Cash flow matching: ein kurzfristiges Finanzierungsmodell

Monat	Jän.	Feb.	Mär.	Apr.	Jun.	Jul.
Netto Geldfluss¹ (in €10³)	-150	-100	200	-200	50	300

Finanzierungsinstrumente:

- Kredit bis €10⁵, Laufzeit 1 Monat, Zinssatz 1% am Ende der Laufzeit
- ► Emmission von Wertpapieren mit Laufzeit 3 Monate, Zinssatz 2% über die 3 Monate
- ➤ Überschüssiges Geld kann mit einem Zinssatz von 0.3% im Monat investiert werden

Frage: Welche Finanzierungsinstrumente und in welcher Höhe soll das Unternehmen einsetzen um die Verpflichtungen über den 6 monatigen Zeithorizont zu erfüllen, sodass das Endkapital am Ende des Zeithorizonts maximiert wird?

¹Negative Zahlen entsprechen Ausgaben, positive Zahlen entsprechen Einnahmen

Lineares Optimierungsmodell

Entscheidungsvariablen:

- x_i : Höhe des Kredits im Monat i, $1 \le i \le 5$
- y_i : Wert der im Monat i emittierten Wertpapiere, $1 \le j \le 3$
- z_i : Überschuss am Ende des *i*-ten Monats, $1 \le i \le 5$
- v: Überschuss/Vermögen des Unternehmens am Ende des Zeithorizonts

```
max
      V
s.t.
                                           = 150
      X_1 + V_1 - Z_1
      x_2 + y_2 - 1.01x_1 + 1.003z_1 - z_2 = 100
      x_3 + y_3 - 1.01x_2 + 1.003z_2 - z_3 = -200
      x_4 - 1.02y_1 - 1.01x_3 + 1.003z_3 - z_4 = 200
      x_5 - 1.02y_2 - 1.01x_4 + 1.003z_4 - z_5 = -50
      -1.02v_3 - 1.01x_5 + 1.003z_5 - v = -300
      0 < x_i < 100, 1 < i < 5
      y_i > 0, 1 < i < 3
      z_i \ge 0, 1 < i < 5
      v > 0
```

Lösung und Output der Sensitivitätsanalyse

Basisvariablen	Wert	LB _i ^{(c} B)	$UB_i^{(c_B)}$
x ₂	50.9803	0	0.0032
x ₅	0	-10^{30}	0
<i>y</i> ₁	150	-0.0032	0.0040
<i>y</i> ₂	49.0196	-0.0032	0
У3	203.4343	0	0.0071
z ₃	351.9441	-0.0032	0.0039
v	92.4969	-1	10 ³⁰

Nichtbasisvariablen	Wert	Red. Kosten	$LB_i^{(C_N)}$	$UB_i^{(C_N)}$
<i>x</i> ₁	0	-0.0032	-10^{30}	0.0032
x ₃	0	-0.0071	-10^{30}	0.0071
x ₄	0	-0.0032	-10^{30}	0.0032
z ₁	0	-0.0040	-10^{30}	0.0040
z ₂	0	-0.0071	-10^{30}	0.0071
z ₄	0	-0.0039	-10^{30}	0.0039
<i>z</i> ₅	0	-0.007	-10^{30}	0.007

Restriktionen (Monate)	LB _i ^(b)	$UB_i^{(b)}$	Schattenpreise
Jän.	-150	89.17	-1.037
Feb.	-50.980	49.020	-1.030
Mär.	-203.434	90.683	-1.020
Apr.	-204.044	90.955	-1.017
Mai	-52	50	-1.010
Jun.	-10^{30}	92.497	-1

Restriktionen (obere Schranken)	$UB_i^{(b)}$	$-LB_i^{(b)}$	Schattenpreise
<i>x</i> ₁	10 ³⁰	100	0
<i>x</i> ₂	10 ³⁰ 10 ³⁰ 10 ³⁰ 10 ³⁰	49.020	0
<i>x</i> ₃	10 ³⁰	100	0
x_4	10 ³⁰	100	0
<i>x</i> ₅	10 ³⁰	100	0

Zusammenfassung der Ergebnisse der Sensitivitätsanalyse der linearen Optimierung (Maximierungsproblem)

Veränderung des Kostenkoeffizienten $c_{B(i)}$ der i-ten Basisvariable $x_{B(i)}$: $\tilde{C}_B = C_B + \Delta_i \cdot (0,0,\dots,0,1,0,\dots 0)^t$ Die Basis bleibt zulässig und die Basislösung bleibt unverändert. Die Basislösung bleibt optimal, dann und nur dann wenn $\Delta_i \in \left[LB_i^{(C_B)}, UB_i^{(C_B)}\right]$, wobei

$$UB_i^{(C_B)} := \min \left\{ \frac{(\bar{C}_N)_j}{(\bar{A}_N)_{ij}} : j \in \{1, 2, \dots, n-m\}, (\bar{A}_N)_{i,j} < 0 \right\}$$

$$LB_i^{(C_B)} := \max \left\{ \frac{(\bar{C}_N)_j}{(\bar{A}_N)_{ij}} : j \in \{1, 2, \dots, n-m\}, (\bar{A}_N)_{i,j} > 0 \right\}$$

und $\bar{A}_N = A_B^{-1} A_N$. Der Zielfunktionswert Z verändert sich: $\tilde{Z} = Z + \Delta_i \cdot (A_B^{-1} b)_i$.

Veränderung des Kostenkoeffizienten $c_{N(j)}$ der j-ten Nichtbasisvariablen $x_{N(j)}$: $\tilde{C}_N = C_N + \Delta_j \cdot (0,0,\dots,0,1,0,\dots 0)^t$ Die Basis bleibt zulässig und die Basislösung bleibt unverändert. Die Basislösung bleibt optimal, dann und nur dann wenn $\Delta_j \leq -\bar{C}_{N(j)}$; \bar{C}_N sind die reduzierten Kostenkoefficienten mit $\bar{C}_N^t := C_N^t - C_B^t A_B^{-1} A_N$.

Zusammenfassung der Ergebnisse der Sensitivitätsanalyse der linearen Optimierung (Maximierungsproblem)

Veränderung des Wertes einer Nicht-Basisvariablen $x_{(N(j))}: \tilde{X}_N = X_N + \Delta_j \cdot (0, 0, \dots, 0, 1, 0, \dots, 0)^t$

Die Lösung bleibt zulässig dann und nur dann, wenn
$$0 \le \Delta_j \le UB_j^{(X_N)}$$
 wobei
$$UB_j^{(X_N)} := \min \left\{ \frac{(\bar{b})_i}{(\bar{A}_N)_i} : i \in \{1,2,\ldots,m\}, (\bar{A}_N)_{i,j} > 0 \right\}$$

Der Zielfunktionswert Z verändert sich: $\tilde{Z}=Z+\Delta_j\cdot \bar{C}_{N(j)}$, d.h. die veränderte Lösung ist dann und nur dann optimal, wenn $\bar{C}_{N(j)}=0$.

Veränderung des Koeffizienten der rechten Seite b_i in der *i*-ten Restriktion: $\tilde{b}_i = b_i + \Delta_i \cdot (0, 0, \dots, 0, 1, 0, \dots, 0)^t$

Das Optimalitätskriterium bleibt erfüllt.

Die Basis bleibt dann und nur dann zulässig (und somit auch optimal), wenn $\Delta_i \in \left[LB_i^b\right], UB_i^b$, wobei

$$UB_i^{(b)} := \min \left\{ -\frac{(X_B)_j}{(A_B^{-1})_{ji}} : j \in \{1, 2, \dots, m\}, (A_B^{-1})_{ji} < 0 \right\}$$

$$LB_{i}^{(b)} := \max \left\{ -\frac{(X_{B})_{j}}{(A_{B}^{-1})_{ji}} : j \in \{1, 2, \dots, m\}, (A_{B}^{-1})_{ji} > 0 \right\}$$

Die neue Basislösung ist durch $\tilde{X}_B = X_b + A_B^{-1} \cdot (0, \dots, 0, 1, 0, \dots, 0)^t$, $\tilde{X}_N = X_N = \vec{0}$ gegeben.

Der Zielfunktionswert Z verändert sich: $\tilde{Z}=Z+\Delta_i\cdot \epsilon_B^t\left((A_B^{-1})_{\cdot,i}\right)$, wobei $(A_B^{-1})_{\cdot,i}$ die i. Spalte der Matrix A_B^{-1} darstellt. Die Größe $\epsilon_B^t\left((A_B^{-1})_{\cdot,i}\right)$ heißt Schattenpreis der i-ten Restriktion.

Ein weiteres LP-Modell: "dedicated portfolio"

Dieser Ansatz wird verwendet um ein Portfolio zu konstruieren, dessen positiver Kapitalfluss, den Verpflichtungen eines Unternehmens entspricht. So ein Portfolio enthält in der Regel risikolose, endfällige Anleihen (risk-free non-callable bonds) und hat somit kein Zinsrisiko. Das Portfolio bleibt unverändert bis alle Verpflichtungen, die es abdecken sollte, beglichen sind.

Ein Beispiel:

Periode (Jahr) t	1	2	3	4	5	6	7	8
Verpflichtung L_t in €10 ³	12	18	20	20	16	18	12	10

Anleihenindex	1	2	3	4	5	6	7	8	9	10
Preis p _i (in €)	102	90	101	98	98	104	100	101	102	94
Coupon c _i	5	3.5	5	3.5	4	9	6	8	9	7
Fälligkeit m _i	1	2	2	3	4	5	5	6	7	8

Überschüsse werden nicht investiert, sie verbleiben im Portfolio.

Sei T die Länge des Planungszeitraums, T=8, N die Anzahl der Anleihen, N=10, und z_0 das im Portfolio zu investierende Kapital am Anfang des Planungshorizonts.

Ziel: Aufstellung eines "dedicated portfolio" mit minimalen Kosten,

Das lineare Optimierungsmodell

Entscheidungsvariablen:

 x_i : Höhe des in Anleihe i investierten Kapitals, $1 \le i \le N$

 z_t : Überschuss am Ende des Jahr t, $1 \le t \le T$

$$\begin{aligned} & \min & z_0 + \sum_{i=1}^N p_i x_i \\ & \text{s.t.} & \\ & & \sum_{i=1: \atop m_i \geq t}^N c_i x_i + \sum_{i=1: \atop m_i = t}^N x_i - z_t + z_{t-1} = L_t & \forall 1 \leq t \leq T \\ & & x_i \geq 0 \,, \, 1 \leq i \leq N \\ & & z_t \geq 0 \,, \, 1 \leq t \leq T \end{aligned}$$

Lösung und Output der Sensitivitätsanalyse

Basisvariablen	Wert	$LB_i^{(c_B)}$	$UB_i^{(c_B)}$
<i>x</i> ₁	62.1361	-5.5909	3
x3	125.2429	-3.3110	0.8426
x ₄	151.5050	-4.7123	3.3741
x ₅	156.8077	-17.2316	4.9172
x ₆	123.0800	-3.7481	9.0355
x ₈	124.1572	-8.6554	3.9888
<i>x</i> ₉	104.0898	-0.8605	9.4568
x ₁₀	93.4579	-93.4579	0.9000

Nichtbasisvariablen	Wert	Red. Kosten	$LB_i^{(C_N)}$	$UB_i^{(C_N)}$
<i>x</i> ₂	0	0.8386	-0.8386	10 ³⁰
x ₇	0	8.7868	-8.7868	10 ³⁰
<i>z</i> ₀	0	0.0285	-0.0285	10 ³⁰
z_1	0	0.0557	-0.0557	10 ³⁰
z_2	0	0.0326	-0.0326	10 ³⁰
z ₃	0	0.0472	-0.0472	10 ³⁰
z_4	0	0.1793	-0.1793	10 ³⁰
<i>z</i> ₅	0	0.0369	-0.0369	10 ³⁰
<i>z</i> ₆	0	0.0867	-0.0867	10 ³⁰
<i>z</i> ₇	0	0.0084	-0.0084	10 ³⁰
Zo	0	0.5242	-0.5242	10 ³⁰

Restriktionen (über die Jahre)	$LB_i^{(b)}$	$UB_i^{(b)}$	Schattenpreise
1	-6524.29	10 ³⁰	0.9714
2	-13150.50	137010.16	0.9156
3	-15680.77	202579.30	0.8830
4	-16308.00	184347.17	0.8357
5	-13415.72	89305.96	0.6563
6	-13408.98	108506.74	0.6194
7	-11345.79	105130.97	0.5327
8	-10000	144630.19	0.5242