Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T \sim t_2(0, \nu, R)$ be a random vector with a t-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix R. For $R_{12} > -1$ we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right)$$

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_ρ^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T \sim t_2(0, \nu, R)$ be a random vector with a t-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix R. For $R_{12} > -1$ we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right)$$

The proof is similar to the proof of the analogous theorem about the Gaussian copulas.

Hint:

$$|X_2|X_1 = x \sim \left(\frac{\nu+1}{\nu+x^2}\right)^{1/2} \frac{X_2 - \rho x}{\sqrt{1-\rho^2}} \sim t_{\nu+1}$$

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu,R}^t$ with ν degrees of freedom and and correlation matrix R. Then we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right).$$

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu,R}^t$ with ν degrees of freedom and and correlation matrix R. Then we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right).$$

Theorem: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi}\arcsin\rho$ und $\rho_{S}(X_1,X_2)=\frac{6}{\pi}\arcsin\frac{\rho}{2}$.

Corollary: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C^t_{\nu,R}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.

Theorem: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi}\arcsin\rho$ und $\rho_{S}(X_1,X_2)=\frac{6}{\pi}\arcsin\frac{\rho}{2}$.

Theorem: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$, with $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$ for $i, j = 1, 2, \ldots, d$.

Corollary: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C^t_{\nu,R}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.

Theorem: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi}\arcsin\rho$ und $\rho_{S}(X_1,X_2)=\frac{6}{\pi}\arcsin\frac{\rho}{2}$.

Theorem: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$, with $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$ for $i, j = 1, 2, \ldots, d$.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and an elliptical copula copula $C_{\mu, \Sigma, \psi}^E$. Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin R_{12}$, with $R_{12} = \frac{\Sigma_{12}}{\sqrt{\Sigma_{11}\Sigma_{22}}}$.

Corollary: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C^t_{\nu,R}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin \rho$ und $\rho_{S}(X_1, X_2) = \frac{6}{\pi} \arcsin \frac{\rho}{2}$.

Theorem: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$, with $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$ for $i, j = 1, 2, \ldots, d$.

Corollary: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and an elliptical copula copula $C_{\mu,\Sigma,\psi}^E$. Then we have $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi} \arcsin R_{12}$, with $R_{12}=\frac{\Sigma_{12}}{\sqrt{\Sigma_{11}\Sigma_{22}}}$.

See McNeil et al. (2005) for a proof of the three last results.

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi \colon [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$. The pseudo-inverse function $\phi^{[-1]} \colon [0,\infty] \to [0,1]$ of ϕ is defined by

$$\phi^{[-1]}(t) = \left\{ \begin{array}{ll} \phi^{-1}(t) & 0 \le t \le \phi(0) \\ 0 & \phi(0) \le t \le \infty \end{array} \right.$$

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi\colon [0,1]\to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$. The pseudo-inverse function $\phi^{[-1]}\colon [0,\infty]\to [0,1]$ of ϕ is defined by

$$\phi^{[-1]}(t) = \begin{cases} \phi^{-1}(t) & 0 \le t \le \phi(0) \\ 0 & \phi(0) \le t \le \infty \end{cases}$$

 $\phi^{[-1]}$ is continuous and monotone decreasing on $[0,\infty]$, strictly monotone decreasing on $[0,\phi(0)]$ and $\phi^{[-1]}(\phi(u))=u$ for $u\in[0,1]$ holds. Moreover

$$\phi(\phi^{[-1]}(t) = \left\{ \begin{array}{ll} t & 0 \leq t \leq \phi(0) \\ \phi(0) & \phi(0) \leq t \leq +\infty \end{array} \right.$$

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi\colon [0,1]\to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$. The pseudo-inverse function $\phi^{[-1]}\colon [0,\infty]\to [0,1]$ of ϕ is defined by

$$\phi^{[-1]}(t) = \begin{cases} \phi^{-1}(t) & 0 \le t \le \phi(0) \\ 0 & \phi(0) \le t \le \infty \end{cases}$$

 $\phi^{[-1]}$ is continuous and monotone decreasing on $[0,\infty]$, strictly monotone decreasing on $[0,\phi(0)]$ and $\phi^{[-1]}(\phi(u))=u$ for $u\in[0,1]$ holds. Moreover

$$\phi(\phi^{[-1]}(t)) = \begin{cases} t & 0 \le t \le \phi(0) \\ \phi(0) & \phi(0) \le t \le +\infty \end{cases}$$

If
$$\phi(0) = +\infty$$
, then $\phi^{[-1]} = \phi^{-1}$.

Theorem: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \to [0,1]$, with $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$ is a copula iff ϕ is convex.

Theorem: Let $\phi \colon [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C \colon [0,1]^2 \to [0,1]$, with $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$ is a copula iff ϕ is convex. A copula C generated as above is called an *Archimedian copula* with generator ϕ .

Theorem: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \to [0,1]$, with

 $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$ is a copula iff ϕ is convex.

A copula ${\it C}$ generated as above is called an ${\it Archimedian\ copula}$ with ${\it generator\ }\phi.$

If
$$\phi(0) = +\infty$$
, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

Theorem: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \to [0,1]$, with

 $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex.

A copula C generated as above is called an *Archimedian copula* with generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

See Nelsen 1999 for a proof

Theorem: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \to [0,1]$, with $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$ is a copula iff ϕ is convex.

A copula ${\it C}$ generated as above is called an ${\it Archimedian\ copula}$ with ${\it generator\ }\phi.$

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

See Nelsen 1999 for a proof

Examples: Gumbel Copulas: $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0,1]$. Then $C_{\theta}^{Gu}(u_1,u_2) = \phi^{[-1]}(\phi(u_1)+\phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta}+(-\ln u_2)^{\theta}]^{1/\theta}\right)$ is the Gumbel copula with parameter θ .

Theorem: Let $\phi \colon [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C \colon [0,1]^2 \to [0,1]$, with

 $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex.

A copula C generated as above is called an $Archimedian\ copula\ with\ generator\ \phi.$

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

See Nelsen 1999 for a proof

Examples: Gumbel Copulas: $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0,1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$ is the Gumbel copula with parameter θ .

For $\theta = 1$: $C_1^{Gu} = u_1 u_2$.

Theorem: Let $\phi \colon [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C \colon [0,1]^2 \to [0,1]$, with

 $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$ is a copula iff ϕ is convex.

A copula ${\cal C}$ generated as above is called an Archimedian copula with generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

See Nelsen 1999 for a proof

Examples: Gumbel Copulas: $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0,1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$ is the Gumbel copula with parameter θ .

For $\theta=1$: $C_1^{\mathit{Gu}}=u_1u_2.\mathrm{lim}_{\theta\to\infty}$ $C_{\theta}^{\mathit{Gu}}=\mathit{M}(u_1,u_2)=\min\{u_1,u_2\}.$

Theorem: Let $\phi \colon [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C \colon [0,1]^2 \to [0,1]$, with

 $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex.

A copula C generated as above is called an $Archimedian\ copula\ with\ generator\ \phi.$

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

See Nelsen 1999 for a proof

Examples: Gumbel Copulas: $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0,1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$ is the Gumbel copula with parameter θ .

For $\theta = 1$: $C_1^{Gu} = u_1 u_2. \lim_{\theta \to \infty} C_{\theta}^{Gu} = M(u_1, u_2) = \min\{u_1, u_2\}.$

The Gumbel Copulas have an upper tail dependence.

Theorem: Let $\phi \colon [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C \colon [0,1]^2 \to [0,1]$, with

 $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex.

A copula ${\cal C}$ generated as above is called an Archimedian copula with generator ϕ .

If
$$\phi(0) = +\infty$$
, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

See Nelsen 1999 for a proof

Examples: Gumbel Copulas: $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0,1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$ is the Gumbel copula with parameter θ .

For $\theta=1$: $C_1^{\mathit{Gu}}=u_1u_2.\mathrm{lim}_{\theta\to\infty}$ $C_{\theta}^{\mathit{Gu}}=\mathit{M}(u_1,u_2)=\min\{u_1,u_2\}.$

The Gumbel Copulas have an upper tail dependence.

Clayton Copulas: $\phi(t) = (t^{-\theta} - 1)/\theta$, $\theta > 0$. Then

 $C_{\theta}^{CI}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$ is the Clayton copula with parameter θ .

Theorem: Let $\phi \colon [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C \colon [0,1]^2 \to [0,1]$, with

 $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$ is a copula iff ϕ is convex.

A copula C generated as above is called an $Archimedian\ copula\ with\ generator\ \phi.$

If
$$\phi(0) = +\infty$$
, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

See Nelsen 1999 for a proof

Examples: Gumbel Copulas: $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0,1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$ is the Gumbel copula with parameter θ .

For $\theta = 1$: $C_1^{Gu} = u_1 u_2 . \lim_{\theta \to \infty} C_{\theta}^{Gu} = M(u_1, u_2) = \min\{u_1, u_2\}.$

The Gumbel Copulas have an upper tail dependence.

Clayton Copulas: $\phi(t) = (t^{-\theta} - 1)/\theta$, $\theta > 0$. Then

$$C_{\theta}^{CI}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$$
 is the Clayton copula with parameter θ .

 $\lim_{\theta \to 0} C_{\theta}^{Cl} = u_1 u_2$ and $\lim_{\theta \to \infty} C_{\theta}^{Cl} = M = \min\{u_1, u_2\}.$

Theorem: Let $\phi \colon [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C \colon [0,1]^2 \to [0,1]$, with

 $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$ is a copula iff ϕ is convex.

A copula ${\cal C}$ generated as above is called an Archimedian copula with generator ϕ .

If
$$\phi(0) = +\infty$$
, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

See Nelsen 1999 for a proof

Examples: Gumbel Copulas: $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0,1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$ is the Gumbel copula with parameter θ .

For $\theta=1$: $C_1^{\mathit{Gu}}=u_1u_2.\mathrm{lim}_{\theta\to\infty}$ $C_{\theta}^{\mathit{Gu}}=\mathit{M}(u_1,u_2)=\min\{u_1,u_2\}.$

The Gumbel Copulas have an upper tail dependence.

Clayton Copulas: $\phi(t) = (t^{-\theta} - 1)/\theta$, $\theta > 0$. Then

$$C_0^{CI}(u_1,u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$$
 is the

Clayton copula with parameter θ .

 $\lim_{\theta\to 0} C_{\theta}^{Cl} = u_1 u_2$ and $\lim_{\theta\to \infty} C_{\theta}^{Cl} = M = \min\{u_1, u_2\}.$

The Clayton copulas have a lower tail dependence.

Example:

Let $\phi(t) = 1 - t$, $t \in [0,1]$. Then $\phi^{[-1]}(t) = \max\{1 - t, 0\}$ and $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$. Thus the Fréchet lower bound is an Archimedian copula.

Example:

Let
$$\phi(t) = 1 - t$$
, $t \in [0,1]$. Then $\phi^{[-1]}(t) = \max\{1 - t, 0\}$ and $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$. Thus the Fréchet lower bound is an Archimedian copula.

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ . Then $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$ holds.

Example:

Let
$$\phi(t) = 1 - t$$
, $t \in [0,1]$. Then $\phi^{[-1]}(t) = \max\{1 - t, 0\}$ and $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$. Thus the Fréchet lower bound is an Archimedian copula.

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ . Then $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$ holds.

See Nelsen 1999 for a proof.

Example:

Let
$$\phi(t) = 1 - t$$
, $t \in [0,1]$. Then $\phi^{[-1]}(t) = \max\{1 - t, 0\}$ and $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$. Thus the Fréchet lower bound is an Archimedian copula.

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ . Then $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$ holds.

See Nelsen 1999 for a proof.

Example Kendalls Tau for the Gumbel copula and the Clayton copula

Example:

Let $\phi(t) = 1 - t$, $t \in [0,1]$. Then $\phi^{[-1]}(t) = \max\{1 - t, 0\}$ and $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$. Thus the Fréchet lower bound is an Archimedian copula.

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ . Then $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$ holds.

See Nelsen 1999 for a proof.

Example Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel: $\phi(t)=(\ln t)^{\theta},\ \theta\geq 1.$

Example:

Let $\phi(t) = 1 - t$, $t \in [0,1]$. Then $\phi^{[-1]}(t) = \max\{1 - t, 0\}$ and $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$. Thus the Fréchet lower bound is an Archimedian copula.

Theorem: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ . Then $\rho_{\tau}(X_1,X_2)=1+4\int_0^1 \frac{\phi(t)}{\phi'(t)}dt$ holds.

See Nelsen 1999 for a proof.

Example Kendalls Tau for the Gumbel copula and the Clayton copula

Gumbel:
$$\phi(t) = (\ln t)^{\theta}, \ \theta \ge 1.$$

 $\rho_{\tau}(\theta) = 1 + 4 \int_{0}^{1} \frac{\phi(t)}{\phi'(t)} dt = 1 - \frac{1}{\theta}.$

Example:

Let
$$\phi(t) = 1 - t$$
, $t \in [0,1]$. Then $\phi^{[-1]}(t) = \max\{1 - t, 0\}$ and $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$. Thus the Fréchet lower bound is an Archimedian copula.

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ . Then $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$ holds.

See Nelsen 1999 for a proof.

Example Kendalls Tau for the Gumbel copula and the Clayton copula

Gumbel:
$$\phi(t) = (\ln t)^{\theta}$$
, $\theta \ge 1$.

$$\rho_{ au}(heta) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt = 1 - \frac{1}{\theta}.$$

Clayton:
$$\phi(t) = (t^{-\theta} - 1)/\theta$$
, $\theta > 0$.

Archimedian copulas (contd.)

Example:

Let
$$\phi(t) = 1 - t$$
, $t \in [0,1]$. Then $\phi^{[-1]}(t) = \max\{1 - t, 0\}$ and $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$. Thus the Fréchet lower bound is an Archimedian copula.

Theorem: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ . Then $\rho_{\tau}(X_1,X_2)=1+4\int_0^1 \frac{\phi(t)}{\phi'(t)}dt$ holds.

See Nelsen 1999 for a proof.

Example Kendalls Tau for the Gumbel copula and the Clayton copula

Gumbel:
$$\phi(t) = (\ln t)^{\theta}$$
, $\theta \ge 1$.
 $\rho_{\tau}(\theta) = 1 + 4 \int_{0}^{1} \frac{\phi(t)}{\phi'(t)} dt = 1 - \frac{1}{\theta}$.

Clayton:
$$\phi(t) = (t^{-\theta} - 1)/\theta$$
, $\theta > 0$.

$$\rho_{\tau}(\theta) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt = \frac{\theta}{\theta + 2}.$$

Definition: A function $g:[0,\infty)\to [0,\infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k\in\mathbb{N}_*$: $(-1)^k\left.\left(\frac{d^k}{ds^k}g(s)\right)\right|_{s=-t}\geq 0,\ \forall t\in(0,\infty).$

Definition: A function $g:[0,\infty)\to [0,\infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k\in\mathbb{N}_*\colon (-1)^k\left(\frac{d^k}{ds^k}g(s)\right)\Big|_{s=t}\geq 0,\ \forall t\in(0,\infty).$

Theorem: (Kimberling 1974)

Let $\phi\colon [0,1] \to [0,\infty]$ be a continuous, strictly monotone decreasing function with $\phi(0)=\infty$ and $\phi(1)=0$. The function $C\colon [0,1]^d \to [0,1]$, $C(u):=\phi^{-1}(\phi(u_1)+\phi(u_2)+\ldots+\phi(u_d))$ is a copula for $d\geq 2$ iff ϕ^{-1} is completely monotone on $[0,\infty)$.

Definition: A function $g:[0,\infty)\to [0,\infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k\in\mathbb{N}_*\colon (-1)^k\left(\frac{d^k}{ds^k}g(s)\right)\Big|_{s=t}\geq 0,\ \forall t\in(0,\infty).$

Theorem: (Kimberling 1974)

Let $\phi\colon [0,1] \to [0,\infty]$ be a continuous, strictly monotone decreasing function with $\phi(0)=\infty$ and $\phi(1)=0$. The function $C\colon [0,1]^d \to [0,1]$, $C(u):=\phi^{-1}(\phi(u_1)+\phi(u_2)+\ldots+\phi(u_d))$ is a copula for $d\geq 2$ iff ϕ^{-1} is completely monotone on $[0,\infty)$.

Lemma: A function $\psi \colon [0,\infty) \to [0,\infty)$ is completely monotone with $\psi(0)=1$ iff ψ is the Laplace-Stieltjes transform of some distribution function G on $[0,\infty)$, i.e. $\psi(s)=\int_0^\infty e^{-sx}dG(x)$, $s\geq 0$.

Theorem: Let G be a distribution function on $[0,\infty)$ such that G(0)=0. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_0^\infty e^{-sx}dG(x)$ for $s\geq 0$. Let X be a r.v. with distribution function G and let U_1,U_2,\ldots,U_d be conditionally independent r.v. for $X=x, x\in \mathbb{R}^+$, with conditional distribution function $F_{U_t|X=x}(u)=\exp(-x\psi^{-1}(u))$ for $u\in [0,1]$.

Theorem: Let G be a distribution function on $[0,\infty)$ such that G(0)=0. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_0^\infty e^{-sx}dG(x)$ for $s\geq 0$. Let X be a r.v. with distribution function G and let U_1,U_2,\ldots,U_d be conditionally independent r.v. for $X=x,\,x\in {\rm I\!R}^+$, with conditional distribution function $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$ for $u\in [0,1]$.

Then

$$Prob(U_1 \le u_1, U_2 \le u_2, \dots, U_d \le u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of $U = (U_1, U_2, \dots, U_d)$ is an Archimedian copula with generator ψ^{-1} .

Theorem: Let G be a distribution function on $[0,\infty)$ such that G(0)=0. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_0^\infty e^{-sx}dG(x)$ for $s\geq 0$. Let X be a r.v. with distribution function G and let U_1,U_2,\ldots,U_d be conditionally independent r.v. for $X=x,\,x\in {\rm I\!R}^+$, with conditional distribution function $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$ for $u\in[0,1]$.

Then

$$Prob(U_1 \le u_1, U_2 \le u_2, \dots, U_d \le u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of $U = (U_1, U_2, \dots, U_d)$ is an Archimedian copula with generator ψ^{-1} .

Advantages and disadvantages of Archimedian copulas:

can model a broader class of dependencies

Theorem: Let G be a distribution function on $[0,\infty)$ such that G(0)=0. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_0^\infty e^{-sx}dG(x)$ for $s\geq 0$. Let X be a r.v. with distribution function G and let U_1,U_2,\ldots,U_d be conditionally independent r.v. for $X=x,\,x\in {\rm I\!R}^+$, with conditional distribution function $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$ for $u\in [0,1]$.

Then

$$Prob(U_1 \le u_1, U_2 \le u_2, \dots, U_d \le u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of $U = (U_1, U_2, \dots, U_d)$ is an Archimedian copula with generator ψ^{-1} .

Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation

Theorem: Let G be a distribution function on $[0,\infty)$ such that G(0)=0. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_0^\infty e^{-sx}dG(x)$ for $s\geq 0$. Let X be a r.v. with distribution function G and let U_1,U_2,\ldots,U_d be conditionally independent r.v. for $X=x,\,x\in{\rm I\!R}^+$, with conditional distribution function $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$ for $u\in[0,1]$.

$$Prob(U_1 \leq u_1, U_2 \leq u_2, \dots, U_d \leq u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of $U = (U_1, U_2, \dots, U_d)$ is an Archimedian copula with generator ψ^{-1} .

Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation
- depend on a small number of parameters in general

Theorem: Let G be a distribution function on $[0,\infty)$ such that G(0)=0. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_0^\infty e^{-sx}dG(x)$ for $s\geq 0$. Let X be a r.v. with distribution function G and let U_1,U_2,\ldots,U_d be conditionally independent r.v. for $X=x,\,x\in {\rm I\!R}^+$, with conditional distribution function $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$ for $u\in[0,1]$.

Then

$$Prob(U_1 \le u_1, U_2 \le u_2, \dots, U_d \le u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of $U = (U_1, U_2, \dots, U_d)$ is an Archimedian copula with generator ψ^{-1} .

Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation
- depend on a small number of parameters in general
- the generator function needs to fulfill quite restrictive technical assumptions

