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Theorem: Let G be a distribution function on [0, o) such that
G(O) = 0. Let ¢ be the Laplace-Stieltjes transform of G, i.e.

fo e dG(x) for s > 0. Let X be a r.v. with distribution
functlon G and let U1, Us, ..., Uy be conditionally independent r.v. for
X = x, x € R", with conditional distribution function

Fu, i x=x(u) = exp(—xy~*(u)) for u € [0,1].
Then

Prob(Uy < u1, Uy < uz, ..., Ug < ug) = (0 w)+ H(u)+. . A9~ (ug))

and the distribution function of U = (U, Us, ..., Uy) is an Archimedian
copula with generator 1.

Advantages and disadvantages of Archimedian copulas:
» can model a broader class of dependencies
» have a closed form representation
» depend on a small number of parameters in general
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the generator function needs to fulfill quite restrictive technical
assumptions
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Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix R € IRY*? and
its Cholesky factorization AAT = R with A € R¥*9. If
Zy,2,,...,Z4 ~ N(0,1) are independent, then p+ AZ ~ Ngy(u, R).

Algorithm: for the generation of a random vector U = (Ui, Us, ..., Uq)
whose distribution function is the copula C§?, R positive definite with all
ones on the main diagonal.

» Compute the Cholesly factorization of R: R = AAT.

» Simulate d independent standard normally distributed r.v.
Zy,2,,...,2q4 ~ N(0,1)

> Set X = AZ

> Set Uy := ¢(Xk) for k =1,2,...,d, where ¢ is the standard normal
distribution function.

» Output U = (Ui, Ua, ..., Ug); U has distribution function C§°.
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Simulation of t-copulas

Algorithm: for the generation of a random vector U = (Ui, U, ..., Uq)
whose distribution function is the copula CJ ¢, R positive definite with all
ones on the main diagonal, v € IN.

» Compute the Cholesly factorization of R: R = AAT.

» Simulate d independent standard normally distributed r.v.
Zy,2,,...,2q4 ~ N(0,1)

» Simulate a r.v. S ~ X2 independent from von Zy,..., Z,.
» Set Y :.=AZ
— Y
> Set X := \/gY
» Set Uy = t,(Xk) for k =1,2,...,d, where t, is the distribution

function of a standard t-distribution with v degrees of freedom.

> Output U= (Ul, Us, ..., Ud); U= (Ul, Us, ..., Ud) has
distribution function C/ p.
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Simulation of Archimedian copulas

A generic algorithm to generate a random vector U = (U, Uz, ..., Uy)
with a given Archimedian copula as cumulative distribution function
Input: The dimension d € IN, the Archimedian Copula

C(u) = o Hp(u1) + o(u2) + ... + (uq)) specified in terms of its
generator .

» Simulate a variable X with distribution function G, such that the

Laplace-Stieltjes transform v of G is the inverse function of the

generator ¢ of the input copula, ¥ = ¢ 1.

» Simulate d i.i.d. r.v. Vi, Va,. .., Vy uniformly distributed on [0, 1].

> Set U = (¢4(=In(V1)/X), (= In(V2)/X),.... (= In(Va)/ X)).
The distribution function of U is C.
Output: U
The generator p(t) = (t=% —1)/6, 6 > 0 yields the Clayton copula CS'.
Alternatively also 3(t) = t=% — 1 is a generator of the Clayton copula.
For X ~ Gamma(1/6,1) with d.f. fx(x) = (x}/¢~1e=) /T(1/6) we have:
E(em) =I5 e ribgyx/* le xdx = (s + 1) 10 = g7(s).
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Simulation of the Clayton copula (¢ > 0)

A generic algorithm to generate a random vector U = (U, Us, . .., Uy)
with the Clayton CS' copula as distribution function.

Input: The dimension d € IN, the parameter 6 > 0.
» Simulate X ~ Gamma(1/6,1).
> Set ¢(s) :=(s+1)"¢ for s > 0.
» Simulate d i.i.d. r.v. Vi, Va,. .., Vy uniformly distributed on [0, 1].

» The distribution function of
U= (= In(V1)/X), (= In(V2)/X), ..., (= In(Vag) /X))

is the Clayton copula Cf'.

Output: U
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Simulation of the Gumbel copula (¢ > 1)

Let X be a positive stable r.v., X ~ 5t(1/6,1,+,0) with
v = (cos(n/(20)))? >0 (and =3, B =1, 6 =0)

The Laplace-Stieltjes transform of Fx is the generator (t) = exp(—t'/?)
of the Gumbel copula C$*.

The simulation of Z ~ ST (a, $,1,0) is not straightforward (see Nolan
2002).

For a £ 1 we get: X =6 +~vZ ~ St(a, 8,7, 9).
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Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a
given multi-dimensional data set.

Input: A sample {X1, X,..., X4} of a c.d.f. F with continuous marginal
distributions F1, Fo,..., Fqg.

Output: A copula Cy and an estimator 0 for the parameter vector 6 of
the copula Cy such which F(x) = Cs(F1(x1), ..., Fa(xq)) holds.
Question 1: Which family of (known) copulas to use?

Answer: Selection of a suitable family of copulas based on (a) the visual
comparison of the graphical representations of the data set on one side
and of known copulas on the other, and (b) the empirical tail dependence
coefficients.

Question 2: What are the parameters of the prespecified family of
copulas used for the modelling?
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Parameter estimation for C$?, Ct, C<' and C

CR? = dR(¢~H(u), ., 07 (ua)) Rij = sin(m(pr)ij/2)
Cor=thr(t, (), .t (ua)) Rij = sin(m(p-)ij/2)

Crt(u) = exp (—[(=Inuy)’ +... + (= Inug]"?) 0 =1/(1 - (p)y)

)= (u 4. 4 ug’ —d+1)72° 0 = 2(p+)i/(1 = (p+)i)
where
(pr)i = pr(Xeis Xij)

= P((Xk,i — X1,))(Xi,j — Xij) > 0) = P((X,i — X1,i)(Xkj — Xi,j) <0)
= E(sign((Xx,i — X,))(Xkj — X1,/)))-

Standard empirical estimator of Kendalls Tau:
- -1 .
prii=(3)  Lickercn sign((Xui — Xi,)(Xj — X1,7))-
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Calibration of the correlation matrix for Gaussian and
t-copulas

It may happen that R = (R;), Rj = sin(mp-;;/2), is not positive definite.
Replace R by a correlation matrix R*, selected such the “distance”
between R* and R is “small”.

Eigenvalue approach (Rousseeuw and Molenberghs 1993)

» Compute the spectral decomposition R = F/\FTA of R, where A is a
diagonal matrix, containing the eigenvalues of R on the diagonal,
and [ is an orthogonal matrix with the eigenvectors of R in its
columns.

> Replace the negative eigenvalues in A by some small number § >0
to obtain A.

» Compute R = TAT7. R is symmetric and positive definite but not
necessarily a correlation matrix; the diagonal elements R;; might be
unequal 1.

> Set R* := DRD where D is a diagonal matrix with
Drk = 1/1/ Ri k-



Estimation of the number of the degrees of freedom v
for t-copulas



Estimation of the number of the degrees of freedom v
for t-copulas

1. Let /:_1, /:_d be the estimated marginal distributions.



Estimation of the number of the degrees of freedom v
for t-copulas

1. Let /:_1, /:_d be the estimated marginal distributions.

2. Generate a pseudo-sample of the copula
Oc = (U1, Oz, ..., Oig) = (ﬁl(Xk,l)a ce 'Ed(Xk,d))a

for k =1,2,...,n (see Genest und Rivest 1993).



Estimation of the number of the degrees of freedom v
for t-copulas

1. Let /:_1, /:_d be the estimated marginal distributions.
2. Generate a pseudo-sample of the copula
Oc = (U1, Oz, ..., Oig) = (ﬁl(Xk,l)a ce 'Ed(Xk,d)),
for k =1,2,...,n (see Genest und Rivest 1993).

Fi can be generated by :

» a parametric estimation method;
Fy is assumed to be a certain parametric distribution and the
parameter is estimated by a maximum likelihood (ML) approach



Estimation of the number of the degrees of freedom v
for t-copulas

1. Let /:_1, /:_d be the estimated marginal distributions.

2. Generate a pseudo-sample of the copula
Oc = (U1, Oz, ..., Oig) = (ﬁl(Xk,l)a ce 'Ed(Xk,d)),

for k =1,2,...,n (see Genest und Rivest 1993).

Fi can be generated by :

» a parametric estimation method;
Fy is assumed to be a certain parametric distribution and the
parameter is estimated by a maximum likelihood (ML) approach

> a non-parametric estimation method;

Fi is the empirical distribution function Fi(x) = =15 S0 1 Iix,,<x.
1<i<d.



Estimation of the number of the degrees of freedom v
for t-copulas (contd.)



Estimation of the number of the degrees of freedom v
for t-copulas (contd.)

Maximum likelihood estimator of v: v = arg max¢ In L(¢; Oy, 0, ..., 0,,)



Estimation of the number of the degrees of freedom v
for t-copulas (contd.)

Maximum likelihood estimator of v: v = arg max¢ In L(¢; Oy, 0, ..., 0,,)
where

L(gv 017 027 sy 0!1) = nz:lcg,R(Uk)
and cf g is the density of the t-copula C{ .

This implies R
In L(f Ul, U27 ey Un) =

n d
Z|ngg7R(t§71(Uk’1),...,t€ k, Ingg tE Uk", ),
k=1 k=1 j=1



Estimation of the number of the degrees of freedom v
for t-copulas (contd.)

Maximum likelihood estimator of v: v = arg max¢ In L(¢; Oy, 0, ..., 0,,)
where

L(gv 017 027 sy 0!1) = nz:lcg,R(Uk)
and cf g is the density of the t-copula C{ .

This implies A
InL(& O, O,..., 0,) =
n n d
Zlngﬁ,R(tgl(Uk,l)a ey t& k, Zlngﬁ t& de ),
k=1 k=1 j=1

where g¢ g is the cumulative density function of a d-dimensional
t-distribution with expectation 0 ¢ degrees of freedom and correlation
matrix R, and g¢ is the density function of a univariate standard
t-distribution with £ degrees of freedom.



