Risk theory and management in actuarial science winter term 2020/21

third worksheet

- 19. (a) Compute the expectation $E(G_{\gamma,0,\beta})$ of the generalized Pareto distribution $G_{\gamma,0,\beta}$.
 - (b) Consider a random variable X with distribution function F for which the approximation $\bar{F}_u(x) \approx \bar{G}_{\gamma,0,\beta(u)}(x)$ holds with $\gamma \notin \{0,1\}$. Show that this implies the approximation $\bar{F}_v(x) \approx \bar{G}_{\gamma,0,\beta(u)+\gamma(v-u)}(x), \forall v \ge u$.
 - (c) Use the results of (a) and (b) to show that for any fixed threshold u > 0 the mean excess function $e_X(v)$ is linear in v for $v \in [u, +\infty)$.
- 20. Use the peaks over threshold (POT) method to analyse the tails of the data described in Exercise 18 (in the second worksheet).
 - (a) Argue carefully upon your choice of the threshold parameter k based on the inspection of the plot of the empirical mean excess function (analogously to the case of the fire insurance example discussed in the lecture).
 - (b) Maximize the log-likelihood function to obtain estimators for γ and β by using a solver of your choice. Consider the plot of the different values of the estimator $\hat{\gamma}$ of γ in dependence of the threshold parameter k to justify your choice for a suitable interval of values of k (cf. the fire insurance example from the lecture).
 - (c) Compute estimators for VaR_{0.95} and CVaR_{0.95} for the whole interval of reasonable values of k determined in (b). Visualize the dependence of these estimators on k graphically and revise you choice for the interval of values of k, if appropriate.
 - (d) Choose a value of k and visualize in one plot the empirical tail distribution and the tail distribution obtained by the POT method. Comment upon your results.
- 21. Let the random variables X_i , i = 1, 2, be such that $X_1 \sim Exp(\lambda)$ and $X_2 = t(X_1)$, where $Exp(\lambda)$ is the exponential distribution with parameter λ and $t: \mathbb{R} \to \mathbb{R}$, $t(x) = x^2$. Determine the coefficients of the lower and the upper tail dependence $\lambda_L(X_1, X_2)$, $\lambda_U(X_1, X_2)$, respectively, and conclude that X_1 and X_2 have both a lower and an upper tail dependence. Compute also the coefficient of the linear correlation $\rho_L(X_1, X_2)$, compare the three computed dependence measures and comment on your results.