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A European call option (ECO)

Consider an ECO over an asset S with execution date T, price St at
time T and strike price K.

Value of the ECO at time T: max{St — K, 0}

Price of ECO at time t < T: C = C(t, S, r, o) (Black-Scholes model),
where S is the price of the asset, r is the interest rate and o is the
volatility, all of them at time t.

Risk factors: Z, = (In S,, rn, a,,)T;

Risk factor changes: X,11 = (InSpi1 —InSp, rns1 — roy0ne1 — o) "
Portfolio value: V, = C(tn, Sp, fn, 0n) = C(tn, exp(Zn1), Zn2, Zn3)
The linearized loss:

LnA+1 - _(CtAt + CSSan+1,1 + Can+1,2 + CUXH+1,3)

The greeks: C; - theta, Cs - delta, C, - rho, C, - Vega
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1.€. the capital, needed to cover possible losses.

» As a management tool:
to determine the limits of the amount of risk a unit within the company may take
Elementary risk measures computed without assessing the loss
distribution
» Notational amount: weighted sum of notational values of individual securities weighted by a
prespecified factor for each asset class
e.g. in Basel | (1998):

regulatory capital 0
risk-weighted sum > 8%

Cooke Ratio—=

Gewicht :=
0% for claims on governments and supranationals (OECD)
20% claims on banks
50% claims on individual investors with mortgage securities

100% claims on the private sector

Disadvantages: no difference between long and short positions,
diversification effects are not considered
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» Coefficients of sensitivity with respect to risk factors

Portfolio value at time t,: V,, = f(t,, Z,),

Z, ist a vector of d risk factors

Sensitivity coefficients: £, = 2L (t,, Z,), 1< i < d

Example: “The Greeks" of a portfolio are the sensitivity coefficients
Disadvantages: assessment of risk arising due to simultaneous
changes of different risk factors is difficult;

aggregation of risks arising in different markets is difficult;

» Scenario based risk measures: Let n be the number of possible risk
factor changes (= scenarios).
Let x = {X1,X2,..., Xn} be the set of scenarios and /i;(-) the
portfolio loss operator.
Assign a weight w; to every scenario /, 1 < i < N

Portfolio risk:
\U[X, W] = max{wll[,,](Xl), Wg/[,ﬂ,]()ﬁ)7 ceey WN/[,,](XN)}
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Example: SPAN rules applied at CME (see Artzner et al., 1999)

A portfolio consists of units of a certain future contract and put and call

options on the same contract with the same maturity.

Scenarios i, 1 < j < 14:

Scenarios 1 to 8

Scenarios 9 to 14

Volatility Price of the future | Volatility | Price of the future
Va * Range Va \\ + * Range
¢ 3 *x Range AV % *x Range
§ *x Range § *x Range
_>

Scenarios i, i = 15, 16 represent an extreme increase or decrease of the

future price, respectively. The weights are w; =1, for i € {1,2,...,
and w; = 0.35, for i € {15,16}.

An appropriate model (zB. Black-Scholes) is used to generate the option

prices in the different scenarios.
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Let F; := F;,., be the loss distribution of L, .

The parameters of F; are estimated in terms of historical data, either
directly or in terms of risk factors.

1. The standard deviation std(L) := \/o?(F)
It is used frequently in portfolio theory.

Disadvantages:

> STD exists only for distributions with E(F?) < oo, not
applicable to leptocurtic (“fat tailed") loss distributions;
» gains and losses equally influence the STD.

Example

L1 ~ ,V(O7 2), L2 ~ ty (Student’s t-distribution with m = 4 degrees of freedom)

02(Ly) = 2 and 0%(Ly) = -2 = 2 hold

:m_2i

However the probability of losses is much larger for L, than for L;.
Plot the logarithm of the quotient In[P(L> > x)/P(L; > x)]!
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2. Value at Risk (VaR,(L))
Let L be the loss distribution with distribution function F; and let
a € (0,1) be a given confindence level.

VaR,(L): the smallest number /, such that P(L > /) <1 — « holds.

VaRo(L) =inf{ll e R: P(L> ) <1—a) =
inf{lleR:1—-F()<l-—a}=inf{leR: F(I) > a}

BIS (Bank of International Settlements) suggests VaRy.go(L) over a
horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let F: A — B be an increasing function. The function
F=:B— AU{—00,400},y —inf{x € R: F(x) > y} is called
generalized inverse function of F.

Notice that inf ) = co.

If F is strictly monotone increasing, then F~! = F* holds.
Exercise: Compute F* for F: [0, +00) — [0, 1] with

1/2 0<x<1



Value at Risk (contd.)

Let F: IR — IR be a (monotone increasing) distribution function and
go(F) :=inf{x € R: F(x) > a} be a-quantile of F.



Value at Risk (contd.)

Let F: IR — IR be a (monotone increasing) distribution function and
go(F) :=inf{x € R: F(x) > a} be a-quantile of F.

For the loss function L and its distribution function F the following holds:

VaRa(L) = qo(F) = F<(a).



Value at Risk (contd.)

Let F: IR — IR be a (monotone increasing) distribution function and
go(F) :=inf{x € R: F(x) > a} be a-quantile of F.
For the loss function L and its distribution function F the following holds:

VaRa(L) = qo(F) = F<(a).

Example: Let L ~ N(p,02). Then VaR,(L) = u+ 0. (®) =
p+ o®~1(a) holds, where @ is the d.f. of a r.v. X ~ N(0,1).



Value at Risk (contd.)

Let F: IR — IR be a (monotone increasing) distribution function and
go(F) :=inf{x € R: F(x) > a} be a-quantile of F.
For the loss function L and its distribution function F the following holds:

VaRa(L) = qo(F) = F<(a).

Example: Let L ~ N(p,02). Then VaR,(L) = u+ 0. (®) =

p+ o®~1(a) holds, where @ is the d.f. of a r.v. X ~ N(0,1).

Exercise: Consider a portfolio consisting of 5 pieces of an asset A. The
today's price of A is Sp = 100. The daily logarithmic returns are i.i.d., i.e.
X1 =InZ, Xo=1InZ, ..~ N(0,0.01). Let L; be the 1-day portfolio
loss in the time interval (today, tomorrow).

(a) Compute VaRo,gg(Ll).

(b) Compute VaRy.g9(L100) and VaRy.g9(L,), where Ligo is the
100-day portfolio loss over a horizon of 100 days starting with
today. L%, is the linearization of the above mentioned 100-day
PF-portfolio loss.

Hint: For Z ~ N(0,1) use the equality F,'(0.99) ~ 2.3.
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A disadvantage of VaR: It tells nothing about the amount of loss in
the case that a large loss L > VaR, (L) happens.

Definition: Let « be a given confidence level and L a continuous
loss distribution with distribution function F;.
CVaR, (L) := ES.(L) = E(L|L > VaR,(L)).
If F, is continuous:
_ _ E(Lhgaw.00) (L)) _
CVaR ( ) (L|L > VaR+(L)) W =
2o E(Llga(0).00) = 125 fa( )/dFL(/)

1 xc€A
0 x¢€A

If F, is discrete the generalized CVaR is defined as follows:

I is the indicator function of the set A: [z(x) = {

GCVaRy(L) = ﬁ lE(L/[qa(L),OO)) + da (1 —a-P(L> qa(L))ﬂ

Lemma Let o be a given confidence level and L a continuous loss
function with dlstrlbutlon F,_
Then CVaR, (L) f VaR,(L)dp holds.
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Conditional Value at Risk (contd.)
Example 1:

(a) Let L~ Exp(A). Compute CVaR,(L).

(b) Let the distribution function F; of the loss function L be given as
follows : Fi(x) =1 — (1+yx)~Y/7 for x > 0 and v € (0,1).
Compute CVaR,(L).

Example 2:

Let L ~ N(0,1). Let ¢ und ® be the density and the distribution
-1

function of L, respectively. Show that CVaR, (L) = w holds.

_ (P Ha

Let L' ~ N(u,02). Show that CVaR,(L') = pu+ 022D holds,
Exercise:

Let the loss L be distributed according to the Student's t-distribution
with v > 1 degrees of freedom. The density of L is

—(v+1)/2
_ (v +1)/2) x?
&)=~ <1+ u>

-« v

Show that CVaR, (L) = &t (@) (”+(f{1 1(3”2), where t, is the
distribution function of L.



Methods for the computation of VaR und CVaR

Consider the portfolio value V,, = f(tm, Zm), where Z,, is the vector of
risk factors.

Let the loss function over the interval [ty tmy1] be given as
Limy1 = fm)(Xmy1), where Xy 1 is the vector of the risk factor changes,
i.e.

Xm+1 = Zm+1 —Zm.

Consider observations (historical data) of risk factor values
Zononits s Zom.
How to use these data to compute/estimate VaR(Lmt1), CVaR(Lmi1)?
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The empirical VaR and the empirical CVaR

Let x1,x2,...,X, be a sample of i.i.d. random variables X;, X5, ..., X,
with distribution function F.

The empirical distribution function

1 n
F"(X) = ; Z I[Xk,+00)(x)
k=1

The empirical quantile

ga(Fn) =inf{x € R: Fy(x) > a} = F; ()

Assumption: x; > xo > ... > X,. Then go(Fy) = X[n(1—a)j4+1 holds, where
[y] :=sup{n € IN: n < y} for every y € IR.

Lemma
Let §o(F) := qu(Fn) and let F be a strictly increasing function. Then
liMmp—o00 Ga(F) = qa(F) holds Vo € (0,1), i.e. the estimator Go(F) is

consistent.
[n(1—a)]+1 >

The empirical estimator of CVaR is C/\/ﬁa(F) = it
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A non-parametric bootstrapping approach to compute the
confidence interval for the estimator

Let X1, X5,..., X, be i.i.d. with distribution function F and let
X] > Xp > ... > X, be an ordered sample of F.

Goal: computation of an estimator of a certain parameter 6 depending on
F, e.g. 6 = go(F), and the corresponding confidence interval.

Let HA(xl, ..., Xn) be an estimator of 0, e.g. 5(x1, ooy Xn) = X[(n(1—a)]+1
0 = go(F).
The required confidence interval is an (a, b) with a = a(xq, ..., x,) u.

b= b(x1,...,%n), such that P(a < 6 < b) = p, for a given confidence
level p.

Case I: F is known.
Generate N samples >”<1(' ,
(N should be large)

Let §; = 9(2{07;2("),...,;5")), 1<i<N.

0 %0 1< i < N, by simulation from F



Case | (cont.)
The empirical distribution function of 6(x1, xa, ..., X,) is given as

R 1 N
0 ._ ~
FN T N Z I[9i,00)
i=1

and it tends to F? for N — oo.

The required conficence interval is given as

2

(ql_;(/:f/), q1+_p(F16)>

(assuming that the sample sizes N und n are large enough).
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Case Il: F is not known. Apply bootstrapping!
The empirical distribution function of X;, 1 <i < n, is given as

1 n
Fo(x) = = 3l ().
i=1

For n large F, = F holds.

Generate samples from F, be choosing n elementes in {x1, x2,...,Xn}
and putting every element back to the set immediately after its choice
Assume N such samples are generated: xf('),x;(') ...,x,f,‘('), 1<i<N.

3

Compute 6 = é(xf(i),xg(i), )

The empirical distribution of 6} is given as Ffj (x) = 4 SN | o+ .00y (X);

it approximates the d.f. F? of O(Xy, Xo, ..., X,) for N = oc.



Case Il: F is not known. Apply bootstrapping!
The empirical distribution function of X;, 1 <i < n, is given as

1 n
Fo(x) = = 3l ().
i=1

For n large F, = F holds.

Generate samples from F, be choosing n elementes in {x1, x2,...,Xn}

and putting every element back to the set immediately after its choice

Assume N such samples are generated: xf(i),x;(i), oD <<

Compute §f = é(xl*(i), XQ*("), 0

The empirical distribution of 6} is given as Ffj (x) = 4 SN | o+ .00y (X);
it approximates the d.f. F? of O(Xy, Xo, ..., X,) for N = oc.

A confidence interval (a, b) with confidence level p is given by

a=qu_p2(FR) b= qasp)2(FN )-



Case Il: F is not known. Apply bootstrapping!
The empirical distribution function of X;, 1 <i < n, is given as

n

Fa(x) = %Z fig,00) (X)-

For n large F, = F holds.

Generate samples from F, be choosing n elementes in {x1, x2,...,Xn}
and putting every element back to the set immediately after its choice

Assume N such samples are generated: xf(i),x;(i), oD <<
Compute §f = é(xl*(i), XQ*("), 0
The empirical distribution of 6} is given as Ffj (x) = 4 SN | o+ .00y (X);

it approximates the d.f. F? of O(Xy, Xo, ..., X,) for N = oc.

A confidence interval (a, b) with confidence level p is given by

a=qu_p2(FR) b= qasp)2(FN )-

Thus a = 0[*N(1+p)/2]+1, b= 0[*N(17p)/2]+1, where 07 > ... > 0},



Summary of the non-parametric bootstrapping approach to
compute confidence intervals

Input: Sample x1, x2, ..., x, of the i.i.d. random variables Xi, X, ..., X
with distribution function F and an estimator 6(x1, x2, ..., x,) of an
unknown parameter (F), A confidence level p € (0, 1).

Output: A confidence interval /, for § with confidence level p.

» Generate N new Samples xf(i),x;(i), o 1< <N, by
chosing elements in {x1, x2, ..., x,} and putting them back right
after the choice.

»> Compute 8} = é(xl*(i)7 Xz*(i)a . ,X:(i)>_

» Setz I, = HFN(l+p)/2]+1,N’6[*N(1—p)/2]+1,N , where

07 y > 05 5 > ... 0y y is obtained by sorting 67,65, ...,05 .



An approximative solution without bootstrapping



An approximative solution without bootstrapping

Input: A sample xi, xo, ..., x, of the random variables X;, 1 </ < n,
i.i.d. with unknown continuous distribution function F, a confidence level

p € (0,1).



An approximative solution without bootstrapping

Input: A sample xi, xo, ..., x, of the random variables X;, 1 </ < n,
i.i.d. with unknown continuous distribution function F, a confidence level
p € (0,1).

Output: A p’ € (0,1), with p < p’ < p+ ¢, for some small ¢, and a
confidence interval (a, b) for go(F), i.e. a = a(x1,x2,...,Xn),

b= b(x1,x2,...,Xn), such that

P(a < go(F) < b)=p" and P(a > qo(F)) = P(b < qa(F)) < (1—p)/2 holds.



An approximative solution without bootstrapping

Input: A sample xi, xo, ..., x, of the random variables X;, 1 </ < n,
i.i.d. with unknown continuous distribution function F, a confidence level
p € (0,1).

Output: A p’ € (0,1), with p < p’ < p+ ¢, for some small ¢, and a
confidence interval (a, b) for go(F), i.e. a = a(x1,x2,...,Xn),

b= b(x1,x2,...,Xn), such that

P(a < go(F) < b)=p" and P(a > qo(F)) = P(b < qa(F)) < (1—p)/2 holds.

Assume w.l.0.g. that the sample is sorted x; > xo > ... > Xx,.
Determine i > j, i,j € {1,2,...,n}, and the smallest p’ > p, such that

P<X,~ < qa(F) < Xj) =p (%) and

P< > qa(F)> < (1-p)/2 and P(x,- < qa(F)> < (1- p)/2(+).
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An approximative solution without bootstrapping (contd.)
Let Yo, := #{xk: xx > qu(F)}

We get P(x; < a(F)) ~ P(xj < a(F)) = P(Ya <] —1)
P(xi = qa(F)) ~ Pxi > qu(F)) = 1~ P(Yo < i~ 1)



An approximative solution without bootstrapping (contd.)
Let Yo, := #{xk: xx > qu(F)}

We get P(x; < gua(F)) = P(x; < gua(F)) = P(Ya <j-1)
P(xi > ga(F)) = P(x; > gu(F)) =1—P(Y, <i—1)

Yo ~ Bin(n,1 — ) since Prob(xx > qo(F)) = 1 — « for a sample point
X -
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Compute P(x; < ga(F)) and P(x; > qa(F)) for different i and j until
indices i,j € {1,2,...,n}, i > j, which fulfill (xx) are found.



An approximative solution without bootstrapping (contd.)
Let Yo, := #{xk: xx > qu(F)}

We get P(x; < a(F)) ~ P(xj < a(F)) = P(Ya <] —1)
P(xi = qa(F)) ~ Pxi > qu(F)) = 1~ P(Yo < i~ 1)

Yo ~ Bin(n,1 — ) since Prob(xx > qo(F)) = 1 — « for a sample point
X -

Compute P(x; < ga(F)) and P(x; > qa(F)) for different i and j until
indices i,j € {1,2,...,n}, i > j, which fulfill (xx) are found.

Set b:= xj and a := x;.



