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correlation matrix R . Then CGa

R (u) = φdR(φ
−1(u1), . . . , φ

−1(ud )) holds,
where φdR is the c.d.f. of a d-dimensional normal distribution with
expected vector 0 and correlaton matrix R , and φ−1 is the inverse of the
standard normal distribution function.
Since the normal distribuion is elliptic, the Gaussian copula CGa

R is by
definition an elliptic copula.

In the bivariate case we have:

CGa
R (u1, u2) =

∫ φ−1(u1)

−∞

∫ φ−1(u2)

−∞
1

2π(1−ρ2)1/2
exp

{

−(x21−2ρx1x2+x22 )
2(1−ρ2)

}

dx1dx2,

where ρ ∈ (−1, 1).
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Definition: The (unique) copula C t
α,R of X is called t-copula:

C t
α,R(u) = tdα,R(t

−1
α (u1), . . . , t

−1
α (ud )).

Rij =
Σij√
ΣiiΣjj

, i , j = 1, 2 . . . , d , is the correlation matrix of Z ,

tdα,R is the cdf of
√
α√
S
RZ and tα are the marginal distributions of tdα,R .

In the bivariate case (d = 2):

C t
α,R(u1, u2) =

t−1
α (u1)
∫

−∞

t−1
α (u2)
∫

−∞

1

2π(1− ρ2)1/2

{

1 +
x21 − 2ρx1x2 + x22

α(1− ρ2)

}−α+2
2

dx1dx2,

for ρ ∈ (−1, 1). R12 is the linear correlation coefficient of the
corresponding bivariate tα-distribution for α > 2.
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A d-dimensional random vector X (or a d-variate distribution function) is

called radial symmetric around a, for some a ∈ IR
d , iff X − a
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= a− X .

Example: An elliptically distributed random vector
X ∼ Ed(µ,Σ, ψ) ∈ IR

d is radial symmetric around µ.

Definition: (Radial symmetry of copulas)
A copula C is called radial symmetric iff

(U1 − 0.5, . . . ,Ud − 0.5)
d
= (0.5− U1, . . . , 0.5− Ud) ⇐⇒ U

d
= 1− U ,

where (U1,U2, . . . ,Ud) is a random vector with distribution function C .
For a radial symmetric copula C = Ĉ holds.

Example: Elliptical copulas are radial symmetric.

The Gumbel and Clayton Copulas are not radial symmetric. Why?
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The density function of a copula
Not every copula has a density function. For example the co-monotonie
copula M and the anti-monotonie copula W do not have a density
function.

If the density function c of a copula C exists, then we have

c(u1, u2, . . . , ud ) =
∂C (u1, u2, . . . , ud)

∂u1∂u2 . . . ∂ud
.

Let C be the copula of a distribution F with marginal distributions
F1,. . .,Fd . By differentiating

C (u1, . . . , ud) = F (F←1 (u1), . . . ,F
←
d (ud ))

we obtain the density c of C :

c(u1, . . . , ud) =
f (F−11 (u1), . . . ,F

−1
d (ud ))

f1(F
−1
1 (u1)) . . . fd(F

−1
d (ud ))

where f is the density function of F , fi are the marginal density
functions, and F−1i are the inverse functions of Fi , for 1 ≤ i ≤ d ,
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For such a copula C (u1, u2, . . . , ud ) = C (uπ(1), uπ(2), . . . , uπ(d)) holds for
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Examples of exchangeable copulas:
Gumbel, Clayton, and also the Gaussian copula CGa

P and the t-Copula
C t
ν,P , if P is an equicorrelation matrix, i.e. R = ρJd + (1− ρ)Id .

Jd ∈ IR
d×d is a matrix consisiting only of ones, and Id ∈ IR

d×d is the
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For bivariate exchangeable copulas we have:

P(U2 ≤ u2|U1 = u1) = P(U1 ≤ u2|U2 = u1).
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λU(X1,X2) = λL(X1,X2) = 0 holds.

Corollary: Let (X1,X2)
T be a random vector with continuous marginal

distributions and let CGa
ρ be a Gaussian copula, where ρ is the linear

correlation coefficient of X1 and X2. The λU(X1,X2) = λL(X1,X2) = 0
holds.

Theorem: Let (X1,X2)
T ∼ t2(0, ν,R) be a random vector with a

t-distribution and ν degrees of freedom, expectation 0 and linear
correlation matrix R . For R12 > −1 we have

λU(X1,X2) = λL(X1,X2) = 2t̄ν+1

(√
ν + 1

√
1− R12√
1 + R12

)

The proof is similar to the proof of the analogous theorem about the
Gaussian copulas.
Hint:

X2|X1 = x ∼
(

ν + 1

ν + x2

)1/2
X2 − ρx
√

1− ρ2
∼ tν+1

.
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See McNeil et al. (2005) for a proof of the three last results.
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Definition: Let φ : [0, 1] → [0,+∞] be a continuous, strictly monotone
decreasing function with φ(1) = 0. The pseudo-inverse function
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holds. Moreover

φ(φ[−1](t) =

{

t 0 ≤ t ≤ φ(0)
φ(0) φ(0) ≤ t ≤ +∞

If φ(0) = +∞, then φ[−1] = φ−1.
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(

u−θ1 + u−θ2 − 1
)−1/θ

is the
Clayton copula with parameter θ.
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