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ei
exp{tei}pi(z)
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The solution t = t(c , z) specifies the correct degree of tilting.

(2) Generate n1 conditional realisations of the vector of default
indicators (Y1, . . . ,Ym), Yi are simulated from Bernoulli(qi),
i = 1, 2, . . . ,m, with

qi =
exp{t(c , z)ei}pi(z)

exp{t(c , z)ei}pi(z) + 1− pi (z)
.
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(3) Let ML(t, z) :=
∏

[exp{t(c , z)ei}pi(z) + 1− pi (z)] be the
conditional moment generating function of L. Let L(1), L(2),. . .,L(n1)

be the n1 conditional realisations of L for the n1 simulated
realisations of Y1,Y2, . . . ,Ym. Compute the IS-estimator for the tail
probability of the conditional loss distribution:

θ̂(IS)n1
(z) = ML(t(c , z), z)
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A better alternative: IS for the impact factors.
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Let the IS density g be the density of Np(µ,Σ) for a new expected vector
µ ∈ R

p. A good choice of µ should lead to frequent realisations of z
which imply high conditional default probabilities pi (z).

The likelihood ratio:

rµ(Z ) =
exp{− 1

2Z
tΣ−1Z}

exp{− 1
2 (Z − µ)tΣ−1(Z − µ)}

= exp{−µtΣ−1Z +
1

2
µtΣ−1µ}

Algorithm: complete IS for Bernoulli mixture models with Gaussian
factors

(1) Generate z1, z2, . . . , zn ∼ Np(µ,Σ) (n is the number of the
simulation rounds)

(2) For each zi compute θ̂
(IS)
n1 (zi ) by applying the IS algorithm for the

conditional loss.

(3) compute the IS estimator for the independent excess probability:

θ̂(IS)n =
1

n

n
∑

i=1

rµ(zi )θ̂
(IS)
n1

(zi )
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.

This problem is hard to solve exactly;
in general P(L ≥ c |Z = z) is not available in analytical form.

See Glasserman und Li (2003) for some numerical solution approaches.


