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The standard GPD denoted by Gγ :

Gγ(x) =

{

1− (1 + γx)−1/γ für γ 6= 0
1− exp{−x} für γ = 0

where x ∈ D(γ)

D(γ) =

{

0 ≤ x < ∞ für γ ≥ 0
0 ≤ x ≤ −1/γ für γ < 0

Notice that G0 = limγ→0 Gγ .

Let ν ∈ IR and β > 0. The GPD with parameters γ, ν, β is given by the
following distribution function

Gγ,ν,β = 1− (1 + γ
x − ν

β
)−1/γ

where x ∈ D(γ, ν, β) and

D(γ, ν, β) =

{

ν ≤ x < ∞ für γ ≥ 0
ν ≤ x ≤ ν − β/γ für γ < 0



Characteristions of MDA(Hγ)



Characteristions of MDA(Hγ)
Theorem: Let γ ∈ IR. The following statements are equiavlent:

(i) F ∈ MDA(Hγ)

(ii) There exists a positive measurable function a(·), such that for
x ∈ D(γ)

lim
u↑xF

F̄ (u + xa(u))

F̄ (u)
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Theorem: Let γ ∈ IR. The following statements are equiavlent:

(i) F ∈ MDA(Hγ)

(ii) There exists a positive measurable function a(·), such that for
x ∈ D(γ)

lim
u↑xF

F̄ (u + xa(u))

F̄ (u)
= Ḡγ(x) holds.

Definition:(Excess distribution)
Let X be a r.v. with distribution function F and let xF be the right tail of
this distribution. For u < xF the function Fu given as

Fu(x) := P(X − u ≤ x |X > u), x ≥ 0

ic called excess distribution function over the threshold u.

Theorem: Let γ ∈ IR. The following statements are equivalent:

(i) F ∈ MDA(Hγ)

(ii) There exists a positive measurable function β(·), such that

lim
u↑xF

sup
x∈(0,xF−u)

|Fu(x)− Gγ,0,β(u)(x)| = 0 holds.
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Let X1,. . . , Xn i.i.d. r.v. with distribution function F ∈ MDA(Hγ) for
γ ∈ IR.

◮ Choose a threshold u (high enough, by means of suitable statistical
approaches) and compute

Nu := | {i ∈ {1, 2, . . . , n} : Xi > u} |

◮ Let Y1,Y2,. . .,YNu
be the exceedances. Determine β̂ and γ̂, such

that the following holds:

F̄u(y) ≈ Ḡ
γ̂,0,β̂(u)

(y),

where F̄u(y) = P(X − u > y |X > u).

◮ Use Nu and F̄u ≈ Ḡ
γ̂,0,β̂(u)

to obtain estimators for the tail and the

quantile of F

̂F̄ (u + y) =
Nu

n

(

1 + γ̂
y

β̂

)−1/γ̂

and q̂p = u+
β̂

γ̂

(

(

n

Nu

(1− p)

)−γ̂

− 1

)
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◮ Is u too large, then there are only a few observed exceedances and
not enough data to estimate β̂ und γ̂.

◮ Is u too small, then the approximation F̄u(y) ≈ Ḡγ̂,0,β̂(u)(y) is not
good.

Basic idea: inspect the plot of the empirical mean excess function and
choose a threshold u0, such that the empirical mean excess function is
approximately linear for u > u0.

The justification :

◮ eF (u) =
∫∞

0 tdFu(t) ≈
∫∞

0 tdGγ,0,β(u)(t) = E (Gγ,0,β(u)) =
β(u)
1−γ , if

Fu(t) ≈ Gγ,0,β(u)(t).

◮ If F̄u(x) ≈ Ḡγ,0,β(x) then ∀v ≥ u the approximation
F̄v (x) ≈ Ḡγ,0,β+γ(v−u)(x) holds.
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Definition: The empirical mean excess function:
Let x1, x2, . . . , xn be a sample of i.i.d r.v. Let
Nu = |{i : 1 ≤ i ≤ n, xi > u}| be the number of the sample points which
exceed u. The empirical mean excess function en(u) is defined as:

en(u) =
1

Nu

n
∑

i=1

(xi − u)I{xi>u}.

Consider the plot of the (interpolation of the) empirical mean excess
function: (xk,n, en(xk,n)), k = 1, 2, . . . , n− 1. If this plot is approximately
linear around some xk,n, then u := xk,n might be a good choice for the
threshold value.
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that F̄u(y) ≈ Ḡγ,0,β(y) under the condition that the observed
exceedances are Y1,Y2,. . .,YNu

.



POT (contd.): Estimation of the paramters γ and β

Let u be a given threshold and let Y1,Y2,. . .,YNu
be the observed data

from the sample which exceed u.

The likelihood function L(γ, β,Y1, . . . ,YNu
) is the conditional probability
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Let u be a given threshold and let Y1,Y2,. . .,YNu
be the observed data

from the sample which exceed u.

The likelihood function L(γ, β,Y1, . . . ,YNu
) is the conditional probability

that F̄u(y) ≈ Ḡγ,0,β(y) under the condition that the observed
exceedances are Y1,Y2,. . .,YNu

.

The following holds:

lnL(γ, β,Y1, . . . ,YNu
) = −Nu ln β −

(

1

γ
+ 1

) Nu
∑

i=1

ln

(

1 +
γ

β
Yi

)

where Yi ≥ 0 for γ > 0 and 0 ≤ Yi ≤ −β/γ for γ < 0.
(see Daley, Veve-Jones (2003) and Coles (2001))
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The maximizers γ̂ and β̂ of the log-likelihood function are used as
estimators for γ and β (ML-estimators)

The method works well for γ > −1/2.

The ML-estimators are in this case normally distributed:

(γ̂ − γ,
β̂

β
− 1) ∼ N(0,Σ−1/Nu) where Σ−1 =

(

1 + γ −1
−1 2

)

.

There is an uncertainty related to the more or less arbitrary choice of the
threshold u. It can be reduced by

◮ investigating the dependency of the ML-estimator γ̂ on u.

◮ visualizing and inspecting the estimated tail distribution

ˆ̄F (u + y) =
Nu

n

(

1 + γ̂
y

β̂

)−1/γ̂
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Let x1, x2, . . ., xn be a sample of i.i.d. r.v. with an unknown distribution
function F . From the POT method we get the following estimators for
the tail distribution and the quantile qp = VaRp(F ) of F
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For γ̂ 6∈ {0, 1} we get the following estimator for CVaR:

ĈVaRp(F ) = q̂p +
β̂ + γ̂(q̂p − u)

1− γ̂

The proof is done in two steps:
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Estimation of VaR und CVaR by means of POT
(contd.)

(1) Let X be a r.v. with X ∼ GPDγ,0,β and γ 6∈ {0, 1}. We show that

CVaRp(X ) = qp +
β + γqp
1− γ

,

where qp := VaRp(X ) is the p-quantile of X .

(2) Let X be a r.v. with X ∼ F . The tail distribution F̄ (x) is
approximated by F̄ (u)Ḡγ,0,β(x − u).

This implies F ≈ F̃ with F̃ := 1− F̄ (u)Ḡγ,0,β(x − u).

The CVaR of the approximation F̃ is given as follows for qp > u :

CVaRp(F̃ ) = q̂p +
β + γ(q̂p − u)

1− γ


