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(iv) Let Y be a r.v. with density function f and let gx|y—,(t) be the pgf
of X|Y =y. Then gx(t) = [7_ gx|v=y (t)f(y)dy.

(v) Let gx(t) be the pgf of X. Then P(X = k) = %g)(f)(O), where

k
g&k)(t) _ diex(t)

dtk
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The loss will be approximated as an integer multiple of a prespecified loss
unit Lo (e.g. L, = 10° Euro):

LGD; = (1 — \)L; ~ [%} Lo = viLo with v; == [%}

where [x] = argmin {|t —x|: t € Z,t — x € (-1/2,1/2]}.

The loss function is then given by L =37, Xjvilo ~ >.7_; XjviLo,
where X; is the loss indicator and (Xi, ..., X,) has a PMD with factor
vector (21, Za, ..., Zny) as described above.

Step 1 Determine the pgf of (the approximative) number of losses
N=X+...+ X,

Xi|Z ~ Poi(\(Z)), Vi = gxz(t) = exp{\(Z)(t — 1)}, Vi =
gniz(t) = [T 8x12(t) = T2 exp{A(2)(t - 1)} = exp{u(t - 1)},
with =317 N(Z) =31, (5\:' 21’77:1 a;ij).
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- T (1= \Y
fO Mo )6‘1/ exp{zjluj(t - 1)} eXp{_ZJ/ﬁJ}dZJ = (11_—5]1_) with
j = ﬁJHJ/(l + Bjk)-
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Thus we have gy(t) = H (1 — 5J-t) .

j=t

Step 2 Determine the pgf of the (approximated) loss distribution
L= 27:1 X,'V,'Lo.

The conditional loss due to default of debtor i is L;|Z = v;(X;|Z)

L;|Z are independent for i =1,2,... . n =
gLz(t) = E(t5]Z) = E(t")Z) = gxz(t") = exp{Xi(Z) (¢ 1)}
The pgf of the conditional overall loss is

8iz(t) = 8Lyt Lot 41,2(t) = [1i2; 81,12(t) =
[T &x)z(t") =exp {Zjn;l Z; (327, Miag(t" — 1)) }

Analogous computations as in the case of gN( ) yield'

B m 1 _5J (&%
g[_(t) = H (m) wobei /\ Z)\ BU

Jj=1
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Example: Consider a credit portfolio with n = 100 credits, and m risk
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Assume that \; = A =0.15,for i =1,2,...,n,aj=a=1, 3 =8=1,
ajj=1/m i=12,....,nj=12...,m

The probability that k creditors will default is given as follows for any
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For the computation of P(N = k), k =0,1,...,100, we can use the
following recursive formula

k — — k—1—1 m
gy (0) = 15 (471)eh T (0) o1, 11ayd)t, where k > 1.




