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Theorem:(Stochastic representation)

A d-dimensional random vector X is elliptically distributed,

X ~ Eq(p, X,v) with rang(X) = k, iff there exist a matrix A € R,
ATA =¥, a nonnegative r.v. R and a k-dimensional random vector U
uniformly distributed on the unit ball S*"! = {z € R*: 27z = 1}, such

that R and U are independent and X < 4 + RAU.
Remark: An elliptically distributed random vector X ist radial symmetric,
i.e.X—uiu—X.
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Example: Gaussian copulas are elliptical copulas

Let CS? be the copula of a d-dimensional normal distribution with
correlation matrix R. Then CS?(u) = ¢%(¢~(u1), ..., ¢ (ug)) holds,
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standard normal distribution function.

Since the normal distribution is elliptic, the Gaussian copula Cga is by
definition an elliptic copula.

In the bivariate case we have:
—1 —1 _(x2_2 2
C,‘ga(ula ) = ffoo(m) ffOO(UZ) 27r(1,1p2)1/2 exp { (X12(1p_><;;<§+x2)} dxidxz,

where p € (—1,1).
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Definition: Let X < W+ %AZ ~ ty(e, i, X), where p € R?, a € N,

a>1,5~x2, Ac R with AA* =%, Z ~ Ni(0, ), and S and Z
independent. We say that X has a d-dimensional t-distribution with
expectation  (for a > 1) and covariance matrix Cov(X) = —45¥.
(o > 2 should hold, Cov(X) does not exist for o < 2.)
Definition: The (unique) copula Cl g of X is called t-copula:

ar() = 16 p(ty (u), ., t5 (ua)).

R , . .
Rj = et i,j=1,2...,d, is the correlation matrix of AZ.
td  is the cdf of Y2V, where S ~ )2, Z ~ Ni(0,R), and S, Y are

independent. t, are the marginal distributions of t< .
In the bivariate case (d = 2):

5 (w) t N (u2) ) >, 5y —at2
X{ — 2pX1 X2 + X
Caunlin, ) = / / 27r(1—p2)1/2{1+ 1 a(f—lpz?) 2} Packe

for p € (—1,1). Ryp is the linear correlation coefficient of the
corresponding bivariate t,-distribution for o > 2.
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Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is

. . . d
called radial symmetric around a, for some a € ]Rd, iff X—a=a—X.

Example: An elliptically distributed random vector
X ~ Eg(pu, X,0) € RY is radial symmetric around p.

Definition: (Radial symmetry of copulas)
A copula C is called radial symmetric iff

(U —05,...,Us—05)Z (05— U,...,05 - Uy) == UZ1- U,

where (Uy, Us, ..., Uy) is a random vector with distribution function C.
For a radial symmetric copula C = C holds.

Example: Elliptical copulas are radial symmetric.
The Gumbel and Clayton Copulas are not radial symmetric. Why?
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The density function of a copula

Not every copula has a density function. For example the co-monotony
copula M and the anti-monotony copula W do not have a density
function.

If the density function ¢ of a copula C exists, then we have

8C(U1, u,..., ud)
c(ul,UQ,...7Ud): OuOus ... 0uy '

Let C be the copula of a distribution F with differentiable marginal
distributions Fi,...,Fq4. By differentiating

Clur,y ..., uq) = F(Ff (), ..., Fy (uq))
we obtain the density ¢ of C:

_ (RN (w), - Pyt (ua))
f(F () fa(Fy (ua))

where f is the density function of F, f; are the marginal density
functions, and F,-_1 are the inverse functions of F;, for 1 </ < d,

c(ug,...,uq)
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Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula C5? and the t-Copula
le’P, if P is an equicorrelation matrix, i.e. R = pJg + (1 — p)lg.

Jg € R?*? is a matrix consisting only of ones, and Iy € IRY*? is the
d-dimensional identity matrix.

For bivariate exchangeable copulas we have:

P(U2 S U2|U1 = Ul) = P(U1 S U2|U2 = Ul).
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Theorem: Let (Xl,Xg)T be a normally distributed random vector. Then
Au(Xl, Xg) = /\[_(Xl, XQ) = 0 holds.

Corollary: Let (X1,X2)T be a random vector with continuous marginal
distributions and let CPGa be a Gaussian copula, where p is the linear
correlation coefficient of X; and Xa. The Ay(X1, X2) = A\ (X1, X2) =0
holds.

Theorem: Let (X1, X2)" ~ (0,7, R) be a random vector with a
t-distribution and v degrees of freedom, expectation 0 and linear
correlation matrix R. For Ri» > —1 we have

T 1-R
Au(Xe, X2) = Au(Xe, Xo) = 2t (m%)

The proof is similar to the proof of the analogous theorem about the
Gaussian copulas.
Hint:

v4+1\Y? Xo — px
Ntu+1

Xo| Xy = x ~
2|1 X <I/+X2 1_p2



