Elliptical distributions and copulas (contd.)



Elliptical distributions and copulas (contd.)

Definition: Let X ~ E4(u, X, ) be an elliptically distributed random
vector with c.d.f. F and marginal distributions F1, Fy, ..., F4. The unique
copula C of X (or F) with C(u) = F(F{ (t1),...,F3 (uq)), is called an

elliptical copula.



Elliptical distributions and copulas (contd.)

Definition: Let X ~ E4(u, X, ) be an elliptically distributed random
vector with c.d.f. F and marginal distributions F1, Fy, ..., F4. The unique
copula C of X (or F) with C(u) = F(F{ (t1),...,F3 (uq)), is called an
elliptical copula.

Example: Gaussian copulas are elliptical copulas



Elliptical distributions and copulas (contd.)

Definition: Let X ~ E4(u, X, ) be an elliptically distributed random
vector with c.d.f. F and marginal distributions F1, Fy, ..., F4. The unique
copula C of X (or F) with C(u) = F(F{ (t1),...,F3 (uq)), is called an
elliptical copula.

Example: Gaussian copulas are elliptical copulas

Let CS? be the copula of a d-dimensional normal distribution with
correlation matrix R. Then CS?(u) = ¢%(¢~(u1), ..., (ug)) holds,
where ¢% is the c.d.f. of a d-dimensional normal distribution with
expected vector 0 and correlaton matrix R, and ¢! is the inverse of the
standard normal distribution function.



Elliptical distributions and copulas (contd.)

Definition: Let X ~ E4(u, X, ) be an elliptically distributed random
vector with c.d.f. F and marginal distributions F1, Fy, ..., F4. The unique
copula C of X (or F) with C(u) = F(F{ (t1),...,F3 (uq)), is called an
elliptical copula.

Example: Gaussian copulas are elliptical copulas

Let CS? be the copula of a d-dimensional normal distribution with
correlation matrix R. Then CS?(u) = ¢%(¢~(u1), ..., (ug)) holds,
where ¢% is the c.d.f. of a d-dimensional normal distribution with
expected vector 0 and correlaton matrix R, and ¢! is the inverse of the
standard normal distribution function.

Since the normal distribuion is elliptic, the Gaussian copula Cga is by
definition an elliptic copula.



Elliptical distributions and copulas (contd.)

Definition: Let X ~ E4(u, X, ) be an elliptically distributed random
vector with c.d.f. F and marginal distributions F1, Fy, ..., F4. The unique
copula C of X (or F) with C(u) = F(F{ (t1),...,F3 (uq)), is called an
elliptical copula.

Example: Gaussian copulas are elliptical copulas

Let CS? be the copula of a d-dimensional normal distribution with
correlation matrix R. Then CS?(u) = ¢%(¢~(u1), ..., (ug)) holds,
where ¢% is the c.d.f. of a d-dimensional normal distribution with
expected vector 0 and correlaton matrix R, and ¢! is the inverse of the
standard normal distribution function.

Since the normal distribuion is elliptic, the Gaussian copula Cga is by
definition an elliptic copula.

In the bivariate case we have:
—1 —1 _(x2_2 2
C,‘ga(ula ) = ffoo(m) ffOO(UZ) 27r(1,1p2)1/2 exp { (X12(1p_><;;<§+x2)} dxidxz,

where p € (—1,1).
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Another example of elliptical copulas: the t-copula

Definition: Let X < ji+ YZAZ ~ ty(a, 11, T), where i € R?, a € IN,

a>1,5~x2, Ac R with AA' =%, Z ~ Ni(0, ), and S and Z
independent. We say that X has a d-dimensional t-distribution with
expectation  (for a > 1) and covariance matrix Cov(X) = -%5%.
(o > 2 should hold, Cov(X) does not exist for a < 2.)

)

Definition: The (unique

ar(U) =t (15 (ur), - 15 (ua))-

pap P . . .
Rj = \/ﬁ i,j=1,2...,d, is the correlation matrix of Z,

copula C} . of X is called t-copula:

td g is the cdf of %RZ and t, are the marginal distributions of td .

In the bivariate case (d = 2):

o (w) t N (u2) > 5~ — 32
1 X{ — 2px1%2 + X 2
ct = 1+ 2 2 dx d.
or (U1, 12) / / 21(1 — p2)1/2 { + a1 = p?) X10%2

for p € (—1,1). Ryp is the linear correlation coefficient of the
corresponding bivariate t,-distribution for o > 2.
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Further properties of copulas

Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is

. . . d
called radial symmetric around a, for some a € ]Rd, iff X—a=a—X.

Example: An elliptically distributed random vector
X ~ Eg(pu, X,0) € RY is radial symmetric around p.

Definition: (Radial symmetry of copulas)
A copula C is called radial symmetric iff

(U —05,...,Us—05)Z (05— U,...,05 - Uy) == UZ1- U,

where (Uy, Us, ..., Uy) is a random vector with distribution function C.
For a radial symmetric copula C = C holds.

Example: Elliptical copulas are radial symmetric.
The Gumbel and Clayton Copulas are not radial symmetric. Why?
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The density function of a copula

Not every copula has a density function. For example the co-monotonie
copula M and the anti-monotonie copula W do not have a density
function.

If the density function ¢ of a copula C exists, then we have

8C(U1, u,..., ud)
c(ul,UQ,...7Ud): OuOus ... 0uy '

Let C be the copula of a distribution F with marginal distributions
Fi,...,Fq. By differentiating

Clur,y ..., uq) = F(Ff (), ..., Fy (uq))
we obtain the density ¢ of C:

_ (RN (w), - Pyt (ua))
f(F () fa(Fy (ua))

where f is the density function of F, f; are the marginal density
functions, and F,-_1 are the inverse functions of F;, for 1 </ < d,

c(ug,...,uq)
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Definition:

A random vector X is called ‘exchangeable iff

(Xiy.-0, Xa) 2 (Xr@)» - -+ > Xn(d)) for any permutation
(m(1),7(2),...,7(d)) of (1,2,...,d).

A copula C is called ‘exchangeable iff C is the distribution function of an
exchangeable random vector (with uniform marginal distributions on
[0,1]).

For such a copula C(uy, ta,. .., uq) = C(Ux(1), Ur(2), - - - » Ur(q)) holds for
any permutation (7 (1), 7(2),...,7(d)) of (1,2,...,d)

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula C5? and the t-Copula
le’P, if P is an equicorrelation matrix, i.e. R = pJg + (1 — p)lg.

Jg € IR?*? is a matrix consisiting only of ones, and Iy € IRY*9 is the
d-dimensional identity matrix.

For bivariate exchangeable copulas we have:

P(U2 S U2|U1 = Ul) = P(U1 S U2|U2 = Ul).
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Theorem: Let (Xl,Xg)T be a normally distributed random vector. Then
Au(Xl, Xg) = /\[_(Xl, XQ) = 0 holds.

Corollary: Let (X1,X2)T be a random vector with continuous marginal
distributions and let CPGa be a Gaussian copula, where p is the linear
correlation coefficient of X; and Xa. The Ay(X1, X2) = A\ (X1, X2) =0
holds.

Theorem: Let (X1, X2)" ~ (0,7, R) be a random vector with a
t-distribution and v degrees of freedom, expectation 0 and linear
correlation matrix R. For Ri» > —1 we have

T 1-R
Au(Xe, X2) = Au(Xe, Xo) = 2t (m%)

The proof is similar to the proof of the analogous theorem about the
Gaussian copulas.
Hint:

v4+1\Y? Xo — px
Ntu+1

Xo| Xy = x ~
2|1 X <I/+X2 1_p2
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Corollary: Let (Xi,X2)" be a random vector with continuous marginal
distributions and a t-copula C!  with v degrees of freedom and and
correlation matrix R. Then we have

Au(X, X2) = Ac(Xe, Xo) = 2841 (VV+ Lgﬁ)

Theorem: Let (X1, X2)” be a random vector with continuous marginal
distributions and a Gaussian copula CGa where p is the linear correlation
coefficient of X1 and X5. Then we have pr(X1, Xo) = £ arcsm p und
ps(Xy, Xp) =2 arcsm £.

Theorem: Let X ~ Eq(p, X, ) be an elliptically distributed random
vector with continuous marginal distrib)L:jtions. Then the following holds
pr(Xi, Xj) = = arcsm Rjj, with Rj = \/zu—z,, fori,j=1,2,...,d.

Corollary: Let (X1,X2)T be a random vector with continuous marginal
distributions and an elliptical copula copula C,fz 4+ Then we have

pr (X1, Xo) = =2 arcsm Ri2, with Ry = _22112222.

See McNeil et aI. (2005) for a proof of the three last results.
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» radial symmetry

Definition: Let ¢: [0,1] — [0, +00] be a continuous, strictly monotone
decreasing function with ¢(1) = 0. The pseudo-inverse function
Pl [0,00] — [0, 1] of ¢ is defined by

_1 -1 0<t<g(0
a0 ={ 570 55

4= is continuous and monotone decreasing on [0, oo], strictly
monotone decreasing on [0, $(0)] and ¢l (¢(u)) = u for u € [0,1]
holds. Moreover

1 t 0 =
o0 = { $(0) (0) <t < +oo

If $(0) = 400, then ¢~ = =1,
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The Gumbel Copulas have an upper tail dependence.



Archimedian copulas (contd.)

Theorem: Let ¢: [0,1] — [0, +00] be a continuous, strictly monotone
decreasing function with ¢(1) = 0 and let ¢[~! be the pseudo-inverse
function of ¢. The function C: [0,1]* — [0, 1], with

C(u1, 1) = H(p(u1) + ¢p(u2)) is a copula iff ¢ is convex.

A copula C generated as above is called an Archimedian copula with
generator ¢.

If $(0) = +o0, then I~ = ¢~1 and C(uy, up) = ¢~ (1) + D(w2)).
See Nelsen 1999 for a proof

Examples: Gumbel Copulas: ¢(t) = (—Int)?, 6 > 1, t € [0,1]. Then
Co(ur, u2) = ¢ H(p(ur) + B(u2)) = exp (—[(— Inur)? + (— In up)?]*/%)
is the Gumbel copula with parameter 6.

For § = 1: CF“ = uyun.limy_o Cec" = M(uy, up) = min{uy, ua}.

The Gumbel Copulas have an upper tail dependence.

Clayton Copulas: ¢(t) = (% —1)/6, § > 0. Then

M, 1) = I (@(un) + () = (uy® + u3® — 1) is the
Clayton copula with parameter 6.



Archimedian copulas (contd.)

Theorem: Let ¢: [0,1] — [0, +00] be a continuous, strictly monotone
decreasing function with ¢(1) = 0 and let ¢[~! be the pseudo-inverse
function of ¢. The function C: [0,1]* — [0, 1], with

C(u1, 1) = H(p(u1) + ¢p(u2)) is a copula iff ¢ is convex.

A copula C generated as above is called an Archimedian copula with
generator ¢.

If $(0) = +o0, then I~ = ¢~1 and C(uy, up) = ¢~ (1) + D(w2)).
See Nelsen 1999 for a proof

Examples: Gumbel Copulas: ¢(t) = (—Int)?, 6 > 1, t € [0,1]. Then
Co(ur, u2) = ¢ H(p(ur) + B(u2)) = exp (—[(— Inur)? + (— In up)?]*/%)
is the Gumbel copula with parameter 6.

For § = 1: CF“ = uyun.limy_o Cec" = M(uy, up) = min{uy, ua}.

The Gumbel Copulas have an upper tail dependence.

Clayton Copulas: ¢(t) = (% —1)/6, § > 0. Then

CMun, u2) = A1) + d(u2)) = (w7 + u3? — 1) s the
Clayton copula with parameter 6.
limg_o Cf' = uruz and limg_yoo G = M = min{uy, up}.



Archimedian copulas (contd.)

Theorem: Let ¢: [0,1] — [0, +00] be a continuous, strictly monotone
decreasing function with ¢(1) = 0 and let ¢[~! be the pseudo-inverse
function of ¢. The function C: [0,1]* — [0, 1], with

C(u1, 1) = H(p(u1) + ¢p(u2)) is a copula iff ¢ is convex.

A copula C generated as above is called an Archimedian copula with
generator ¢.

If $(0) = +o0, then I~ = ¢~1 and C(uy, up) = ¢~ (1) + D(w2)).
See Nelsen 1999 for a proof

Examples: Gumbel Copulas: ¢(t) = (—Int)?, 6 > 1, t € [0,1]. Then
G (u1, u2) = N (@ (ur) + d(u2)) = exp (—[(=In 1) + (— Inu2)’]M?)
is the Gumbel copula with parameter 6.

For § = 1: CF“ = uyun.limy_o Cec" = M(uy, up) = min{uy, ua}.

The Gumbel Copulas have an upper tail dependence.

Clayton Copulas: ¢(t) = (% —1)/6, § > 0. Then

G (1, 1) = S (o) + 0()) = (up* + 03 = 1) """ s the
Clayton copula with parameter 6.

limg_o CQC’ = upuy and limg_s oo CQC’ =M = min{uy, tr}.

The Clayton copulas have a lower tail depencence.



