correctness of the algorithm by showing that it outputs the correct weighted median
in all cases of the “if” query.

(b) Apply the algorithm to solve an instance of the Weighted Median Problem with input n = 11,
z = (3, 5, 2, 4, 10, 7, 9, 8, 11, 10, 6), w = (1, 3, 2, 5, 2, 1, 4, 3, 2, 1, 3), W = 16.

31. Consider an instance of the Knapsack Problem with n = 6 objects, profit vector c = (3, 2, 1, 2, 3, 1),
weight vector w = (3, 4, 2, 5, 4, 3) and weight limit W = 14.

(a) Apply the greedy algorithm to solve the corresponding instance of the Fractional Knapsack
Problem.

(b) Give an instance of the Weighted Median Problem equivalent to the above instance of the
Fractional Knapsack Problem.

(c) Use the solution of the above instance of the Fractional Knapsack Problem to construct a
2-approximation of the optimal solution of the original Knapsack Problem.

(d) Apply the exact algorithm discussed in the lecture to solve the above instance of the Knapsack
Problem.

32. The k-Center Problem is defined as follows. Given an undirected graph G with edge lengths
c:E(G) → IR+ and a number k ∈ IN with k ≤ |V (G)|, find a set X ⊆ V (G) of cardinality k

which minimizes
max
v∈v(G)

min
x∈X

dist(v, x) ,

where dist(v, x) denotes the length of a shortest path connecting v and x in G. Let OPT (G, c, k)
denote the optimal value of this problem.



(a) Let S be a maximal stable set in the graph
(

V (G),
{

{v,w}: dist(v,w) ≤ 2R
})

for some R ∈ IR+.

Show that then OPT (G, c, |S| − 1) > R.

(b) Use (a) to describe a 2-factor approximation algorithm for the k-Center Problem [2].

33. Consider them-Dimensional Knapsack Problem defined as follows. The instance consists of a natural
number n and nonnegative integers ci, wij , Wj, for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The task is to
find a subset S ⊆ {1, 2 . . . , n} such that

∑n
i=1wij ≤ Wj holds, for all j ∈ {1, 2, . . . ,m} and

∑n
i=1 ci

is maximized. Give a pseudopolynomial time exact algorithm for the m-Dimensional Knapsack
Problem.

Hint: Construct first a pseudopolynomial time exact algorithm with time complexity O(nW ) for
the knapsack problem. Then generalize it to a pseudopolynomial time exact algorithm for the
m-Dimensional Knapsack Problem. Notice that for any m ≥ 2 there exists a polynomial time
approximation scheme but no fully polynomial time approximation scheme for the m-Dimensional
Knapsack Problem as shown in [1] and [3], respectively.

Some properties and definitions related to chordal graphs.

An order {v1, v2, . . . , vn} of the n vertices of an undirected graph G is called a simplicial order if (v,vj) ∈
E(G) and (vi, vk) ∈ E(G) imply (vj , vk) ∈ E(G), for all i < j < k, i, j, k ∈ {1, 2, . . . , n}.
An order {v1, v2, . . . , vn} of the n vertices of an undirected graph G is called a maximum adjacency order
(MA order) if for all i ∈ {2, . . . , n} the following holds:
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It can be shown that if {v1, v2, . . . , vn} is an MA order of a chordal graph G than vn, vn−1, . . . , v1 is a
simplicial order in G.
Further, a graph is chordal if and only if it has a simplicial order [4].
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