Let Y be a discrete r.v. taking values on $\{y_1, \ldots, y_m\}$ (a continuous r.v. with density function f(y) in \mathbb{R}). The probability generating function (pgf) g_Y of Y is a mapping of [0,1] to the reals defined as

Let Y be a discrete r.v. taking values on $\{y_1, \ldots, y_m\}$ (a continuous r.v. with density function f(y) in \mathbb{R}). The probability generating function (pgf) g_Y of Y is a mapping of [0,1] to the reals defined as $g_Y(t) := E(t^Y) = \sum_{i=1}^m t^{y_i} P(Y=y_i)$ ($g_Y(t) := \int_{-\infty}^\infty t^y f(y) dy$).

Let Y be a discrete r.v. taking values on $\{y_1, \ldots, y_m\}$ (a continuous r.v. with density function f(y) in \mathbb{R}). The probability generating function (pgf) g_Y of Y is a mapping of [0,1] to the reals defined as $g_Y(t) := E(t^Y) = \sum_{i=1}^m t^{y_i} P(Y=y_i) \ (g_Y(t) := \int_{-\infty}^\infty t^y f(y) dy).$

Let Y be a discrete r.v. taking values on $\{y_1, \ldots, y_m\}$ (a continuous r.v. with density function f(y) in \mathbb{R}). The probability generating function (pgf) g_Y of Y is a mapping of [0,1] to the reals defined as $g_Y(t) := E(t^Y) = \sum_{i=1}^m t^{y_i} P(Y=y_i) \ (g_Y(t) := \int_{-\infty}^\infty t^y f(y) dy).$

Some properties of probability generating functions:

(i) If $Y \sim Bernoulli(p)$, then $g_Y(t) = 1 + p(t-1)$.

Let Y be a discrete r.v. taking values on $\{y_1, \ldots, y_m\}$ (a continuous r.v. with density function f(y) in \mathbb{R}). The probability generating function (pgf) g_Y of Y is a mapping of [0,1] to the reals defined as $g_Y(t) := E(t^Y) = \sum_{i=1}^m t^{y_i} P(Y = y_i) \ (g_Y(t) := \int_{-\infty}^\infty t^y f(y) dy).$

- (i) If $Y \sim Bernoulli(p)$, then $g_Y(t) = 1 + p(t-1)$.
- (ii) If $Y \sim Poisson(\lambda)$, then $g_Y(t) = \exp{\{\lambda(t-1)\}}$.

Let Y be a discrete r.v. taking values on $\{y_1, \ldots, y_m\}$ (a continuous r.v. with density function f(y) in \mathbb{R}). The probability generating function (pgf) g_Y of Y is a mapping of [0,1] to the reals defined as $g_Y(t) := E(t^Y) = \sum_{i=1}^m t^{y_i} P(Y = y_i) \ (g_Y(t) := \int_{-\infty}^\infty t^y f(y) dy).$

- (i) If $Y \sim Bernoulli(p)$, then $g_Y(t) = 1 + p(t-1)$.
- (ii) If $Y \sim Poisson(\lambda)$, then $g_Y(t) = \exp{\{\lambda(t-1)\}}$.
- (iii) If the r.v. X_1, \ldots, X_n are independent, then $g_{X_1+\ldots+X_n}(t) = \prod_{i=1}^n g_{X_i}(t)$.

Let Y be a discrete r.v. taking values on $\{y_1, \ldots, y_m\}$ (a continuous r.v. with density function f(y) in \mathbb{R}). The probability generating function (pgf) g_Y of Y is a mapping of [0,1] to the reals defined as $g_Y(t) := E(t^Y) = \sum_{i=1}^m t^{y_i} P(Y = y_i) \ (g_Y(t) := \int_{-\infty}^\infty t^y f(y) dy).$

- (i) If $Y \sim Bernoulli(p)$, then $g_Y(t) = 1 + p(t-1)$.
- (ii) If $Y \sim Poisson(\lambda)$, then $g_Y(t) = \exp{\{\lambda(t-1)\}}$.
- (iii) If the r.v. X_1, \ldots, X_n are independent, then $g_{X_1+\ldots+X_n}(t) = \prod_{i=1}^n g_{X_i}(t)$.
- (iv) Let Y be a r.v. with density function f and let $g_{X|Y=y}(t)$ be the pgf of X|Y=y. Then $g_X(t)=\int_{-\infty}^{\infty}g_{X|Y=y}(t)f(y)dy$.

Let Y be a discrete r.v. taking values on $\{y_1, \ldots, y_m\}$ (a continuous r.v. with density function f(y) in \mathbb{R}). The probability generating function (pgf) g_Y of Y is a mapping of [0,1] to the reals defined as $g_Y(t) := E(t^Y) = \sum_{i=1}^m t^{y_i} P(Y = y_i) \ (g_Y(t) := \int_{-\infty}^\infty t^y f(y) dy).$

- (i) If $Y \sim Bernoulli(p)$, then $g_Y(t) = 1 + p(t-1)$.
- (ii) If $Y \sim Poisson(\lambda)$, then $g_Y(t) = \exp{\{\lambda(t-1)\}}$.
- (iii) If the r.v. X_1, \ldots, X_n are independent, then $g_{X_1+\ldots+X_n}(t) = \prod_{i=1}^n g_{X_i}(t)$.
- (iv) Let Y be a r.v. with density function f and let $g_{X|Y=y}(t)$ be the pgf of X|Y=y. Then $g_X(t)=\int_{-\infty}^{\infty}g_{X|Y=y}(t)f(y)dy$.
- (v) Let $g_X(t)$ be the pgf of X. Then $P(X = k) = \frac{1}{k!}g_X^{(k)}(0)$, where $g_X^{(k)}(t) = \frac{d^k g_X(t)}{dt^k}$.

The loss will be approximated as an integer multiple of a prespecified loss unit L_0 (e.g. $L_o=10^6$ Euro):

The loss will be approximated as an integer multiple of a prespecified loss unit L_0 (e.g. $L_o=10^6$ Euro):

$$LGD_i = (1 - \lambda_i)L_i \approx \left[\frac{(1 - \lambda_i)L_i}{L_0}\right]L_0 = v_iL_0 \text{ with } v_i := \left[\frac{(1 - \lambda_i)L_i}{L_0}\right],$$
 where $[x] = \arg\min_t\{|t - x| : t \in \mathbb{Z}, t - x \in (-1/2, 1/2]\}.$

The loss will be approximated as an integer multiple of a prespecified loss unit L_0 (e.g. $L_o = 10^6$ Euro):

$$LGD_i = (1 - \lambda_i)L_i \approx \left[\frac{(1 - \lambda_i)L_i}{L_0}\right]L_0 = v_iL_0 \text{ with } v_i := \left[\frac{(1 - \lambda_i)L_i}{L_0}\right],$$
 where $[x] = \arg\min_t\{|t - x| \colon t \in \mathbb{Z}, t - x \in (-1/2, 1/2]\}.$

The loss function is then given by $L = \sum_{i=1}^{n} \bar{X}_i v_i L_0 \approx \sum_{i=1}^{n} X_i v_i L_0$, where \bar{X}_i is the loss indicator and (X_1, \ldots, X_n) has a PMD with factor vector (Z_1, Z_2, \ldots, Z_m) as described above.

The loss will be approximated as an integer multiple of a prespecified loss unit L_0 (e.g. $L_o = 10^6$ Euro):

$$LGD_i = (1 - \lambda_i)L_i \approx \left[\frac{(1 - \lambda_i)L_i}{L_0}\right]L_0 = v_iL_0 \text{ with } v_i := \left[\frac{(1 - \lambda_i)L_i}{L_0}\right],$$
 where $[x] = \arg\min_t\{|t - x| \colon t \in \mathbb{Z}, t - x \in (-1/2, 1/2]\}.$

The loss function is then given by $L = \sum_{i=1}^{n} \bar{X}_i v_i L_0 \approx \sum_{i=1}^{n} X_i v_i L_0$, where \bar{X}_i is the loss indicator and (X_1, \ldots, X_n) has a PMD with factor vector (Z_1, Z_2, \ldots, Z_m) as described above.

Step 1 Determine the pgf of (the approximative) number of losses $N = X_1 + \ldots + X_n$

The loss will be approximated as an integer multiple of a prespecified loss unit L_0 (e.g. $L_o=10^6$ Euro):

$$LGD_i = (1 - \lambda_i)L_i \approx \left[\frac{(1 - \lambda_i)L_i}{L_0}\right]L_0 = v_iL_0 \text{ with } v_i := \left[\frac{(1 - \lambda_i)L_i}{L_0}\right],$$
 where $[x] = \arg\min_t\{|t - x| : t \in \mathbb{Z}, t - x \in (-1/2, 1/2]\}.$

The loss function is then given by $L = \sum_{i=1}^{n} \bar{X}_i v_i L_0 \approx \sum_{i=1}^{n} X_i v_i L_0$, where \bar{X}_i is the loss indicator and (X_1, \ldots, X_n) has a PMD with factor vector (Z_1, Z_2, \ldots, Z_m) as described above.

Step 1 Determine the pgf of (the approximative) number of losses $N=X_1+\ldots+X_n$ $X_i|Z\sim Poi(\lambda_i(Z)),\ \forall i\Longrightarrow g_{X_i|Z}(t)=\exp\{\lambda_i(Z)(t-1)\},\ \forall i\Longrightarrow g_{N|Z}(t)=\prod_{i=1}^ng_{X_i|Z}(t)=\prod_{i=1}^n\exp\{\lambda_i(Z)(t-1)\}=\exp\{\mu(t-1)\},$ with $\mu:=\sum_{i=1}^n\lambda_i(Z)=\sum_{i=1}^n\left(\bar{\lambda}_i\sum_{i=1}^ma_{ij}Z_i\right).$

Then $g_N(t) = \int_0^\infty \dots \int_0^\infty g_{N|Z=(z_1,z_2,\dots,z_m)} f_1(z_1) \dots f_m(z_m) dz_1 \dots dz_m =$

Then
$$g_{N}(t) = \int_{0}^{\infty} \dots \int_{0}^{\infty} g_{N|Z=(z_{1},z_{2},\dots,z_{m})} f_{1}(z_{1}) \dots f_{m}(z_{m}) dz_{1} \dots dz_{m} =$$

$$\int_{0}^{\infty} \dots \int_{0}^{\infty} \exp \left\{ \sum_{i=1}^{n} \left(\bar{\lambda}_{i} \sum_{i=1}^{m} a_{ij} z_{j} \right) (t-1) \right\} f_{1}(z_{1}) \dots f_{m}(z_{m}) dz_{1} \dots dz_{m} =$$

Then
$$g_{N}(t) = \int_{0}^{\infty} \dots \int_{0}^{\infty} g_{N|Z=(z_{1},z_{2},\dots,z_{m})} f_{1}(z_{1}) \dots f_{m}(z_{m}) dz_{1} \dots dz_{m} =$$

$$\int_{0}^{\infty} \dots \int_{0}^{\infty} \exp\left\{\sum_{i=1}^{n} \left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{ij} z_{j}\right) (t-1)\right\} f_{1}(z_{1}) \dots f_{m}(z_{m}) dz_{1} \dots dz_{m} =$$

$$\int_{0}^{\infty} \dots \int_{0}^{\infty} \exp\left\{(t-1) \sum_{j=1}^{m} \left(\sum_{i=1}^{n} \bar{\lambda}_{i} a_{ij}\right) z_{j}\right\} f_{1}(z_{1}) \dots f_{m}(z_{m}) dz_{1} \dots dz_{m} =$$

Then
$$g_N(t) = \int_0^\infty \dots \int_0^\infty g_{N|Z=(z_1,z_2,\dots,z_m)} f_1(z_1) \dots f_m(z_m) dz_1 \dots dz_m =$$

$$\int_0^\infty \dots \int_0^\infty \exp\left\{\sum_{i=1}^n \left(\bar{\lambda}_i \sum_{j=1}^m a_{ij} z_j\right) (t-1)\right\} f_1(z_1) \dots f_m(z_m) dz_1 \dots dz_m =$$

$$\int_0^\infty \dots \int_0^\infty \exp\left\{(t-1) \sum_{j=1}^m \left(\sum_{i=1}^n \bar{\lambda}_i a_{ij}\right) z_j\right)\right\} f_1(z_1) \dots f_m(z_m) dz_1 \dots dz_m =$$

$$\int_0^\infty \dots \int_0^\infty \exp\{(t-1) \mu_1 z_1\} f_1(z_1) dz_1 \dots \exp\{(t-1) \mu_m z_m\} f_m(z_m) dz_m =$$

$$\prod_{i=1}^m \int_0^\infty \exp\{z_j \mu_j (t-1)\} \frac{1}{\beta_i^{\alpha_j} \Gamma(\alpha_j)} z_j^{\alpha_j - 1} \exp\{-z_j / \beta_j\} dz_j$$

Then
$$g_N(t) = \int_0^{\infty} \dots \int_0^{\infty} g_{N|Z=(z_1,z_2,\dots,z_m)} f_1(z_1) \dots f_m(z_m) dz_1 \dots dz_m =$$

$$\int_0^{\infty} \dots \int_0^{\infty} \exp\left\{\sum_{i=1}^n \left(\bar{\lambda}_i \sum_{j=1}^m a_{ij} z_j\right) (t-1)\right\} f_1(z_1) \dots f_m(z_m) dz_1 \dots dz_m =$$

$$\int_0^{\infty} \dots \int_0^{\infty} \exp\left\{(t-1) \sum_{j=1}^m \left(\sum_{i=1}^n \bar{\lambda}_i a_{ij}\right) z_j\right)\right\} f_1(z_1) \dots f_m(z_m) dz_1 \dots dz_m =$$

$$\int_0^{\infty} \dots \int_0^{\infty} \exp\{(t-1) \mu_1 z_1\} f_1(z_1) dz_1 \dots \exp\{(t-1) \mu_m z_m\} f_m(z_m) dz_m =$$

$$\prod_{i=1}^m \int_0^{\infty} \exp\{z_j \mu_j (t-1)\} \frac{1}{\beta_i^{\alpha_j} \Gamma(\alpha_j)} z_j^{\alpha_j - 1} \exp\{-z_j / \beta_j\} dz_j$$

The computation of each integral in the product obove yields

Then
$$g_N(t) = \int_0^\infty \dots \int_0^\infty g_{N|Z=(z_1,z_2,\dots,z_m)} f_1(z_1) \dots f_m(z_m) dz_1 \dots dz_m =$$

$$\int_0^\infty \ldots \int_0^\infty \exp\bigg\{\sum_{i=1}^n \bigg(\bar{\lambda}_i \sum_{j=1}^m a_{ij}z_j\bigg)(t-1)\bigg\} f_1(z_1) \ldots f_m(z_m) dz_1 \ldots dz_m =$$

$$\int_0^\infty \ldots \int_0^\infty \exp\left\{(t-1)\sum_{j=1}^m \left(\underbrace{\sum_{i=1}^n \bar{\lambda}_i a_{ij}}_{\mu_j}\right) z_j\right)\right\} f_1(z_1) \ldots f_m(z_m) dz_1 \ldots dz_m =$$

$$\int_{0}^{\infty} \dots \int_{0}^{\infty} \exp\{(t-1)\mu_{1}z_{1}\}f_{1}(z_{1})dz_{1} \dots \exp\{(t-1)\mu_{m}z_{m}\}f_{m}(z_{m})dz_{m} = \prod_{j=1}^{m} \int_{0}^{\infty} \exp\{z_{j}\mu_{j}(t-1)\}\frac{1}{\beta_{j}^{\alpha_{j}}\Gamma(\alpha_{j})}z_{j}^{\alpha_{j}-1}\exp\{-z_{j}/\beta_{j}\}dz_{j}$$

The computation of each integral in the product obove yields

$$\int_0^\infty \frac{1}{\Gamma(\alpha_j)\beta_j^{\alpha_j}} \exp\{z_j \mu_j (t-1)\} z_j^{\alpha_j-1} \exp\{-z_j/\beta_j\} dz_j = \left(\frac{1-\delta_j}{1-\delta_j t}\right)^{\alpha_j} \text{ with } \delta_i = \beta_i \mu_i/(1+\beta_i \mu_i).$$

Thus we have $g_N(t) = \prod_{j=1}^m \left(\frac{1-\delta_j}{1-\delta_j t}\right)^{\alpha_j}$.

Thus we have
$$g_N(t) = \prod_{j=1}^m \left(\frac{1-\delta_j}{1-\delta_j t} \right)^{\alpha_j}$$
.

Step 2 Determine the pgf of the (approximated) loss distribution $L = \sum_{i=1}^{n} X_i v_i L_0$.

Thus we have
$$g_N(t) = \prod_{j=1}^m \left(\frac{1-\delta_j}{1-\delta_j t} \right)^{\alpha_j}$$
.

Step 2 Determine the pgf of the (approximated) loss distribution $L = \sum_{i=1}^{n} X_i v_i L_0$.

The conditional loss due to default of debtor i is $L_i|Z = v_i(X_i|Z)$

Thus we have
$$g_N(t) = \prod_{j=1}^m \left(\frac{1-\delta_j}{1-\delta_j t} \right)^{\alpha_j}$$
.

Step 2 Determine the pgf of the (approximated) loss distribution $L = \sum_{i=1}^{n} X_i v_i L_0$.

The conditional loss due to default of debtor i is $L_i|Z = v_i(X_i|Z)$

$$L_i|Z$$
 are independent for $i=1,2,\ldots,n\Longrightarrow$

$$g_{L_i|Z}(t) = E(t^{L_i}|Z) = E(t^{v_iX_i}|Z) = g_{X_i|Z}(t^{v_i}) = \exp{\{\lambda_i(Z)(t^{v_i}-1)\}}.$$

Thus we have
$$g_N(t) = \prod_{j=1}^m \left(\frac{1-\delta_j}{1-\delta_j t}\right)^{\alpha_j}$$
.

Step 2 Determine the pgf of the (approximated) loss distribution $L = \sum_{i=1}^{n} X_i v_i L_0$.

The conditional loss due to default of debtor i is $L_i|Z = v_i(X_i|Z)$

$$L_i|Z$$
 are independent for $i=1,2,\ldots,n\Longrightarrow$

$$g_{L_i|Z}(t) = E(t^{L_i}|Z) = E(t^{v_iX_i}|Z) = g_{X_i|Z}(t^{v_i}) = \exp{\{\lambda_i(Z)(t^{v_i}-1)\}}.$$

The pgf of the conditional overall loss is

$$g_{L|Z}(t) = g_{L_1 + L_2 + \dots + L_n | Z}(t) = \prod_{i=1}^n g_{L_i | Z}(t) = \prod_{i=1}^n g_{X_i | Z}(t^{v_i}) = \exp\left\{\sum_{j=1}^m Z_j\left(\sum_{i=1}^n \bar{\lambda}_i a_{ij}(t^{v_i} - 1)\right)\right\}.$$

Thus we have
$$g_N(t) = \prod_{j=1}^m \left(\frac{1-\delta_j}{1-\delta_j t} \right)^{\alpha_j}$$
.

Step 2 Determine the pgf of the (approximated) loss distribution $L = \sum_{i=1}^{n} X_i v_i L_0$.

The conditional loss due to default of debtor i is $L_i|Z = v_i(X_i|Z)$

 $L_i|Z$ are independent for $i=1,2,\ldots,n\Longrightarrow$

$$g_{L_i|Z}(t) = E(t^{L_i}|Z) = E(t^{v_iX_i}|Z) = g_{X_i|Z}(t^{v_i}) = \exp{\{\lambda_i(Z)(t^{v_i}-1)\}}.$$

The pgf of the conditional overall loss is

$$g_{L|Z}(t) = g_{L_1 + L_2 + \dots + L_n | Z}(t) = \prod_{i=1}^n g_{L_i | Z}(t) = \prod_{i=1}^n g_{X_i | Z}(t^{v_i}) = \exp \left\{ \sum_{j=1}^m Z_j \left(\sum_{i=1}^n \bar{\lambda}_i a_{ij}(t^{v_i} - 1) \right) \right\}.$$

Analogous computations as in the case of $g_N(t)$ yield:

$$g_L(t) = \prod_{i=1}^m \left(\frac{1-\delta_j}{1-\delta_j \Lambda_j(t)}
ight)^{lpha_j} \; ext{wobei} \; \Lambda_j(t) = rac{1}{\mu_j} \sum_{i=1}^n ar{\lambda}_i a_{ij} t^{v_i}.$$

Example: Consider a credit portfolio with n = 100 credits, and m risk factors, where m = 1 or m = 5.

Example: Consider a credit portfolio with n = 100 credits, and m risk factors, where m = 1 or m = 5.

Assume that $\bar{\lambda}_i = \bar{\lambda} = 0.15$, for i = 1, 2, ..., n, $\alpha_j = \alpha = 1$, $\beta_j = \beta = 1$, $a_{i,j} = 1/m$, i = 1, 2, ..., n, j = 1, 2, ..., m.

Example: Consider a credit portfolio with n = 100 credits, and m risk factors, where m = 1 or m = 5.

Assume that $\bar{\lambda}_i = \bar{\lambda} = 0.15$, for i = 1, 2, ..., n, $\alpha_j = \alpha = 1$, $\beta_j = \beta = 1$, $a_{i,j} = 1/m$, i = 1, 2, ..., n, j = 1, 2, ..., m.

The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup \{0\}$:

Example: Consider a credit portfolio with n = 100 credits, and m risk factors, where m = 1 or m = 5.

Assume that $\bar{\lambda}_i = \bar{\lambda} = 0.15$, for i = 1, 2, ..., n, $\alpha_j = \alpha = 1$, $\beta_j = \beta = 1$, $a_{i,j} = 1/m$, i = 1, 2, ..., n, j = 1, 2, ..., m.

The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup \{0\}$:

$$P(N = k) = \frac{1}{k!}g_N^{(k)}(0) = \frac{1}{k!}\frac{d^kg_N}{dt^k}.$$

Example: Consider a credit portfolio with n = 100 credits, and m risk factors, where m = 1 or m = 5.

Assume that $\bar{\lambda}_i = \bar{\lambda} = 0.15$, for i = 1, 2, ..., n, $\alpha_j = \alpha = 1$, $\beta_j = \beta = 1$, $a_{i,j} = 1/m$, i = 1, 2, ..., n, j = 1, 2, ..., m.

The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup \{0\}$:

$$P(N = k) = \frac{1}{k!} g_N^{(k)}(0) = \frac{1}{k!} \frac{d^k g_N}{dt^k}.$$

For the computation of P(N=k), $k=0,1,\ldots,100$, we can use the following recursive formula

Example: Consider a credit portfolio with n = 100 credits, and m risk factors, where m = 1 or m = 5.

Assume that $\bar{\lambda}_i = \bar{\lambda} = 0.15$, for i = 1, 2, ..., n, $\alpha_j = \alpha = 1$, $\beta_j = \beta = 1$, $a_{i,j} = 1/m$, i = 1, 2, ..., n, j = 1, 2, ..., m.

The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup \{0\}$:

$$P(N = k) = \frac{1}{k!} g_N^{(k)}(0) = \frac{1}{k!} \frac{d^k g_N}{dt^k}.$$

For the computation of P(N = k), k = 0, 1, ..., 100, we can use the following recursive formula

$$g_N^{(k)}(0) = \sum_{l=0}^{k-1} \binom{k-1}{l} g_N^{(k-1-l)}(0) \sum_{j=1}^m l! \alpha_j \delta_j^{l+1}$$
, where $k>1$.