
Properties of ρτ and ρS .

Theorem: Let (X1,X2)T be a random vector with continuous marginal
distributions and unique copula C . The following equalities hold:

ρτ (X1,X2) = 4
∫ 1

0

∫ 1

0
C (u1, u2)dC (u1, u2)− 1

ρS(X1,X2) = 12
∫ 1

0

∫ 1

0
(C (u1, u2)− u1u2)du1du2 =

12
∫ 1

0

∫ 1

0
C (u1, u2)du1du2 − 3

I ρτ and ρS are symmetric and take their values on [−1, 1].

I If X1, X2 are independent, then ρτ (X1,X2) = ρS(X1,X2) = 0.
In general the converse does not hold.

I X1,X2 are co-monotone iff ρτ (X1,X2) = ρS(X1,X2) = 1.
X1,X2. X1,X2 are anti-monotone iff ρτ (X1,X2) = ρS(X1,X2) = −1.

I Let F1, F2 be the continuous marginal distributions of (X1,X2)T

and let T1, T2 be strictly monotone functions on [−∞,∞]. Then
the following equalities hold ρτ (X1,X2) = ρτ (T1(X1),T2(X2)) and
ρS(X1,X2) = ρS(T1(X1),T2(X2)).

(See Embrechts et al., 2002).
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Tail dependence coefficients

Definition: Let (X1,X2)T be a random vector with marginal
distributions F1 und F2.

The coefficent λU(X1,X2) of the upper tail dependency of (X1,X2)T is
defined as λU(X1,X2) = limu→1− P(X2 > F←2 (u)|X1 > F←1 (u)), provided
that the limit exists.

The coefficent λL(X1,X2) of the lower tail dependency of (X1,X2)T is
defined as λL(X1,X2) = limu→0+ P(X2 ≤ F←2 (u)|X1 ≤ F←1 (u)) provided
that the limit exists.

If the limit exists and λU > 0 (λL > 0) we say that (X1,X2)T have an
upper (a lower) tail dependence.
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Tail dependency and survival copulas

Definition: Let the copula C be the c.d.f. of a random vector
(U1,U2, . . . ,Ud) with Ui ∼ U[0, 1], i = 1, 2, . . . , d . The c.d.f. of
(1− U1, 1− U2, . . . , 1− Ud) is called survival copula of C and is denoted
by Ĉ .

Lemma: Let X be a random vector with multivariate tail distribution
function F̄ (F̄ (x1, x2, . . . , xd) := Prob(X1 > x1,X2 > x2, . . . ,Xd > xd))
and marginal distributions Fi , i = 1, 2, . . . , d . Let F̄i := 1− Fi ,
i = 1, 2, . . . , d . Then the following holds

F̄ (x1, x2, . . . , xd) = Ĉ (F̄1(x1), F̄2(x2), . . . , F̄d(xd).

Lemma: For any copula C and its survival copula Ĉ the following holds
Ĉ (1− u1, 1− u2) = 1− u1 − u2 + C (u1, u2).

Theorem: Let (X1,X2)T be a random vector with continuous marginal
distributions and a unique copula C . The following equalities hold

λU(X1,X2) = limu→1−
1−2u+C(u,u)

1−u and λL(X1,X2) = limu→0+
C(u,u)

u ,
provided that the limits exist.
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Exmaples of copulas:

The Gumbel family of copulas:

CGu
θ (u1, u2) = exp

(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ)
, θ ≥ 1

We have λU = 2− 21/θ, λL = 0.

The Clayton family of copulas:

CCl
θ (u1, u2) = (u−θ1 + u−θ2 − 1)1/θ, θ > 0

We have λU = 0, λL = 2−1/θ.
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Elliptical copulas

Definition: Let X be a d-dimensional random vector. Let µ ∈ IRd and
Σ ∈ IRd×d be constants, and let ψ : [0,∞)→ IR be a function such that
φX−µ = ψ(tTΣt) holds for the characteristic function φX−µ of X − µ.
Then X is an elliptically distributed random vector with parameters µ, Σ,
ψ. Notation: X ∼ Ed(µ,Σ, ψ).

ψ is the generating function (or the generator) of X .

For d = 1 the elliptical distributions coincide with the symmetric
distributions. (Convince yourself! Exploit the stochastic representation of
elliptical distributions.)

Theorem:(Stochastic representation)
A d-dimensional random vector X is elliptically distributed,
X ∼ Ed(µ,Σ, ψ) with rang(Σ) = k, iff there exist a matrix A ∈ IRd×k ,
ATA = Σ, a nonnegative r.v. R and a k-dimensional random vector U
uniformly distributed on the unit ball Sk−1 = {z ∈ IRk : zT z = 1}, such

that R and U are independent and X
d
= µ+ RAU.

Remark: An elliptically distributed random vector X ist radial symmetric,

i.e. X − µ d
= µ− X .
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X ∼ Ed(µ,Σ, ψ) with rang(Σ) = k , iff there exist a matrix A ∈ IRd×k ,
ATA = Σ, a nonnegative r.v. R and a k-dimensional random vector U
uniformly distributed on the unit ball Sk−1 = {z ∈ IRk : zT z = 1}, such

that R and U are independent and X
d
= µ+ RAU.

Remark: An elliptically distributed random vector X ist radial symmetric,

i.e. X − µ d
= µ− X .
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Elliptical copulas (contd.)

Definition: Let X ∼ Ed(µ,Σ, ψ) be an elliptically distributed random
vector with c.d.f. F and marginal distributions F1,F2, . . . ,Fd . The unique
copula C of X (or F ) with C (u) = F (F←1 (u1), . . . ,F←d (ud)), is called an
elliptical copula.

Example: Gaussian copulas are elliptical copulas
Let CGa

R be the copula of a d-dimensional normal distribution with
correlation matrix R. Then CGa

R (u) = φdR(φ−1(u1), . . . , φ−1(ud)) holds,
where φdR is the c.d.f. of a d-dimensional normal distribution with
expected vector 0 and correlation matrix R, and φ−1 is the inverse of the
standard normal distribution function.
Since the normal distribution is elliptic, the Gaussian copula CGa

R is by
definition an elliptic copula.

In the bivariate case we have:

CGa
R (u1, u2) =

∫ φ−1(u1)

−∞
∫ φ−1(u2)

−∞
1

2π(1−ρ2)1/2 exp
{
−(x2

1−2ρx1x2+x2
2 )

2(1−ρ2)

}
dx1dx2,

where ρ ∈ (−1, 1).
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Another example of elliptical copulas: the t-copula

Definition: Let X
d
= µ+

√
α√
S
AZ ∼ td(α, µ,Σ), where µ ∈ IRd , α ∈ IN,

α > 1, S ∼ χ2
α, A ∈ IRd×k with AAt = Σ, Z ∼ Nk(0, Ik), and S and Z

independent. We say that X has a d-dimensional t-distribution with
expectation µ (for α > 1) and covariance matrix Cov(X ) = α

α−2 Σ.
(α > 2 should hold, Cov(X ) does not exist for α ≤ 2.)

Definition: The (unique) copula C t
α,R of X is called t-copula:

C t
α,R(u) = tdα,R(t−1

α (u1), . . . , t−1
α (ud)).

Rij =
Σij√
ΣiiΣjj

, i , j = 1, 2 . . . , d , is the correlation matrix of AZ .

tdα,R is the cdf of
√
α√
S
Y , where S ∼ χ2

α, Z ∼ Nk(0,R), and S , Y are

independent. tα are the marginal distributions of tdα,R .

In the bivariate case (d = 2):

C t
α,R(u1, u2) =

t−1
α (u1)∫
−∞

t−1
α (u2)∫
−∞

1

2π(1− ρ2)1/2

{
1 +

x2
1 − 2ρx1x2 + x2

2

α(1− ρ2)

}−α+2
2

dx1dx2,

for ρ ∈ (−1, 1). R12 is the linear correlation coefficient of the
corresponding bivariate tα-distribution for α > 2.
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Further properties of copulas

Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is

called radial symmetric around a, for some a ∈ IRd , iff X − a
d
= a− X .

Example: An elliptically distributed random vector
X ∼ Ed(µ,Σ, ψ) ∈ IRd is radial symmetric around µ.

Definition: (Radial symmetry of copulas)
A copula C is called radial symmetric iff

(U1 − 0.5, . . . ,Ud − 0.5)
d
= (0.5− U1, . . . , 0.5− Ud)⇐⇒ U

d
= 1− U,

where (U1,U2, . . . ,Ud) is a random vector with distribution function C .
For a radial symmetric copula C = Ĉ holds.

Example: Elliptical copulas are radial symmetric.

The Gumbel and Clayton Copulas are not radial symmetric. Why?



Further properties of copulas
Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is

called radial symmetric around a, for some a ∈ IRd , iff X − a
d
= a− X .

Example: An elliptically distributed random vector
X ∼ Ed(µ,Σ, ψ) ∈ IRd is radial symmetric around µ.

Definition: (Radial symmetry of copulas)
A copula C is called radial symmetric iff

(U1 − 0.5, . . . ,Ud − 0.5)
d
= (0.5− U1, . . . , 0.5− Ud)⇐⇒ U

d
= 1− U,

where (U1,U2, . . . ,Ud) is a random vector with distribution function C .
For a radial symmetric copula C = Ĉ holds.
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The density function of a copula

Not every copula has a density function. For example the co-monotony
copula M and the anti-monotony copula W do not have a density
function.

If the density function c of a copula C exists, then we have

c(u1, u2, . . . , ud) =
∂C (u1, u2, . . . , ud)

∂u1∂u2 . . . ∂ud
.

Let C be the copula of a distribution F with marginal distributions
F1,. . .,Fd . By differentiating

C (u1, . . . , ud) = F (F←1 (u1), . . . ,F←d (ud))

we obtain the density c of C :

c(u1, . . . , ud) =
f (F−1

1 (u1), . . . ,F−1
d (ud))

f1(F−1
1 (u1)) . . . fd(F−1

d (ud))

where f is the density function of F , fi are the marginal density
functions, and F−1

i are the inverse functions of Fi , for 1 ≤ i ≤ d ,
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Exchangeability

Definition:
A random vector X is called ‘exchangeable iff

(X1, . . . ,Xd)
d
= (Xπ(1), . . . ,Xπ(d)) for any permutation

(π(1), π(2), . . . , π(d)) of (1, 2, . . . , d).
A copula C is called ‘exchangeable iff C is the distribution function of an
exchangeable random vector (with uniform marginal distributions on
[0, 1]).

For such a copula C (u1, u2, . . . , ud) = C (uπ(1), uπ(2), . . . , uπ(d)) holds for
any permutation (π(1), π(2), . . . , π(d)) of (1, 2, . . . , d).

Examples of exchangeable copulas:
Gumbel, Clayton, and also the Gaussian copula CGa

P and the t-Copula
C t
ν,P , if P is an equicorrelation matrix, i.e. R = ρJd + (1− ρ)Id .

Jd ∈ IRd×d is a matrix consisting only of ones, and Id ∈ IRd×d is the
d-dimensional identity matrix.

For bivariate exchangeable copulas we have:

P(U2 ≤ u2|U1 = u1) = P(U1 ≤ u2|U2 = u1).
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