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- 1-R
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The proof is similar to the proof of the analogous theorem about the
Gaussian copulas.
Hint:

Xo| X <V+1>1/2X2—PX
2| X1 =X~ ~ tyy1
v+ x? V1= p? *
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See McNeil et aI. (2005) for a proof of the three last results.
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=1 [0,00] — [0, 1] of ¢ is defined by

_1 -1 0<t< g0
ﬁ]m:{gU)MMSQQ

#=1 is continuous and monotone decreasing on [0, o], strictly
monotone decreasing on [0, ¢(0)] and ¢l (¢ (u)) = u for u € [0,1]
holds. Moreover

1 t 0 <
¢W[“”:{¢@ 6(0) < t < +o0

If $(0) = 400, then ¢~ = ¢~ 1.
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Theorem: (Kimberling 1974)

Let ¢: [0,1] — [0, 00] be a continuous, strictly monotone decreasing
function with ¢(0) = oo and ¢(1) = 0. The function C: [0,1]¢ — [0, 1],
C(u) := ¢ Y (d(tn) + ¢(u2) + ...+ ¢(uq)) is a copula for d > 2 iff =1 i
completely monotone on [0, o).

Lemma: A function 1: [0,00) — [0, 00) is completely monotone with
1(0) = 1 iff ¢ is the Laplace- Stieltjes transform of some distribution
function G on [0,00), i.e. ¥(s) = [, e"dG(x), s > 0.
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Theorem: Let G be a distribution function on [0, c0) such that

(0) = 0. Let ¢ be the Laplace-Stieltjes transform of G, i.e.

fo e~ dG(x) for s > 0. Let X be a r.v. with distribution

functlon G and let Ul, Us, ..., Uy be conditionally independent r.v. for
X = x, x € R, with conditional distribution function
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Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on [0, c0) such that
(0) = 0. Let ¢ be the Laplace-Stieltjes transform of G, i.e.
fo e~ dG(x) for s > 0. Let X be a r.v. with distribution
functlon G and let Ul, Us, ..., Uy be conditionally independent r.v. for
X = x, x € IRT, with conditional distribution function
Fu,x=x(u) = exp(—x1p~1(u)) for u € [0,1].
Then

PI‘Ob(Ul <wu,Ur<u,...,Us < Ud) = $(¢_1(U1)+LZJ_1(U2)+. . .+1/1_1(Ud))

and the distribution function of U = (U1, Uy, ..., Uy) is an Archimedian
copula with generator )~ 1.

Advantages and disadvantages of Archimedian copulas:
» can model a broader class of dependencies
> have a closed form representation
» depend on a small number of parameters in general

» the generator function needs to fulfill quite restrictive technical
assumptions



