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1. Step: Estimation of the conditional excess probabilites
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Z, by means of the IS approach for the simplified case.
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The solution t = t(c, z) specifies the correct degree of tilting.

(2) Generate ny conditional realisations of the vector of default
indicators (Yi,..., Ym), Y; are simulated from Bernoulli(q;),
i=1,2,..., m, with

g = exp{t(c, z)e tpi(z)
" exp{t(c,2)ei}pi(z) + 1 —pi(z)
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(3) Let My(t,z) :=]lexp{t(c,z)ei}pi(z) +1 — pi(z)] be the
conditional moment generating function of L. Let LW, (@ (m)
be the n; conditional realisations of L for the n; simulated
realisations of Y1, Y2,..., Y. Compute the /S-estimator for the tail
probability of the conditional loss distribution:

951115)( ) = My(t Z/,_(J)>C exp{—t(c, z)LU)}LU),
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A better alternative: IS for the impact factors.
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IS for the impact factors

Assumption: Z ~ N,(0,X) (e.g. probit-normal Bernoulli mixture)

Let the IS density g be the density of N,y(p, X) for a new expected vector

1 € RP. A good choice of u should lead to frequent realisations of z

which imply high conditional default probabilities p;(z).

The likelihood ratio:

B exp{—%thle}
exp{—3(Z — p)*=Y(Z - p)}

- 1 e
r(Z) =exp{—p'E1Z + §;fz Lud

Algorithm: complete IS for Bernoulli mixture models with Gaussian
factors
(1) Generate z1, 2, ...,25 ~ Np(ps, X) (n is the number of the
simulation rounds)
(2) For each z; compute @E,lls)(z,-) by applying the IS algorithm for the
conditional loss.
(3) compute the IS estimator for the independent excess probability:

n

. 1 .
6y%) = - > ()08 (z)
i=1
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Since éf,’ls)(z) ~ P(L > c|Z = z), search for an appropriate IS density for
the function z — P(L > c|Z = z).

Approach:

a) the optimal IS denstity g* is proportional to the original density:
P(L>c|Z = z)exp{—32'E 'z}

b) use as IS density a multivariate normal distribution with the same
mode as the optimal IS density g*.

The mode of a multivariate normal distribution N,(u, X) equals the
expected vector p, thus determining p leads to the following optimization
problem:

= argmax, { P(L > c|Z = z) exp{—32z'S "1z} }.

This problem is hard to solve exactly;

in general P(L > ¢|Z = z) is not available in analytical form.

See Glasserman und Li (2003) for some numerical solution approaches.



