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Theorem: (MDA(Ψα), Gnedenko 1943)
F ∈ MDA(Ψα) (α > 0) ⇐⇒ xF := sup{x ∈ IR : F (x) < 1} < ∞ and
F̄ (xF − x−1) ∈ RV−α (α > 0).

If F ∈ MDA(Ψα), then limn→∞ a−1n (Mn − xF ) = Ψα with
an = xF − F←(1 − n−1).

Example: Let X ∼ U(0, 1). it holds X ∈ MDA(Ψ1) with an = 1/n,
n ∈ IN.
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Theorem: (MDA(Λ))
Let F be a distribution function with right endpoint xF ≤ ∞.
F ∈ MDA(Λ) holds iff there exists a z < xF such that F can be
represented as

F̄ (x) = c(x)exp

{

−

∫ x

z

g(t)

a(t)
dt

}

, ∀x , z < x ≤ xF ,

where the functions c(x) and g(x) fulfill limx↑xF c(x) = c > 0 and
limt↑xF g(t) = 1, and a(t) is a positive absolutely continuous function
with limt↑xF a

′(t) = 0.



Characterisations of MDAs (contd.)

Observation: limx→+∞
Λ̄(x)
e−x = 1, ∀α > 0.

Thus for Λ ∈ MDA(Λ) we have Λ̄ ∼ e−x . Does this (or smth. similar)
generally hold for members of MDA(Λ)?

Theorem: (MDA(Λ))
Let F be a distribution function with right endpoint xF ≤ ∞.
F ∈ MDA(Λ) holds iff there exists a z < xF such that F can be
represented as

F̄ (x) = c(x)exp
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−
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z
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}

, ∀x , z < x ≤ xF ,

where the functions c(x) and g(x) fulfill limx↑xF c(x) = c > 0 and
limt↑xF g(t) = 1, and a(t) is a positive absolutely continuous function
with limt↑xF a

′(t) = 0.

See the book by Embrechts et al. for the proofs of the above theorem
and of the following theorem concerning the characterisation of MDA(Λ).
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∫ xF

x

F̄ (t)

F̄ (x)
dt.



Characterisations of MDAs (contd.)
Theorem: (MDA(Λ), alternative characterisation)
A distribution function F belongs to MDA(Λ) iff there exists a positive
function ã such that
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A distribution function F belongs to MDA(Λ) iff there exists a positive
function ã such that

lim
x↑xF

F̄ (x + uã(x))

F̄ (x)
= e−u, ∀u ∈ IR

A possible choice for ã is ã(x) = a(x) with a(x) :=
∫ xF

x

F̄ (t)

F̄ (x)
dt.

Definition: The function a(x) above is called mean excess function
and it can be alternatively represented as

a(x) := E (X − x |X > x), ∀x ≤ xF .

Examples: The following distributions belong to MDA(Λ):

◮ Normal: F (x) = (2π)−1/2 exp{−x2/2}, x ∈ IR.

◮ Exponential: f (x) = λ−1 exp{−λx}, x > 0, λ > 0.

◮ Lognormal: f (x) = (2πx2)−1/2 exp{−(ln x)2/2}, x > 0.

◮ Gamma: f (x) = βα

Γ(α)x
α−1 exp{−βx}, x > 0, α, β > 0.
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Graphical methods for the investigation of the right tail
of the distribution

◮ Histogram

◮ Quantile-quantile plots

Let X1,X2, . . . ,Xn be i.i.d. r.v. with unknown distribution F̃ . We
assume that the right range of F̃ can be approximated by a known
distribution F .

Question: How to check whether this assumption holds?

Let xn ≤ xn−1 ≤ . . . ≤ x1 be a sorted sample of X1, X2,. . ., Xn.

qq-plot: {(xk ,F
←( n−k+1

n+1 )) : k = 1, 2, . . . , n}.

If the assumption is plausible then the qq-plot is similar to the
graph of a linear function. This property holds also if the reference
distribution and the real distribution do not coincide but are of the
same type.

Rule of thumb: the larger the quantile the heavier the tails of the
distribution!
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Let X1,X2, . . . ,Xn be i.i.d. r.v. with distribution function F , such that
F̄ ∈ RV−α, α > 0, i.e. F̄ (x) = x−αL(x) with L ∈ RV0.

Goal: Estimate α!

Theorem: (Theorem of Karamata)
Let L be a slowly varying locally bounded function on [x0,+∞) for some
x0 ∈ IR. Then the following holds:

(a) For κ > −1:
∫ x

xo
tκL(t)dt ∼ K (x0) +

1
κ+1x

κ+1L(x) for x → ∞,

where K (x0) is a constant depending on x0.

(b) For κ < −1:
∫ +∞

x
tκL(t)dt ∼ − 1

κ+1x
κ+1L(x) for x → ∞.

Proof in Bingham et al. 1987.
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1

F̄n(xk )

∫ ∞

Xk

(ln x − ln xk)dFn(x) =
1

k − 1

k−1
∑

j=1

(ln xj − ln xk ).

If k = k(n) → ∞ and k/n → 0, then xk → ∞ for n → ∞, and (8)
implies:

lim
n→∞

1

k − 1

k−1
∑

j=1

(ln xj − ln xk)
d
= α−1



Hill estimators for the tail distribution and the quantile



Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

α̂
(H)
k,n =





1

k

k
∑

j=1

(ln xj − ln xk)





−1



Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

α̂
(H)
k,n =





1

k

k
∑

j=1

(ln xj − ln xk)





−1

How to choose a suitable k for a given sample size n?



Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

α̂
(H)
k,n =





1

k

k
∑

j=1

(ln xj − ln xk)





−1

How to choose a suitable k for a given sample size n?
If k too small, then the estimator has a high variance.



Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

α̂
(H)
k,n =





1

k

k
∑

j=1

(ln xj − ln xk)





−1

How to choose a suitable k for a given sample size n?
If k too small, then the estimator has a high variance.
If k too large, than the estimator is based on central values of the sample
distribution, and is therefore biased.



Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

α̂
(H)
k,n =





1

k

k
∑

j=1

(ln xj − ln xk)





−1

How to choose a suitable k for a given sample size n?
If k too small, then the estimator has a high variance.
If k too large, than the estimator is based on central values of the sample
distribution, and is therefore biased.

Grafical inspection of the Hill plots:
{(

k , α̂
(H)
k,n

)

: k = 2, . . . , n
}



Hill estimators for the tail distribution and the quantile
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How to choose a suitable k for a given sample size n?
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distribution, and is therefore biased.
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Given an estimator α̂
(H)
k,n of α we get tail and quantile estimators as

follows:

ˆ̄F (x) =
k

n

(

x

xk

)−α̂
(H)
k,n

and q̂p = F̂←(p) =
(n

k
(1− p)

)−1/α̂
(H)
k,n

xk .
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The POT method (Peaks over Threshold)
Definition: (The generalized Pareto distribution (GPD))
The standard GPD denoted by Gγ :

Gγ(x) =

{

1− (1 + γx)−1/γ für γ 6= 0
1− exp{−x} für γ = 0

where x ∈ D(γ)

D(γ) =

{

0 ≤ x < ∞ für γ ≥ 0
0 ≤ x ≤ −1/γ für γ < 0

Notice that G0 = limγ→0 Gγ .

Let ν ∈ IR and β > 0. The GPD with parameters γ, ν, β is given by the
following distribution function

Gγ,ν,β = 1− (1 + γ
x − ν

β
)−1/γ

where x ∈ D(γ, ν, β) and

D(γ, ν, β) =

{

ν ≤ x < ∞ für γ ≥ 0
ν ≤ x ≤ ν − β/γ für γ < 0


