The POT method (Peaks over Threshold)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ● 臣 ● の Q @

The POT method (Peaks over Threshold) Definition: (The generalized Pareto distribution (GPD))

The standard GPD denoted by G_{γ} :

$$G_{\gamma}(x) = \begin{cases} 1 - (1 + \gamma x)^{-1/\gamma} & \text{für } \gamma \neq 0\\ 1 - \exp\{-x\} & \text{für } \gamma = 0 \end{cases}$$

where $x \in D(\gamma)$

$$D(\gamma) = \left\{ egin{array}{cc} 0 \leq x < \infty & ext{für } \gamma \geq 0 \ 0 \leq x \leq -1/\gamma & ext{für } \gamma < 0 \end{array}
ight.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The POT method (Peaks over Threshold) Definition: (The generalized Pareto distribution (GPD))

The **standard GPD** denoted by G_{γ} :

$$G_{\gamma}(x) = \begin{cases} 1 - (1 + \gamma x)^{-1/\gamma} & \text{für } \gamma \neq 0\\ 1 - \exp\{-x\} & \text{für } \gamma = 0 \end{cases}$$

where $x \in D(\gamma)$

$$\mathcal{D}(\gamma) = \left\{ egin{array}{cc} 0 \leq x < \infty & ext{für } \gamma \geq 0 \ 0 \leq x \leq -1/\gamma & ext{für } \gamma < 0 \end{array}
ight.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Notice that $G_0 = \lim_{\gamma \to 0} G_{\gamma}$.

The POT method (Peaks over Threshold) Definition: (The generalized Pareto distribution (GPD))

The standard GPD denoted by G_{γ} :

$$G_{\gamma}(x) = \begin{cases} 1 - (1 + \gamma x)^{-1/\gamma} & \text{für } \gamma \neq 0\\ 1 - \exp\{-x\} & \text{für } \gamma = 0 \end{cases}$$

where $x \in D(\gamma)$

$$\mathcal{D}(\gamma) = \left\{ egin{array}{cc} 0 \leq x < \infty & ext{ für } \gamma \geq 0 \ 0 \leq x \leq -1/\gamma & ext{ für } \gamma < 0 \end{array}
ight.$$

Notice that $G_0 = \lim_{\gamma \to 0} G_{\gamma}$.

Let $\nu \in \mathbb{R}$ and $\beta > 0$. The **GPD** with parameters γ , ν , β is given by the following distribution function

$$G_{\gamma,\nu,eta} = 1 - (1 + \gamma \frac{x - \nu}{eta})^{-1/\gamma}$$

where $x \in D(\gamma, \nu, \beta)$ and

(ロ) (型) (E) (E) (E) (の)

Theorem: Let $\gamma \in {\rm I\!R}$. The following statements are equiavlent:

(i) $F \in MDA(H_{\gamma})$

(ii) There exists a positive measurable function $a(\cdot)$, such that for $x \in D(\gamma)$ _

$$\lim_{u\uparrow imes_F}rac{ar{F}(u+xa(u))}{ar{F}(u)}=ar{G}_\gamma(x)$$
 holds.

Theorem: Let $\gamma \in \mathbb{R}$. The following statements are equiavlent:

(i) $F \in MDA(H_{\gamma})$

(ii) There exists a positive measurable function $a(\cdot)$, such that for $x \in D(\gamma)$

$$\lim_{u\uparrow x_F}rac{ar{F}(u+xa(u))}{ar{F}(u)}=ar{G}_\gamma(x)$$
 holds.

Definition:(Excess distribution)

Let X be a r.v. with distribution function F and let x_F be the right tail of this distribution. For $u < x_F$ the function F_u given as

$$F_u(x) := P(X - u \le x | X > u), x \ge 0$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

ic called excess distribution function over the threshold u.

Theorem: Let $\gamma \in \mathbb{R}$. The following statements are equiavlent:

(i) $F \in MDA(H_{\gamma})$

(ii) There exists a positive measurable function $a(\cdot)$, such that for $x \in D(\gamma)$

$$\lim_{u\uparrow x_F}rac{ar{F}(u+xa(u))}{ar{F}(u)}=ar{G}_\gamma(x)$$
 holds.

Definition:(Excess distribution)

Let X be a r.v. with distribution function F and let x_F be the right tail of this distribution. For $u < x_F$ the function F_u given as

$$F_u(x) := P(X - u \le x | X > u), x \ge 0$$

ic called excess distribution function over the threshold u.

Theorem: Let $\gamma \in \mathbb{R}$. The following statements are equivalent:

(i)
$$F \in MDA(H_{\gamma})$$

(ii) There exists a positive measurable function $\beta(\cdot)$, such that

$$\lim_{u\uparrow x_F} \sup_{x\in(0,x_F-u)} |F_u(x) - G_{\gamma,0,\beta(u)}(x)| = 0 \text{ holds.}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let X_1, \ldots, X_n i.i.d. r.v. with distribution function $F \in MDA(H_{\gamma})$ for $\gamma \in \mathbb{R}$.

Let X_1, \ldots, X_n i.i.d. r.v. with distribution function $F \in MDA(H_{\gamma})$ for $\gamma \in \mathbb{R}$.

Choose a threshold u (high enough, by means of suitable statistical approaches) and compute

$$N_u := |\{i \in \{1, 2, \dots, n\} \colon X_i > u\}|$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Let X_1, \ldots, X_n i.i.d. r.v. with distribution function $F \in MDA(H_{\gamma})$ for $\gamma \in \mathbb{R}$.

Choose a threshold u (high enough, by means of suitable statistical approaches) and compute

$$N_u := |\{i \in \{1, 2, \dots, n\} : X_i > u\}|$$

• Let $Y_1, Y_2, \ldots, Y_{N_u}$ be the exceedances. Determine $\hat{\beta}$ and $\hat{\gamma}$, such that the following holds:

$$\bar{F}_u(y) \approx \bar{G}_{\hat{\gamma},0,\widehat{\beta(u)}}(y),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\overline{F}_u(y) = P(X - u > y | X > u)$.

Let X_1, \ldots, X_n i.i.d. r.v. with distribution function $F \in MDA(H_{\gamma})$ for $\gamma \in \mathbb{R}$.

Choose a threshold u (high enough, by means of suitable statistical approaches) and compute

$$N_u := |\{i \in \{1, 2, \dots, n\} : X_i > u\}|$$

• Let $Y_1, Y_2, \ldots, Y_{N_u}$ be the exceedances. Determine $\hat{\beta}$ and $\hat{\gamma}$, such that the following holds:

$$\bar{F}_u(y) \approx \bar{G}_{\hat{\gamma},0,\widehat{\beta(u)}}(y),$$

where $\overline{F}_u(y) = P(X - u > y | X > u)$.

▶ Use N_u and $\bar{F}_u \approx \bar{G}_{\hat{\gamma},0,\widehat{\beta(u)}}$ to obtain estimators for the tail and the quantile of F

$$\widehat{F(u+y)} = \frac{N_u}{n} \left(1 + \widehat{\gamma}\frac{y}{\widehat{\beta}}\right)^{-1/\widehat{\gamma}} \text{ and } \widehat{q}_p = u + \frac{\widehat{\beta}}{\widehat{\gamma}} \left(\left(\frac{n}{N_u}(1-p)\right)^{-\widehat{\gamma}} - 1 \right)$$

ls *u* too large, then there are only a few observed exceedances and not enough data to estimate $\hat{\beta}$ und $\hat{\gamma}$.

- ls *u* too large, then there are only a few observed exceedances and not enough data to estimate $\hat{\beta}$ und $\hat{\gamma}$.
- Is u too small, then the approximation F
 _u(y) ≈ G
 <sub>
 γ
 ,0,β(u)</sub>(y) is not good.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- ls *u* too large, then there are only a few observed exceedances and not enough data to estimate $\hat{\beta}$ und $\hat{\gamma}$.
- Is u too small, then the approximation F
 _u(y) ≈ G
 <sub>
 γ
 ,0,β(u)</sub>(y) is not good.

Basic idea: inspect the plot of the *empirical mean excess function* and choose a threshold u_0 , such that the empirical mean excess function is approximately linear for $u > u_0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Is u too large, then there are only a few observed exceedances and not enough data to estimate β̂ und γ̂.
- Is u too small, then the approximation F
 _u(y) ≈ G
 <sub>
 γ
 ,0,β(u)</sub>(y) is not good.

Basic idea: inspect the plot of the *empirical mean excess function* and choose a threshold u_0 , such that the empirical mean excess function is approximately linear for $u > u_0$.

The justification :

•
$$e_F(u) = \int_0^\infty t dF_u(t) \approx \int_0^\infty t dG_{\gamma,0,\beta(u)}(t) = E(G_{\gamma,0,\beta(u)}) = \frac{\beta(u)}{1-\gamma}$$
, if $F_u(t) \approx G_{\gamma,0,\beta(u)}(t)$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- Is u too large, then there are only a few observed exceedances and not enough data to estimate β̂ und γ̂.
- Is u too small, then the approximation F
 _u(y) ≈ G
 <sub>
 γ
 ,0,β(u)</sub>(y) is not good.

Basic idea: inspect the plot of the *empirical mean excess function* and choose a threshold u_0 , such that the empirical mean excess function is approximately linear for $u > u_0$.

The justification :

• $e_F(u) = \int_0^\infty t dF_u(t) \approx \int_0^\infty t dG_{\gamma,0,\beta(u)}(t) = E(G_{\gamma,0,\beta(u)}) = \frac{\beta(u)}{1-\gamma}$, if $F_u(t) \approx G_{\gamma,0,\beta(u)}(t)$.

• If $\bar{F}_u(x) \approx \bar{G}_{\gamma,0,\beta}(x)$ then $\forall v \ge u$ the approximation $\bar{F}_v(x) \approx \bar{G}_{\gamma,0,\beta+\gamma(v-u)}(x)$ holds.

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三</p>

Definition: The empirical mean excess function: Let $x_1, x_2, ..., x_n$ be a sample of i.i.d r.v. Let $N_u = |\{i: 1 \le i \le n, x_i > u\}|$ be the number of the sample points which exceed u. The empirical mean excess function $e_n(u)$ is defined as:

$$e_n(u) = \frac{1}{N_u} \sum_{i=1}^n (x_i - u) I_{\{x_i > u\}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition: The empirical mean excess function: Let $x_1, x_2, ..., x_n$ be a sample of i.i.d r.v. Let $N_u = |\{i: 1 \le i \le n, x_i > u\}|$ be the number of the sample points which exceed u. The empirical mean excess function $e_n(u)$ is defined as:

$$e_n(u) = \frac{1}{N_u} \sum_{i=1}^n (x_i - u) I_{\{x_i > u\}}.$$

Consider the plot of the (interpolation of the) empirical mean excess function: $(x_{k,n}, e_n(x_{k,n}))$, k = 1, 2, ..., n - 1. If this plot is approximately linear around some $x_{k,n}$, then $u := x_{k,n}$ might be a good choice for the threshold value.

<ロ> <個> < 国> < 国> < 国> < 国> < 国> < 回> < <</p>

Let u be a given threshold and let $Y_1, Y_2, \ldots, Y_{N_u}$ be the observed data from the sample which exceed u.

Let *u* be a given threshold and let $Y_1, Y_2, ..., Y_{N_u}$ be the observed data from the sample which exceed *u*.

The likelihood function $L(\gamma, \beta, Y_1, \ldots, Y_{N_u})$ is the conditional probability that $\overline{F}_u(y) \approx \overline{G}_{\gamma,0,\beta}(y)$ under the condition that the observed exceedances are $Y_1, Y_2, \ldots, Y_{N_u}$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let *u* be a given threshold and let $Y_1, Y_2, ..., Y_{N_u}$ be the observed data from the sample which exceed *u*.

The likelihood function $L(\gamma, \beta, Y_1, \ldots, Y_{N_u})$ is the conditional probability that $\overline{F}_u(y) \approx \overline{G}_{\gamma,0,\beta}(y)$ under the condition that the observed exceedances are $Y_1, Y_2, \ldots, Y_{N_u}$.

The following holds:

$$\ln L(\gamma, \beta, Y_1, \dots, Y_{N_u}) = -N_u \ln \beta - \left(\frac{1}{\gamma} + 1\right) \sum_{i=1}^{N_u} \ln \left(1 + \frac{\gamma}{\beta} Y_i\right)$$

. .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $Y_i \ge 0$ for $\gamma > 0$ and $0 \le Y_i \le -\beta/\gamma$ for $\gamma < 0$.

Let *u* be a given threshold and let $Y_1, Y_2, ..., Y_{N_u}$ be the observed data from the sample which exceed *u*.

The likelihood function $L(\gamma, \beta, Y_1, \ldots, Y_{N_u})$ is the conditional probability that $\overline{F}_u(y) \approx \overline{G}_{\gamma,0,\beta}(y)$ under the condition that the observed exceedances are $Y_1, Y_2, \ldots, Y_{N_u}$.

The following holds:

$$\ln L(\gamma, \beta, Y_1, \dots, Y_{N_u}) = -N_u \ln \beta - \left(\frac{1}{\gamma} + 1\right) \sum_{i=1}^{N_u} \ln \left(1 + \frac{\gamma}{\beta} Y_i\right)$$

. .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $Y_i \ge 0$ for $\gamma > 0$ and $0 \le Y_i \le -\beta/\gamma$ for $\gamma < 0$. (see Daley, Veve-Jones (2003) and Coles (2001))

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ● 臣 ● の Q @

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The method works well for $\gamma > -1/2$.

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The method works well for $\gamma > -1/2$.

The ML-estimators are in this case normally distributed:

$$(\hat{\gamma}-\gamma,rac{\hat{eta}}{eta}-1)\sim {\it N}(0,\Sigma^{-1}/{\it N}_u) ext{ where } \Sigma^{-1}=\left(egin{array}{cc} 1+\gamma & -1\ -1 & 2 \end{array}
ight).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The method works well for $\gamma > -1/2$.

The ML-estimators are in this case normally distributed:

$$(\hat{\gamma}-\gamma,rac{\hat{eta}}{eta}-1)\sim {\it N}(0,\Sigma^{-1}/{\it N}_u) ext{ where } \Sigma^{-1}=\left(egin{array}{cc} 1+\gamma & -1\ -1 & 2 \end{array}
ight).$$

There is an uncertainty related to the more or less arbitrary choice of the threshold u. It can be reduced by

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The method works well for $\gamma > -1/2$.

The ML-estimators are in this case normally distributed:

$$(\hat{\gamma}-\gamma,rac{\hat{eta}}{eta}-1)\sim {\it N}(0,\Sigma^{-1}/{\it N}_u) ext{ where } \Sigma^{-1}=\left(egin{array}{cc} 1+\gamma & -1\ -1 & 2 \end{array}
ight).$$

There is an uncertainty related to the more or less arbitrary choice of the threshold u. It can be reduced by

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• investigating the dependency of the ML-estimator $\hat{\gamma}$ on u.

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The method works well for $\gamma > -1/2$.

The ML-estimators are in this case normally distributed:

$$(\hat{\gamma}-\gamma,rac{\hat{eta}}{eta}-1)\sim {\it N}(0,\Sigma^{-1}/{\it N}_u) ext{ where } \Sigma^{-1}=\left(egin{array}{cc} 1+\gamma & -1\ -1 & 2 \end{array}
ight).$$

There is an uncertainty related to the more or less arbitrary choice of the threshold u. It can be reduced by

- investigating the dependency of the ML-estimator $\hat{\gamma}$ on u.
- visualizing and inspecting the estimated tail distribution

$$\hat{F}(u+y) = \frac{N_u}{n} \left(1 + \hat{\gamma} \frac{y}{\hat{\beta}}\right)^{-1/\hat{\gamma}}$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. r.v. with an unknown distribution function F. From the POT method we get the following estimators for the tail distribution and the quantile $q_p = VaR_p(F)$ of F

$$\hat{\bar{F}}(u+y) = \frac{N_u}{n} \left(1 + \hat{\gamma} \frac{y}{\hat{\beta}}\right)^{-1/\hat{\gamma}} \text{ and } \hat{q}_p = u + \frac{\hat{\beta}}{\hat{\gamma}} \left(\left(\frac{n}{N_u}(1-p)\right)^{-\hat{\gamma}} - 1 \right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. r.v. with an unknown distribution function F. From the POT method we get the following estimators for the tail distribution and the quantile $q_p = VaR_p(F)$ of F

$$\hat{\bar{F}}(u+y) = \frac{N_u}{n} \left(1 + \hat{\gamma} \frac{y}{\hat{\beta}}\right)^{-1/\hat{\gamma}} \text{ and } \hat{q}_p = u + \frac{\hat{\beta}}{\hat{\gamma}} \left(\left(\frac{n}{N_u}(1-p)\right)^{-\hat{\gamma}} - 1 \right)$$

For $\hat{\gamma} \notin \{0,1\}$ we get the following estimator for CVaR:

$$\widehat{\textit{CVaR}}_{p}(\textit{F}) = \hat{q}_{p} + rac{\hat{eta} + \hat{\gamma}(\hat{q}_{p} - u)}{1 - \hat{\gamma}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. r.v. with an unknown distribution function F. From the POT method we get the following estimators for the tail distribution and the quantile $q_p = VaR_p(F)$ of F

$$\hat{\bar{F}}(u+y) = \frac{N_u}{n} \left(1 + \hat{\gamma} \frac{y}{\hat{\beta}}\right)^{-1/\hat{\gamma}} \text{ and } \hat{q}_p = u + \frac{\hat{\beta}}{\hat{\gamma}} \left(\left(\frac{n}{N_u}(1-p)\right)^{-\hat{\gamma}} - 1 \right)$$

For $\hat{\gamma} \notin \{0,1\}$ we get the following estimator for CVaR:

$$\widehat{CVaR_p}(F) = \hat{q_p} + rac{\hat{eta} + \hat{\gamma}(\hat{q_p} - u)}{1 - \hat{\gamma}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The proof is done in two steps:

(1) Let X be a r.v. with $X \sim GPD_{\gamma,0,\beta}$ and $\gamma \notin \{0,1\}$. We show that

$$CVaR_p(X) = q_p + rac{eta + \gamma q_p}{1 - \gamma},$$

where $q_p := VaR_p(X)$ is the p-quantile of X.

(1) Let X be a r.v. with $X \sim GPD_{\gamma,0,\beta}$ and $\gamma \notin \{0,1\}$. We show that

$$CVaR_p(X) = q_p + rac{eta + \gamma q_p}{1 - \gamma},$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

where $q_p := VaR_p(X)$ is the p-quantile of X.

(2) Let X be a r.v. with $X \sim F$. The tail distribution $\overline{F}(x)$ is approximated by $\overline{F}(u)\overline{G}_{\gamma,0,\beta}(x-u)$.

(1) Let X be a r.v. with $X \sim GPD_{\gamma,0,\beta}$ and $\gamma \notin \{0,1\}$. We show that

$$CVaR_p(X) = q_p + rac{eta + \gamma q_p}{1 - \gamma},$$

where $q_p := VaR_p(X)$ is the p-quantile of X.

(1) Let X be a r.v. with $X \sim GPD_{\gamma,0,\beta}$ and $\gamma \notin \{0,1\}$. We show that

$$CVaR_p(X) = q_p + rac{eta + \gamma q_p}{1 - \gamma},$$

where $q_p := VaR_p(X)$ is the p-quantile of X.

(2) Let X be a r.v. with $X \sim F$. The tail distribution $\overline{F}(x)$ is approximated by $\overline{F}(u)\overline{G}_{\gamma,0,\beta}(x-u)$. This implies $F \approx \widetilde{F}$ with $\widetilde{F} := 1 - \overline{F}(u)\overline{G}_{\gamma,0,\beta}(x-u)$.

The CVaR of the approximation \tilde{F} is given as follows for $q_p > u$:

$$CVaR_{p}(ilde{F}) = \hat{q}_{p} + rac{eta + \gamma(\hat{q}_{p} - u)}{1 - \gamma}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・