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Possibilities to generate a sample of losses xi,. . .,x,

(i) Historical simulation

Let Xp—n+1,--.,Xm be historical observations of the risk factor changes
Xm—n+17 e 7Xm;

the historically realized losses are given as lx = lmj(Xm—k+1),
k=1,2,...,n

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss
distribution. Sort the historical losses: h > hL > ... > I,.

Empirical VaR: VaR = CIa(F ) = In(1—a)+1

[n(1 a)]+1

Empirical CVaR: CVaR = =2l

The aggregated loss over a given time interval

For example, for 10 time units, compute |n/10] aggregated loss
o (10) o

realizations /," over the time intervals
[m—n+10(k—1)+1,m—n+10(k—-1)+10], k=1,...,|n/10]:

10 10
,£ ) _ limy ijl Xm—n4+10(k—1)+j

Then compute the empirical estimators of the risk measures.
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Historical simulation (contd.)

Advantages:
» simple implementation

» considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xim—x = (Xm—k,15- -+, Xm—k,d)-

Disadvantages:
» lots of historical data needed to get good estimators

» the estimated loss cannot be larger than the maximal loss
experienced in the past
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Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.

A _ A _ d _ T
Lo =1n (Xmt1) = —VZ,-zl WiXmi1,i = —Vw' Xy,
where V' := Vi, Wi 1= Wi, w = (wy, ..., wq)T,
Xm+1 - (Xm+1,17 Xm+1,2; e ;Xm+1,d)T-

Assumption 1: X, 11 ~ Ng(p, X),
and thus —Vw T Xipi1 ~ N(=Vw T, V2w Ew)
Let Xp—nt1,--.,Xm be the historically observed risk factor changes

Assumption 2: x,,_,11,...,Xy, are i.i.d.
Estimator for pj: i = 130 | xm—ss1,i i =1,2,...,d

Estimator for ¥ = (a,) s = <a,> with
i = 723 D he (X kg 1,i — ) (Xem—k1j — 1) Lj=12,....d

Estimator for VaR: VaR(Lmi1) = —VwT i+ VVwTSwe (a)
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The variance-covariance method (contd.)

Advantages:
» analytical solution
» simple implementation

» no simulations needed

Disadvantages:

» Linearisation is not always appropriate, only for a short time horizon
reasonable

» The normal distribution assumption could lead to underestimation
of risks and should be argued upon (e.g. in terms of historical data)



(iii) Monte-Carlo approach

(1)
(2)

historical observations of risk factor changes X,—n11, - .., Xm.

assumption on a parametric model for the cumulative distribution
function of Xo, m—n+1< k< m;
e.g. a common distribution function F and independence

estimation of the parameters of F.

generation of N samples %, %, ..., %Xy from F (N > 1) and
computation of the losses /k = /iy (%), 1< k<N

computation of the empirical distribution of the loss function L, 1:

N
FLm+1 _ Z I[/k,
k:

computation of estimates for the VaR and CVAR of the loss
function: \7;’?(Lm+1) = (":_/\L/Wl) = Ina—a)]+1s

V-1

CVaR(Lm+1) = gyt

where the losses are sorted as h > b > ... > Iy.
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Advantages:

> very flexible; can use any distribution F from which simulation is
possible

» time dependencies of the risk factor changes can be considered by
using time series

Disadvantages:

» computationally expensive; a large number of simulations needed to
obtain good estimates
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Monte-Carlo approach

Example: The portfolio consists of one unit of asset S with price S; at
time t. The risk factor changes Xj;1 = In(Sy,.,) — In(S,) are i.i.d. with
distribution function Fy for some unknown parameter 6.

6 can be estimated by means of historical data (e.g. maximum likelihood
approaches)

Let the price at time tx be S:= 5,
The VaR of the portfolio over [k, tx11] is given as

VaRa (L, 1) = 5(1 —exp{F (1 a)}) .

Depending on Fy it can be complicated or impossible to compute CVaR
analytically.

Alternative: Monte-Carlo simulation.
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Example (contd.)

A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xkv1 = okr1Zkt1 (1)
Tey1 = Ao+ aXi + biog (2)
where Zx, k € IN, are i.i.d. and standard normally distributed, and ag,a;
and b; are parameters, which should be estimated.
It is simple to simulate from this model.

Howeve, analytical computation of VaR and CVaR over a certain time
interval consisting of many periods is cumbersome! Check it out!
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Notation:

» We will often use the same notation for the distribution of a random
variable (r.v.) and its (cumulative) distribution function!

> f(x) ~ g(x) for x = oo means limy_, o f(x)/g(x) =1

» F:=1— F is called the right tail of the univariate distribution
function F.
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Chapter 3: Extreme value theory

Notation:

» We will often use the same notation for the distribution of a random
variable (r.v.) and its (cumulative) distribution function!

> f(x) ~ g(x) for x = oo means limy_, o f(x)/g(x) =1

» F:=1— F is called the right tail of the univariate distribution
function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff
limy oo 282 = 00, YA > 0.

Also a r.v. X for which 3k € IN with E(X*) = oo will be often called
heavy tailed.

These two “definitions” are not equivalent!
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Regular variation

Definition
A measurable function h: (0, +00) — (0,400) has a regular variation
with index p € R towards +oo iff

i h(tx)
t150 h(t)

=x, ¥x>0 (3)

Notation: h € RV,.

If p =0, we say h has a slow variation or is slowly varying towards co.
If h € RV, then h(x)/x? € RVy, or equivalently,

if h € RV,, then 3L € RVy such that h(x) = L(x)x” (L(x) = h(x)/x").
If p < 0, then the convergence in (3) is uniform in every interval (b, 4+00)
for b > 0.

Example
Show that L € RVy holds for the functions L as below:

(a) limyx—i00 L(x) = ¢ € (0, +0)
(b) L(x):=1In(14 x)
(c) L(x):=1In(1+In(1+ x))
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Example: Check whether f € RV holds for f(x) = 3 + sinx,
f(x) = In(e + x) + sin x?
Notice: a function L € RV, can have an infinite variation on oo, i.e.
lim inf L(x)=0and lim sup L(x)= oo,
X—00 X—00

as for example L(x) = exp{(In(1 + x))? cos((In(1 + x))*/2)}.
Definition: A r.v. X > 0 with distribution function F has a regular
variation on +oo, iff F € RV_, for some o > 0.
Example:

L. Pareto distribution: G,(x) :=1—x"%, for x > 1 and @ > 0. Then

Ga(tx)/Ga(x) = x~* holds for t > 0, i.e. G, € RV_,,.

2. Fréchet distribution: ®,(x) := exp{—x"} for x > 0 and
$,(0) = 0, for some parameter (fixed) a > 0. Then
limy_so0 Pa(x)/x~% = 1 holds, i.e. B0 € RV_,.

Proposition (no proof)

Let X > 0 be a r.v. with distribution function F, such that F € RV_,, for
some a > 0. Then E(X”) < co for B < a and E(X?) = o for 8 > «
hold.

The converse is not true!
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Application of regular variation

Example 1: Let X; and _X2 be two continuous nonnegative i.i.d. r.v. with
distribution function F, F € RV_, for some o > 0. Let X (X3)
represent the loss of a portfolio which consists of 1 unit of asset A; (A).
Assumption: The prices of A; and A, are identical and their logreturns
are i.i.d..
Consider a portfolio P; containing 2 units of asset A; and a portfolio P»
containing one unit of A; and one unit of A,. Let L; represent the loss of
portfolio P;, i = 1,2.
Compare the probabilities of high losses in the two portfolios by
computing the limit

m Prob(L2 > /)

| —_ .

I—00 Prob(L1 > /)

In which cases are the extreme losses of the diversified portfolio smaller
then those of the non-diversified portfolio?



Application of regular variation (contd.)

Example 2: Let X, Y > 0 be two r.v. which represent the losses of two
business lines of an insurance company (e.g. fire and car accidents).



Application of regular variation (contd.)

Example 2: Let X, Y > 0 be two r.v. which represent the losses of two
business lines of an insurance company (e.g. fire and car accidents).

Assumptions

> F e RV_,, for some a > 0, where F is the distribution function of
X.

> E(YK) < o0, Vk > 0.



Application of regular variation (contd.)

Example 2: Let X, Y > 0 be two r.v. which represent the losses of two
business lines of an insurance company (e.g. fire and car accidents).

Assumptions

> F e RV_,, for some a > 0, where F is the distribution function of
X.

> E(YK) < o0, Vk > 0.

Compute limy_oo P(X > x| X + Y > x).



