A generic algorithm to generate a random vector $U = (U_1, U_2, \dots, U_d)$ with a given Archimedian copula as cumulative distribution function

A generic algorithm to generate a random vector $U=(U_1,U_2,\ldots,U_d)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d\in\mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}(\varphi(u_1)+\varphi(u_2)+\ldots+\varphi(u_d))$ specified in terms of its generator φ .

A generic algorithm to generate a random vector $U=(U_1,U_2,\ldots,U_d)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d\in\mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}(\varphi(u_1)+\varphi(u_2)+\ldots+\varphi(u_d))$ specified in terms of its generator φ .

▶ Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi = \varphi^{-1}$.

A generic algorithm to generate a random vector $U=(U_1,U_2,\ldots,U_d)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d\in\mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}(\varphi(u_1)+\varphi(u_2)+\ldots+\varphi(u_d))$ specified in terms of its generator φ .

- ▶ Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi = \varphi^{-1}$.
- ► Simulate d i.i.d. r.v. V_1, V_2, \ldots, V_d uniformly distributed on [0, 1].

A generic algorithm to generate a random vector $U=(U_1,U_2,\ldots,U_d)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d\in\mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}(\varphi(u_1)+\varphi(u_2)+\ldots+\varphi(u_d))$ specified in terms of its generator φ .

- ▶ Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi = \varphi^{-1}$.
- ▶ Simulate d i.i.d. r.v. $V_1, V_2, ..., V_d$ uniformly distributed on [0, 1].
- ▶ Set $U = (\psi(-\ln(V_1)/X), \psi(-\ln(V_2)/X), \dots, \psi(-\ln(V_d)/X))$. The distribution function of U is C.

A generic algorithm to generate a random vector $U=(U_1,U_2,\ldots,U_d)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d\in\mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}(\varphi(u_1)+\varphi(u_2)+\ldots+\varphi(u_d))$ specified in terms of its generator φ .

- ▶ Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi = \varphi^{-1}$.
- ▶ Simulate d i.i.d. r.v. $V_1, V_2, ..., V_d$ uniformly distributed on [0, 1].
- ▶ Set $U = (\psi(-\ln(V_1)/X), \psi(-\ln(V_2)/X), \dots, \psi(-\ln(V_d)/X))$. The distribution function of U is C.

Output: U

A generic algorithm to generate a random vector $U=(U_1,U_2,\ldots,U_d)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d\in\mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}(\varphi(u_1)+\varphi(u_2)+\ldots+\varphi(u_d))$ specified in terms of its generator φ .

- ▶ Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi = \varphi^{-1}$.
- ▶ Simulate d i.i.d. r.v. $V_1, V_2, ..., V_d$ uniformly distributed on [0, 1].
- ▶ Set $U = (\psi(-\ln(V_1)/X), \psi(-\ln(V_2)/X), \dots, \psi(-\ln(V_d)/X))$. The distribution function of U is C.

Output: U

The generator $\varphi(t)=(t^{-\theta}-1)/\theta$, $\theta>0$ yields the Clayton copula C_{θ}^{Cl} .

A generic algorithm to generate a random vector $U=(U_1,U_2,\ldots,U_d)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d\in\mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}(\varphi(u_1)+\varphi(u_2)+\ldots+\varphi(u_d))$ specified in terms of its generator φ .

- ▶ Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi = \varphi^{-1}$.
- ▶ Simulate d i.i.d. r.v. $V_1, V_2, ..., V_d$ uniformly distributed on [0, 1].
- ▶ Set $U = (\psi(-\ln(V_1)/X), \psi(-\ln(V_2)/X), \dots, \psi(-\ln(V_d)/X))$. The distribution function of U is C.

Output: U

The generator $\varphi(t)=(t^{-\theta}-1)/\theta$, $\theta>0$ yields the Clayton copula C_{θ}^{Cl} . Alternatively also $\tilde{\varphi}(t)=t^{-\theta}-1$ is a generator of the Clayton copula.

A generic algorithm to generate a random vector $U=(U_1,U_2,\ldots,U_d)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d\in\mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}(\varphi(u_1)+\varphi(u_2)+\ldots+\varphi(u_d))$ specified in terms of its generator φ .

- ▶ Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi = \varphi^{-1}$.
- ▶ Simulate d i.i.d. r.v. $V_1, V_2, ..., V_d$ uniformly distributed on [0, 1].
- Set $U = (\psi(-\ln(V_1)/X), \psi(-\ln(V_2)/X), \dots, \psi(-\ln(V_d)/X))$. The distribution function of U is C.

Output: U

The generator $\varphi(t)=(t^{-\theta}-1)/\theta$, $\theta>0$ yields the Clayton copula C_{θ}^{Cl} . Alternatively also $\tilde{\varphi}(t)=t^{-\theta}-1$ is a generator of the Clayton copula.

For
$$X \sim Gamma(1/\theta, 1)$$
 with d.f. $f_X(x) = (x^{1/\theta - 1}e^{-x})/\Gamma(1/\theta)$ we have: $E(e^{-sX}) = \int_0^\infty e^{-sx} \frac{1}{\Gamma(1/\theta)} x^{1/\theta - 1} e^{-x} dx = (s+1)^{-1/\theta} = \tilde{\varphi}^{-1}(s)$.

A generic algorithm to generate a random vector $U = (U_1, U_2, \dots, U_d)$ with the Clayton C_{θ}^{Cl} copula as distribution function.

A generic algorithm to generate a random vector $U = (U_1, U_2, \dots, U_d)$ with the Clayton C_{θ}^{Cl} copula as distribution function.

Input: The dimension $d \in \mathbb{N}$, the parameter $\theta > 0$.

A generic algorithm to generate a random vector $U = (U_1, U_2, \dots, U_d)$ with the Clayton C_{θ}^{Cl} copula as distribution function.

Input: The dimension $d \in \mathbb{N}$, the parameter $\theta > 0$.

▶ Simulate $X \sim Gamma(1/\theta, 1)$.

A generic algorithm to generate a random vector $U = (U_1, U_2, \dots, U_d)$ with the Clayton C_{θ}^{Cl} copula as distribution function.

Input: The dimension $d \in \mathbb{N}$, the parameter $\theta > 0$.

- ▶ Simulate $X \sim Gamma(1/\theta, 1)$.

A generic algorithm to generate a random vector $U = (U_1, U_2, \dots, U_d)$ with the Clayton C_{θ}^{Cl} copula as distribution function.

Input: The dimension $d \in \mathbb{N}$, the parameter $\theta > 0$.

- ▶ Simulate $X \sim Gamma(1/\theta, 1)$.
- ▶ Simulate d i.i.d. r.v. $V_1, V_2, ..., V_d$ uniformly distributed on [0, 1].

A generic algorithm to generate a random vector $U = (U_1, U_2, \dots, U_d)$ with the Clayton C_{θ}^{Cl} copula as distribution function.

Input: The dimension $d \in \mathbb{N}$, the parameter $\theta > 0$.

- ▶ Simulate $X \sim Gamma(1/\theta, 1)$.
- Set $\psi(s) := (s+1)^{-\frac{1}{\theta}}$ for $s \ge 0$.
- ▶ Simulate *d* i.i.d. r.v. $V_1, V_2, ..., V_d$ uniformly distributed on [0, 1].
- The distribution function of

$$U = (\psi(-\ln(V_1)/X), \psi(-\ln(V_2)/X), \dots, \psi(-\ln(V_d)/X))$$

is the Clayton copula C_{θ}^{CI} .

A generic algorithm to generate a random vector $U = (U_1, U_2, \dots, U_d)$ with the Clayton C_{θ}^{Cl} copula as distribution function.

Input: The dimension $d \in \mathbb{N}$, the parameter $\theta > 0$.

- ▶ Simulate $X \sim Gamma(1/\theta, 1)$.
- ▶ Simulate *d* i.i.d. r.v. $V_1, V_2, ..., V_d$ uniformly distributed on [0, 1].
- The distribution function of

$$U = (\psi(-\ln(V_1)/X), \psi(-\ln(V_2)/X), \dots, \psi(-\ln(V_d)/X))$$

is the Clayton copula C_{θ}^{CI} .

Output: U

Simulation of the Gumbel copula ($\theta \ge 1$)

Simulation of the Gumbel copula ($\theta \ge 1$)

Let X be a positive stable r.v., $X \sim St(1/\theta,1,\gamma,0)$ with $\gamma = (\cos(\pi/(2\theta)))^{\theta} > 0$ (and $\alpha = \frac{1}{\theta}$, $\beta = 1$, $\delta = 0$)

Simulation of the Gumbel copula $(\theta \ge 1)$

Let X be a positive stable r.v., $X \sim St(1/\theta,1,\gamma,0)$ with $\gamma = (\cos(\pi/(2\theta)))^{\theta} > 0$ (and $\alpha = \frac{1}{\theta}$, $\beta = 1$, $\delta = 0$)

The Laplace-Stieltjes transform of F_X is the generator $\varphi(t) = \exp(-t^{1/\theta})$ of the Gumbel copula C_{θ}^{Gu} .

Simulation of the Gumbel copula ($\theta \geq 1$)

Let X be a positive stable r.v., $X \sim St(1/\theta, 1, \gamma, 0)$ with $\gamma = (\cos(\pi/(2\theta)))^{\theta} > 0$ (and $\alpha = \frac{1}{\theta}$, $\beta = 1$, $\delta = 0$)

The Laplace-Stieltjes transform of F_X is the generator $\varphi(t) = \exp(-t^{1/\theta})$ of the Gumbel copula C_{θ}^{Gu} .

The simulation of $Z \sim ST(\alpha, \beta, 1, 0)$ is not straightforward (see Nolan 2001, Borak et al. 2005, Dassios et al. 2020).

Simulation of the Gumbel copula ($\theta \geq 1$)

Let X be a positive stable r.v., $X \sim St(1/\theta, 1, \gamma, 0)$ with $\gamma = (\cos(\pi/(2\theta)))^{\theta} > 0$ (and $\alpha = \frac{1}{\theta}$, $\beta = 1$, $\delta = 0$)

The Laplace-Stieltjes transform of F_X is the generator $\varphi(t) = \exp(-t^{1/\theta})$ of the Gumbel copula C_{θ}^{Gu} .

The simulation of $Z\sim ST(\alpha,\beta,1,0)$ is not straightforward (see Nolan 2001, Borak et al. 2005, Dassios et al. 2020).

Simulation in R: package stabledist, 2016

Simulation of the Gumbel copula ($\theta \geq 1$)

Let X be a positive stable r.v., $X \sim St(1/\theta, 1, \gamma, 0)$ with $\gamma = (\cos(\pi/(2\theta)))^{\theta} > 0$ (and $\alpha = \frac{1}{\theta}$, $\beta = 1$, $\delta = 0$)

The Laplace-Stieltjes transform of F_X is the generator $\varphi(t) = \exp(-t^{1/\theta})$ of the Gumbel copula C_{θ}^{Gu} .

The simulation of $Z \sim ST(\alpha, \beta, 1, 0)$ is not straightforward (see Nolan 2001, Borak et al. 2005, Dassios et al. 2020).

Simulation in R: package stabledist, 2016

For $\alpha \neq 1$ we get: $X = \delta + \gamma Z \sim St(\alpha, \beta, \gamma, \delta)$.

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.

Input: A sample $\{X_1, X_2, \dots, X_d\}$ of a j.d.f. F with continuous marginal distributions F_1, F_2, \dots, F_d .

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.

Input: A sample $\{X_1, X_2, \dots, X_d\}$ of a j.d.f. F with continuous marginal distributions F_1, F_2, \dots, F_d .

Output: A copula C_{θ} and an estimator $\hat{\theta}$ for the parameter vector θ of the copula C_{θ} such which $F(x) \approx C_{\hat{\theta}}(F_1(x_1), \dots, F_d(x_d))$ holds.

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.

Input: A sample $\{X_1, X_2, \dots, X_d\}$ of a j.d.f. F with continuous marginal distributions F_1, F_2, \dots, F_d .

Output: A copula C_{θ} and an estimator $\hat{\theta}$ for the parameter vector θ of the copula C_{θ} such which $F(x) \approx C_{\hat{\theta}}(F_1(x_1), \dots, F_d(x_d))$ holds.

Question 1: Which family of (known) copulas to use?

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.

Input: A sample $\{X_1, X_2, \dots, X_d\}$ of a j.d.f. F with continuous marginal distributions F_1, F_2, \dots, F_d .

Output: A copula C_{θ} and an estimator $\hat{\theta}$ for the parameter vector θ of the copula C_{θ} such which $F(x) \approx C_{\hat{\theta}}(F_1(x_1), \dots, F_d(x_d))$ holds.

Question 1: Which family of (known) copulas to use?

Answer: Selection of a suitable family of copulas based on

- (a) the visual comparison of the graphical representations of the data set on one side and of known copulas on the other, and
- (b) the empirical tail dependence coefficients.

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.

Input: A sample $\{X_1, X_2, \dots, X_d\}$ of a j.d.f. F with continuous marginal distributions F_1, F_2, \dots, F_d .

Output: A copula C_{θ} and an estimator $\hat{\theta}$ for the parameter vector θ of the copula C_{θ} such which $F(x) \approx C_{\hat{\theta}}(F_1(x_1), \dots, F_d(x_d))$ holds.

Question 1: Which family of (known) copulas to use?

Answer: Selection of a suitable family of copulas based on

- (a) the visual comparison of the graphical representations of the data set
- on one side and of known copulas on the other, and
- (b) the empirical tail dependence coefficients.

Question 2: What are the parameters of the prespecified family of copulas used for the modelling?

Parameter estimation for C_R^{Ga} , $C_{\nu,R}^t$, C_{θ}^{Cl} and C_{θ}^{Gu}

$$C_R^{Ga} = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$$
 $R_{ij} = \sin(\pi(\rho_\tau)_{ij}/2)$

Parameter estimation for C_R^{Ga} , $C_{\nu,R}^t$, C_{θ}^{Cl} and C_{θ}^{Gu}

$$C_R^{Ga} = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$$

$$R_{ij} = \sin(\pi(\rho_{ au})_{ij}/2)$$

$$C_{\nu,R}^t = t_{\nu,R}^d(t_{\nu}^{-1}(u_1),\ldots,t_{\nu}^{-1}(u_d))$$

$$R_{ij} = \sin(\pi(\rho_{\tau})_{ij}/2)$$

Parameter estimation for C_R^{Ga} , $C_{\nu,R}^t$, C_{θ}^{CI} and C_{θ}^{Gu}

$$C_R^{Ga} = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$$
 $R_{ij} = \sin(\pi(\rho_\tau)_{ij}/2)$

$$C_{
u,R}^t = t_{
u,R}^d(t_{
u}^{-1}(u_1), \dots, t_{
u}^{-1}(u_d))$$
 $R_{ij} = \sin(\pi(\rho_{\tau})_{ij}/2)$

$$C^{Gu}_{\theta}(u) = \exp\left(-[(-\ln u_1)^{\theta} + \ldots + (-\ln u_d^{\theta}]^{1/\theta}\right) \quad \theta = 1/(1-(\rho_{\tau})_{ij})$$

Parameter estimation for C_R^{Ga} , $C_{\nu,R}^t$, C_{θ}^{CI} and C_{θ}^{Gu}

$$\begin{split} C_R^{Ga} &= \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d)) & R_{ij} &= \sin(\pi(\rho_\tau)_{ij}/2) \\ C_{\nu,R}^t &= t_{\nu,R}^d(t_{\nu}^{-1}(u_1), \dots, t_{\nu}^{-1}(u_d)) & R_{ij} &= \sin(\pi(\rho_\tau)_{ij}/2) \\ C_{\theta}^{Gu}(u) &= \exp\left(-[(-\ln u_1)^{\theta} + \dots + (-\ln u_d^{\theta}]^{1/\theta}\right) & \theta &= 1/(1 - (\rho_\tau)_{ij}) \\ C_{\theta}^{Cl}(u) &= (u_1^{-\theta} + \dots + u_d^{-\theta} - d + 1)^{-1/\theta} & \theta &= 2(\rho_\tau)_{ii}/(1 - (\rho_\tau)_{ii}) \end{split}$$

Parameter estimation for C_R^{Ga} , $C_{\nu,R}^t$, C_{θ}^{CI} and C_{θ}^{Gu}

$$\begin{split} C_R^{Ga} &= \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d)) & R_{ij} = \sin(\pi(\rho_\tau)_{ij}/2) \\ C_{\nu,R}^t &= t_{\nu,R}^d(t_{\nu}^{-1}(u_1), \dots, t_{\nu}^{-1}(u_d)) & R_{ij} = \sin(\pi(\rho_\tau)_{ij}/2) \\ C_{\theta}^{Gu}(u) &= \exp\left(-\left[(-\ln u_1)^{\theta} + \dots + (-\ln u_d^{\theta}]^{1/\theta}\right) & \theta = 1/(1 - (\rho_\tau)_{ij}) \\ C_{\theta}^{CI}(u) &= (u_1^{-\theta} + \dots + u_d^{-\theta} - d + 1)^{-1/\theta} & \theta = 2(\rho_\tau)_{ij}/(1 - (\rho_\tau)_{ij}) \end{split}$$

where

$$(\rho_{\tau})_{ij} = \rho_{\tau}(X_{i}, X_{j})$$

$$= P((X_{i} - X'_{i})(X_{k,j} - X'_{l,j}) > 0) - P((X_{i} - X'_{i})(X_{j} - X'_{j}) < 0)$$

$$= E(sign((X_{i} - X'_{i})(X_{j} - X'_{j}))).$$

where X' is an i.i.d. copy of X.

Parameter estimation for C_R^{Ga} , $C_{\nu,R}^t$, C_{θ}^{CI} and C_{θ}^{Gu}

$$\begin{split} C_R^{Ga} &= \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d)) & R_{ij} = \sin(\pi(\rho_\tau)_{ij}/2) \\ C_{\nu,R}^t &= t_{\nu,R}^d(t_{\nu}^{-1}(u_1), \dots, t_{\nu}^{-1}(u_d)) & R_{ij} = \sin(\pi(\rho_\tau)_{ij}/2) \\ C_{\theta}^{Gu}(u) &= \exp\left(-\left[(-\ln u_1)^{\theta} + \dots + (-\ln u_d^{\theta}]^{1/\theta}\right) & \theta = 1/(1 - (\rho_\tau)_{ij}) \\ C_{\theta}^{CI}(u) &= (u_1^{-\theta} + \dots + u_d^{-\theta} - d + 1)^{-1/\theta} & \theta = 2(\rho_\tau)_{ij}/(1 - (\rho_\tau)_{ij}) \end{split}$$

where

$$(\rho_{\tau})_{ij} = \rho_{\tau}(X_{i}, X_{j})$$

$$= P((X_{i} - X'_{i})(X_{k,j} - X'_{l,j}) > 0) - P((X_{i} - X'_{i})(X_{j} - X'_{j}) < 0)$$

$$= E(sign((X_{i} - X'_{i})(X_{j} - X'_{j}))).$$

where X' is an i.i.d. copy of X.

Standard empirical estimator of Kendalls Tau:

$$\widehat{\rho_{\tau \, ij}} = \binom{n}{2}^{-1} \sum_{1 \leq k < l \leq n} sign((X_{k,i} - X_{l,i})(X_{k,j} - X_{l,j})).$$

It may happen that $\hat{R} = (\hat{R}_{ij})$, $\hat{R}_{ij} = \sin(\pi \widehat{\rho_{\tau}}_{ij}/2)$, is not positive definite.

It may happen that $\hat{R} = (\hat{R}_{ij})$, $\hat{R}_{ij} = \sin(\pi \widehat{\rho_{\tau}}_{ij}/2)$, is not positive definite. Replace \hat{R} by a correlation matrix R^* , selected such that the "distance" between R^* and \hat{R} is "small".

It may happen that $\hat{R}=(\hat{R}_{ij}),~\hat{R}_{ij}=\sin(\pi\widehat{\rho_{\tau}}_{ij}/2)$, is not positive definite. Replace \hat{R} by a correlation matrix R^* , selected such that the "distance" between R^* and \hat{R} is "small".

Eigenvalue approach (Rousseeuw and Molenberghs 1993)

► Compute the spectral decomposition $\hat{R} = \Gamma \Lambda \Gamma^T$ of \hat{R} , where Λ is a diagonal matrix, containing the eigenvalues of \hat{R} on the diagonal, and Γ is an orthogonal matrix with the eigenvectors of \hat{R} in its columns.

It may happen that $\hat{R}=(\hat{R}_{ij}),~\hat{R}_{ij}=\sin(\pi\widehat{\rho_{\tau}}_{ij}/2)$, is not positive definite. Replace \hat{R} by a correlation matrix R^* , selected such that the "distance" between R^* and \hat{R} is "small".

Eigenvalue approach (Rousseeuw and Molenberghs 1993)

- ► Compute the spectral decomposition $\hat{R} = \Gamma \Lambda \Gamma^T$ of \hat{R} , where Λ is a diagonal matrix, containing the eigenvalues of \hat{R} on the diagonal, and Γ is an orthogonal matrix with the eigenvectors of \hat{R} in its columns.
- ▶ Replace the negative eigenvalues in Λ by some small number $\delta > 0$ to obtain $\tilde{\Lambda}$.

It may happen that $\hat{R}=(\hat{R}_{ij}),~\hat{R}_{ij}=\sin(\pi\widehat{\rho_{\tau}}_{ij}/2)$, is not positive definite. Replace \hat{R} by a correlation matrix R^* , selected such that the "distance" between R^* and \hat{R} is "small".

Eigenvalue approach (Rousseeuw and Molenberghs 1993)

- ► Compute the spectral decomposition $\hat{R} = \Gamma \Lambda \Gamma^T$ of \hat{R} , where Λ is a diagonal matrix, containing the eigenvalues of \hat{R} on the diagonal, and Γ is an orthogonal matrix with the eigenvectors of \hat{R} in its columns.
- ▶ Replace the negative eigenvalues in Λ by some small number $\delta > 0$ to obtain $\tilde{\Lambda}$.
- ► Compute $\tilde{R} = \Gamma \tilde{\Lambda} \Gamma^T$. \tilde{R} is symmetric and positive definite but not necessarily a correlation matrix; the diagonal elements \tilde{R}_{ii} might be unequal 1.

It may happen that $\hat{R}=(\hat{R}_{ij}), \ \hat{R}_{ij}=\sin(\pi\widehat{\rho_{\tau}}_{ij}/2)$, is not positive definite. Replace \hat{R} by a correlation matrix R^* , selected such that the "distance" between R^* and \hat{R} is "small".

Eigenvalue approach (Rousseeuw and Molenberghs 1993)

- ► Compute the spectral decomposition $\hat{R} = \Gamma \Lambda \Gamma^T$ of \hat{R} , where Λ is a diagonal matrix, containing the eigenvalues of \hat{R} on the diagonal, and Γ is an orthogonal matrix with the eigenvectors of \hat{R} in its columns.
- ▶ Replace the negative eigenvalues in Λ by some small number $\delta > 0$ to obtain $\tilde{\Lambda}$.
- ► Compute $\tilde{R} = \Gamma \tilde{\Lambda} \Gamma^T$. \tilde{R} is symmetric and positive definite but not necessarily a correlation matrix; the diagonal elements \tilde{R}_{ii} might be unequal 1.
- ▶ Set $R^*:=D\tilde{R}D$ where D is a diagonal matrix with $D_{k,k}=1/\sqrt{\tilde{R}_{k,k}}.$

Estimation of the number of the degrees of freedom ν for $t\text{-}\mathrm{copulas}$

Estimation of the number of the degrees of freedom ν for $t\text{-}\mathrm{copulas}$

1. Let $\hat{F}_1, \ldots, \hat{F}_d$ be the estimated marginal distributions.

Estimation of the number of the degrees of freedom ν for t-copulas

- 1. Let $\hat{F}_1, \ldots, \hat{F}_d$ be the estimated marginal distributions.
- 2. Generate a pseudo-sample of the copula

$$\hat{U}_k = (\hat{U}_{k,1}, \hat{U}_{k,2}, \dots, \hat{U}_{k,d}) := \Big(\hat{F}_1(X_{k,1}), \dots, \hat{F}_d(X_{k,d})\Big),$$

for k = 1, 2, ..., n (see Genest und Rivest 1993).

Estimation of the number of the degrees of freedom ν for t-copulas

- 1. Let $\hat{F}_1, \ldots, \hat{F}_d$ be the estimated marginal distributions.
- 2. Generate a pseudo-sample of the copula

$$\hat{U}_k = (\hat{U}_{k,1}, \hat{U}_{k,2}, \dots, \hat{U}_{k,d}) := (\hat{F}_1(X_{k,1}), \dots, \hat{F}_d(X_{k,d})),$$

for k = 1, 2, ..., n (see Genest und Rivest 1993).

 \hat{F}_k can be generated by :

a parametric estimation method; \hat{F}_k is assumed to be a certain parametric distribution and the parameter is estimated by a maximum likelihood (ML) approach

Estimation of the number of the degrees of freedom ν for t-copulas

- 1. Let $\hat{F}_1, \ldots, \hat{F}_d$ be the estimated marginal distributions.
- 2. Generate a pseudo-sample of the copula

$$\hat{U}_k = (\hat{U}_{k,1}, \hat{U}_{k,2}, \dots, \hat{U}_{k,d}) := (\hat{F}_1(X_{k,1}), \dots, \hat{F}_d(X_{k,d})),$$

for k = 1, 2, ..., n (see Genest und Rivest 1993).

\hat{F}_k can be generated by :

- \hat{F}_k is assumed to be a certain parametric distribution and the parameter is estimated by a maximum likelihood (ML) approach
- ▶ a non-parametric estimation method; \hat{F}_i is the empirical distribution function $\hat{F}_i(x) = \frac{1}{n+1} \sum_{t=1}^n I_{\{X_{t,i} \leq x\}}, 1 \leq i \leq d.$

Estimation of the number of the degrees of freedom ν for $t\mbox{-}\mbox{copulas}$ (contd.)

Estimation of the number of the degrees of freedom ν for t-copulas (contd.)

Maximum likelihood estimator of ν : $\nu = \arg \max_{\xi} \ln L(\xi; \hat{U}_1, \hat{U}_2, \dots, \hat{U}_n)$

Estimation of the number of the degrees of freedom ν for t-copulas (contd.)

Maximum likelihood estimator of ν : $\nu = \arg\max_{\xi} \ln L(\xi; \hat{U}_1, \hat{U}_2, \dots, \hat{U}_n)$ where

$$L(\xi; \hat{U}_1, \hat{U}_2, \dots, \hat{U}_n) = \prod_{k=1}^n c_{\xi,R}^t(\hat{U}_k)$$

and $c_{\xi,R}^t$ is the density of the t-copula $C_{\xi,R}^t$.

This implies

$$\ln L(\xi;\,\hat{U}_1,\,\hat{U}_2,\ldots,\,\hat{U}_n) =$$

$$\sum_{k=1}^n \ln g_{\xi,R}(t_\xi^{-1}(\hat{U}_{k,1}),\ldots,t_\xi^{-1}(\hat{U}_{k,d})) - \sum_{k=1}^n \sum_{j=1}^d \ln g_\xi(t_\xi^{-1}(\hat{U}_{k,j})),$$

Estimation of the number of the degrees of freedom ν for t-copulas (contd.)

Maximum likelihood estimator of ν : $\nu = \arg\max_{\xi} \ln L(\xi; \hat{U}_1, \hat{U}_2, \dots, \hat{U}_n)$ where

$$L(\xi; \hat{U}_1, \hat{U}_2, \dots, \hat{U}_n) = \prod_{k=1}^n c_{\xi,R}^t(\hat{U}_k)$$

and $c_{\xi,R}^t$ is the density of the t-copula $C_{\xi,R}^t$.

This implies

In
$$L(\xi; \hat{U}_1, \hat{U}_2, \dots, \hat{U}_n) =$$

$$\sum_{k=1}^n \ln g_{\xi,R}(t_\xi^{-1}(\hat{U}_{k,1}),\ldots,t_\xi^{-1}(\hat{U}_{k,d})) - \sum_{k=1}^n \sum_{j=1}^d \ln g_\xi(t_\xi^{-1}(\hat{U}_{k,j})),$$

where

 $g_{\xi,R}$ is the joint distribution function of a d-dimensional t-distribution with expectation 0, ξ degrees of freedom and correlation matrix R,

 t_{ξ} is the distribution function of a univariate standard t-distribution with ξ degrees of freedom and g_{ξ} is its density.