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Definition: (The generalized Pareto distribution (GPD))
The standard GPD denoted by G,:

1= +x)YY fiiry #£0
Gy () = { 1 —exp{—x} firy=0

where x € D()

[ 0<x < fury>0
D(V)_{ 0<x<—-1/y flry< 0

Notice that Gy = lim,—0 G,.

Let v € R and 8 > 0. The GPD with parameters ~, v, ( is given by the
following distribution function

X =V

)*1/7

Gyvp=1—(1+~

where x € D(v, v, 3) and

_Jv<x<oo fury>0
D(%V’ﬁ)_{ v<x<v-—pg/y firy<0
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Theorem: Let v € IR. The following statements are equiavlent:
(i) F e MDA(H,)

(i) There exists a positive measurable function a(-), such that for
x € D(v)

. F(u+ xa(u)) =
LIIITrll T = G,(x) holds.

Definition:(Excess distribution)
Let X be a r.v. with distribution function F and let xg be the right tail of
this distribution. For u < x¢ the function F, given as

Fu(x) =P(X —u<x|X>u),x>0

ic called excess distribution function over the threshold u.
Theorem: Let v € IR. The following statements are equivalent:

(i) F e MDA(H,)
(i) There exists a positive measurable function §(-), such that

lim  sup  |Fu(x) = Gy 0,8()(x)| = 0 holds.

UTXF xe(0,xF —u)
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POT: estimators for the tail and the quantile of the
excess distribution

Let Xi,..., X, i.i.d. r.v. with distribution function F € MDA(H.,) for
v € IR.

» Choose a threshold u (high enough, by means of suitable statistical
approaches) and compute

Ny, =1{ie{1,2,....,n}: X; > u}|

> Let Y1,Y2,...,Yn, be the exceedances. Determine B and 4, such
that the following holds:

Fu(y) =~ G.AY’07L3/(E)()/);
where F,(y) = P(X — u> y|X > u).
» Use N, and F, ~ G_@ 0.5 t© obtain estimators for the tail and the

quantile of F

—_— _l/ﬁ/ 2 _ﬁ’
Flu+y)= N, (14-&%) and c“]p:u+§ ((Ni(l—p)) —1)
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» Is u too large, then there are only a few observed exceedances and
not enough data to estimate 5 und 4.

> |s u too small, then the approximation F,(y) ~ G5 0,5(s)(¥) is not
good.

Basic idea: inspect the plot of the empirical mean excess function and
choose a threshold wug, such that the empirical mean excess function is
approximately linear for u > up.

The justification :
> er(u fo tdFu(t) & fo° tdG, o0,50u)(t) = E(G,0,5) = 22, if
Fu(t ) Gy.0,8(u)(1)-

> If Fu(x) = G,,0(x) then Yv > u the approximation
F (X) =~ ’)’ 0 6+'Y(V u)( ) hOldS.
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Definition: The empirical mean excess function:

Let x1,x2,...,X, be a sample of i.i.d r.v. Let

N, ={i: 1 <i<n,x > u}| bethe number of the sample points which
exceed u. The empirical mean excess function e,(u) is defined as:

n

1
en(u) = m Z(x,- —)lg>uy

i=1

Consider the plot of the (interpolation of the) empirical mean excess
function: (X n,en(xk,n)), k =1,2,...,n— 1. If this plot is approximately
linear around some X, then u := X, , might be a good choice for the
threshold value.
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POT (contd.): Estimation of the paramters v and

Let u be a given threshold and let Yi,Y>,..., Yy, be the observed data
from the sample which exceed u.

The likelihood function L(v, 3, Y1,..., Yu,) is the conditional probability
that F,(y) = G,,0,5(y) under the condition that the observed
exceedances are Y1,Y2,..., Yy,

The following holds:
1 N ~
InL(y. B, Vi, Yo, ——Nulnﬁ—(—+l> |n<1—|——Y,->
(7.8, Yo, s Vo) )Y :

where Y; > 0 fory>0and 0 <Y; < —f/v for vy < 0.
(see Daley, Veve-Jones (2003) and Coles (2001))
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The maximizers 4 and /3 of the log-likelihood function are used as
estimators for v and 8 (ML-estimators)

The method works well for v > —1/2.
The ML-estimators are in this case normally distributed:

147 —1)

(/‘\/ -7 g - 1) ~ N(Oa Z_]-/Nu) where Z_l = < 1 5

There is an uncertainty related to the more or less arbitrary choice of the
threshold u. It can be reduced by

» investigating the dependency of the ML-estimator 4 on u.

» visualizing and inspecting the estimated tail distribution

. N, 13
Fluty)==* <1+ﬁ%>
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Let x1, x2, ..., x, be a sample of i.i.d. r.v. with an unknown distribution
function F. From the POT method we get the following estimators for
the tail distribution and the quantile g, = VaR,(F) of F

~ -1/4 A -4
Flut+y) = /\,l7<1+ ;) andc“yp—u—i—g((/vi(l—p)) —1)

For 4 ¢ {0,1} we get the following estimator for CVaR:

CVaR,(F) = G, +

Q>
= Q)
/—\
‘:
N—r

The proof is done in two steps:



Estimation of VaR und CVaR by means of POT
(contd.)

et ear.v. wit ~ 0,4 and vy ,1y. Ve show that
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Estimation of VaR und CVaR by means of POT
(contd.)

et ear.v. wit ~ 0,4 and vy ,1y. Ve show that
1) Let X b ith X ~ GPD, o5 and v ¢ {0,1}. We show th

CVaR,(X) = gy + 51%7;’”,

where g, := VaR,(X) is the p-quantile of X.

(2) Let X be a r.v. with X ~ F. The tail distribution F(x)is
approximated by F(u)G,, 0 5(x — u).

This implies F ~ F with F =1 — F(u)G, 0.5(x — v).
The CVaR of the approximation F is given as follows for Gp > u:

B‘F’Y(ap —u)

CVaR,(F) = g + 1-~



