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The distribution function of U is C.
Output: U
The generator p(t) = (t=% —1)/6, 6 > 0 yields the Clayton copula CS'.
Alternatively also 3(t) = t=% — 1 is a generator of the Clayton copula.
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Let X be a positive stable r.v., X ~ 5t(1/6,1,+,0) with
v = (cos(n/(20)))? >0 (and a =3, B =1, 6 =0)

The Laplace-Stieltjes transform of Fx is the generator (t) = exp(—t'/?)
of the Gumbel copula CS.

The simulation of Z ~ ST(a, §,1,0) is not straightforward (see Nolan
2001, Borak et al. 2005, Dassios et al. 2020).

Simulation in R: package stabledist, 2016

For a # 1 we get: X =3 +~Z ~ St(a, 8,7, 9).



Calibration of copulas



Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a
given multi-dimensional data set.



Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a
given multi-dimensional data set.

Input: A sample {X1, Xa,..., X4} of a j.d.f. F with continuous marginal
distributions F1, Fo,..., Fqg.



Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a
given multi-dimensional data set.

Input: A sample {X1, Xa,..., X4} of a j.d.f. F with continuous marginal
distributions F1, Fo,..., Fqg.

Output: A copula Cy and an estimator 0 for the parameter vector 6 of
the copula Cy such which F(x) = Cs(F1(x1), ..., Fa(xq)) holds.



Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a
given multi-dimensional data set.

Input: A sample {X1, Xa,..., X4} of a j.d.f. F with continuous marginal
distributions Fq, Fo,..., F4.

Output: A copula Cy and an estimator 0 for the parameter vector 6 of
the copula Cy such which F(x) = Cs(F1(x1), ..., Fa(xq)) holds.
Question 1: Which family of (known) copulas to use?



Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a
given multi-dimensional data set.

Input: A sample {X1, Xa,..., X4} of a j.d.f. F with continuous marginal
distributions Fq, Fo,..., F4.

Output: A copula Cy and an estimator 0 for the parameter vector 6 of
the copula Cy such which F(x) = Cs(F1(x1), ..., Fa(xq)) holds.
Question 1: Which family of (known) copulas to use?

Answer: Selection of a suitable family of copulas based on

(a) the visual comparison of the graphical representations of the data set

on one side and of known copulas on the other, and
(b) the empirical tail dependence coefficients.



Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a
given multi-dimensional data set.

Input: A sample {X1, Xa,..., X4} of a j.d.f. F with continuous marginal
distributions Fq, Fo,..., F4.

Output: A copula Cy and an estimator 0 for the parameter vector 6 of
the copula Cy such which F(x) = Cs(F1(x1), ..., Fa(xq)) holds.
Question 1: Which family of (known) copulas to use?

Answer: Selection of a suitable family of copulas based on

(a) the visual comparison of the graphical representations of the data set

on one side and of known copulas on the other, and
(b) the empirical tail dependence coefficients.

Question 2: What are the parameters of the prespecified family of
copulas used for the modelling?
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where
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= P((Xi = X)(Xej = Xi3) > 0) = P((X; = X7)(X; — X}) < 0)

= E(sign((Xi = X))(X; — X7))).

where X’ is an i.i.d. copy of X.
Standard empirical estimator of Kendalls Tau:

—~ —1 .
Prij = (3) " Cickericn Sign((Xe,i — X1.i)(Xij — X1,)-
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Calibration of the correlation matrix for Gaussian and
t-copulas

It may happen that R = (R;), Rj = sin(mp-;;/2), is not positive definite.
Replace R by a correlation matrix R*, selected such that the “distance”
between R* and R is “small”.

Eigenvalue approach (Rousseeuw and Molenberghs 1993)

» Compute the spectral decomposition R = F/\FTA of R, where A is a
diagonal matrix, containing the eigenvalues of R on the diagonal,
and [ is an orthogonal matrix with the eigenvectors of R in its
columns.

> Replace the negative eigenvalues in A by some small number § >0
to obtain A.

» Compute R = TAT7. R is symmetric and positive definite but not
necessarily a correlation matrix; the diagonal elements R;; might be
unequal 1.

> Set R* := DRD where D is a diagonal matrix with
Drk = 1/1/ Ri k-
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1. Let /:_1, /:_d be the estimated marginal distributions.

2. Generate a pseudo-sample of the copula
Oc = (U1, Oz, ..., Oig) = (ﬁl(Xk,l)a ce 'Ed(Xk,d)),

for k =1,2,...,n (see Genest und Rivest 1993).

Fi can be generated by :

» a parametric estimation method;
Fy is assumed to be a certain parametric distribution and the
parameter is estimated by a maximum likelihood (ML) approach

> a non-parametric estimation method;

Fi is the empirical distribution function Fi(x) = =15 S0 1 Iix,,<x.
1<i<d.
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Estimation of the number of the degrees of freedom v
for t-copulas (contd.)

Maximum likelihood estimator of v: v = arg max¢ In L(¢; Ul, 02, e U,,)
where

L(f. 01; 027 ) 0") = nz:lcﬁt,R(Uk)

and ¢ g is the density of the t-copula C{ ¢.

This implies )
In L(&; Ul,UQ,.. yUn) =
n n d
Z|ng§’R(t£_1(Uk71),...,t§ k, Zlngg tf ka ),
k=1 k=1 j=1
where

8¢.r is the joint distribution function of a d-dimensional t-distribution
with expectation 0, & degrees of freedom and correlation matrix R,

te is the distribution function of a univariate standard t-distribution with
& degrees of freedom and g¢ is its density.



