**Theorem:** Let  $(X_1, X_2)^T$  be a normally distributed random vector. Then  $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$  holds.

**Theorem:** Let  $(X_1, X_2)^T$  be a normally distributed random vector. Then  $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$  holds.

**Corollary:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and let  $C_{\rho}^{Ga}$  be a Gaussian copula, where  $\rho$  is the linear correlation coefficient of  $X_1$  and  $X_2$ . The  $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$  holds.

**Theorem:** Let  $(X_1, X_2)^T$  be a normally distributed random vector. Then  $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$  holds.

**Corollary:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and let  $C_{\rho}^{Ga}$  be a Gaussian copula, where  $\rho$  is the linear correlation coefficient of  $X_1$  and  $X_2$ . The  $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$  holds.

**Theorem:** Let  $(X_1, X_2)^T \sim t_2(0, \nu, R)$  be a random vector with a t-distribution and  $\nu$  degrees of freedom, expectation 0 and linear correlation matrix R. For  $R_{12} > -1$  we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left( \sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right)$$

**Theorem:** Let  $(X_1, X_2)^T$  be a normally distributed random vector. Then  $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$  holds.

**Corollary:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and let  $C_\rho^{Ga}$  be a Gaussian copula, where  $\rho$  is the linear correlation coefficient of  $X_1$  and  $X_2$ . The  $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$  holds.

**Theorem:** Let  $(X_1, X_2)^T \sim t_2(0, \nu, R)$  be a random vector with a t-distribution and  $\nu$  degrees of freedom, expectation 0 and linear correlation matrix R. For  $R_{12} > -1$  we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left( \sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right)$$

The proof is similar to the proof of the analogous theorem about the Gaussian copulas.

Hint:

$$|X_2|X_1 = x \sim \left(\frac{\nu+1}{\nu+x^2}\right)^{1/2} \frac{X_2 - \rho x}{\sqrt{1-\rho^2}} \sim t_{\nu+1}$$

**Corollary:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and a t-copula  $C_{\nu,R}^t$  with  $\nu$  degrees of freedom and and correlation matrix R. Then we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left( \sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right).$$

**Corollary:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and a t-copula  $C_{\nu,R}^t$  with  $\nu$  degrees of freedom and and correlation matrix R. Then we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left( \sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right).$$

**Theorem:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions and a Gaussian copula  $C_{\rho}^{Ga}$ , where  $\rho$  is the linear correlation coefficient of  $X_1$  and  $X_2$ . Then we have  $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi}\arcsin\rho$  und  $\rho_{S}(X_1,X_2)=\frac{6}{\pi}\arcsin\frac{\rho}{2}$ .

**Corollary:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions and a t-copula  $C^t_{\nu,R}$  with  $\nu$  degrees of freedom and and correlation matrix R. Then we have  $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$ .

**Theorem:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions and a Gaussian copula  $C_{\rho}^{Ga}$ , where  $\rho$  is the linear correlation coefficient of  $X_1$  and  $X_2$ . Then we have  $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi}\arcsin\rho$  und  $\rho_{S}(X_1,X_2)=\frac{6}{\pi}\arcsin\frac{\rho}{2}$ .

**Theorem:** Let  $X \sim E_d(\mu, \Sigma, \psi)$  be an elliptically distributed random vector with continuous marginal distributions. Then the following holds  $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$ , with  $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$  for  $i, j = 1, 2, \ldots, d$ .

**Corollary:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions and a t-copula  $C^t_{\nu,R}$  with  $\nu$  degrees of freedom and and correlation matrix R. Then we have  $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$ .

**Theorem:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions and a Gaussian copula  $C_{\rho}^{Ga}$ , where  $\rho$  is the linear correlation coefficient of  $X_1$  and  $X_2$ . Then we have  $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi}\arcsin\rho$  und  $\rho_{S}(X_1,X_2)=\frac{6}{\pi}\arcsin\frac{\rho}{2}$ .

**Theorem:** Let  $X \sim E_d(\mu, \Sigma, \psi)$  be an elliptically distributed random vector with continuous marginal distributions. Then the following holds  $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$ , with  $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$  for  $i, j = 1, 2, \ldots, d$ .

**Corollary:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and an elliptical copula copula  $C_{\mu, \Sigma, \psi}^E$ . Then we have  $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin R_{12}$ , with  $R_{12} = \frac{\Sigma_{12}}{\sqrt{\Sigma_{11}\Sigma_{22}}}$ .

**Corollary:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions and a t-copula  $C^t_{\nu,R}$  with  $\nu$  degrees of freedom and and correlation matrix R. Then we have  $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$ .

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and a Gaussian copula  $C_{\rho}^{Ga}$ , where  $\rho$  is the linear correlation coefficient of  $X_1$  and  $X_2$ . Then we have  $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin \rho$  und  $\rho_{S}(X_1, X_2) = \frac{6}{\pi} \arcsin \frac{\rho}{2}$ .

**Theorem:** Let  $X \sim E_d(\mu, \Sigma, \psi)$  be an elliptically distributed random vector with continuous marginal distributions. Then the following holds  $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$ , with  $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$  for  $i, j = 1, 2, \ldots, d$ .

**Corollary:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions and an elliptical copula copula  $C_{\mu,\Sigma,\psi}^E$ . Then we have  $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi} \arcsin R_{12}$ , with  $R_{12}=\frac{\Sigma_{12}}{\sqrt{\Sigma_{11}\Sigma_{22}}}$ .

See McNeil et al. (2005) for a proof of the three last results.

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

**Definition:** Let  $\phi \colon [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$ . The pseudo-inverse function  $\phi^{[-1]} \colon [0,\infty] \to [0,1]$  of  $\phi$  is defined by

$$\phi^{[-1]}(t) = \left\{ \begin{array}{ll} \phi^{-1}(t) & 0 \le t \le \phi(0) \\ 0 & \phi(0) \le t \le \infty \end{array} \right.$$

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

**Definition:** Let  $\phi\colon [0,1]\to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$ . The pseudo-inverse function  $\phi^{[-1]}\colon [0,\infty]\to [0,1]$  of  $\phi$  is defined by

$$\phi^{[-1]}(t) = \begin{cases} \phi^{-1}(t) & 0 \le t \le \phi(0) \\ 0 & \phi(0) \le t \le \infty \end{cases}$$

 $\phi^{[-1]}$  is continuous and monotone decreasing on  $[0,\infty]$ , strictly monotone decreasing on  $[0,\phi(0)]$  and  $\phi^{[-1]}(\phi(u))=u$  for  $u\in[0,1]$  holds. Moreover

$$\phi(\phi^{[-1]}(t) = \left\{ \begin{array}{ll} t & 0 \leq t \leq \phi(0) \\ \phi(0) & \phi(0) \leq t \leq +\infty \end{array} \right.$$

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

**Definition:** Let  $\phi\colon [0,1]\to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$ . The pseudo-inverse function  $\phi^{[-1]}\colon [0,\infty]\to [0,1]$  of  $\phi$  is defined by

$$\phi^{[-1]}(t) = \begin{cases} \phi^{-1}(t) & 0 \le t \le \phi(0) \\ 0 & \phi(0) \le t \le \infty \end{cases}$$

 $\phi^{[-1]}$  is continuous and monotone decreasing on  $[0,\infty]$ , strictly monotone decreasing on  $[0,\phi(0)]$  and  $\phi^{[-1]}(\phi(u))=u$  for  $u\in[0,1]$  holds. Moreover

$$\phi(\phi^{[-1]}(t)) = \begin{cases} t & 0 \le t \le \phi(0) \\ \phi(0) & \phi(0) \le t \le +\infty \end{cases}$$

If 
$$\phi(0) = +\infty$$
, then  $\phi^{[-1]} = \phi^{-1}$ .



**Theorem:** Let  $\phi: [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C: [0,1]^2 \to [0,1]$ , with  $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$  is a copula iff  $\phi$  is convex.

**Theorem:** Let  $\phi \colon [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C \colon [0,1]^2 \to [0,1]$ , with  $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$  is a copula iff  $\phi$  is convex. A copula C generated as above is called an *Archimedian copula* with generator  $\phi$ .

**Theorem:** Let  $\phi: [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1) = 0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C: [0,1]^2 \to [0,1]$ , with

 $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$  is a copula iff  $\phi$  is convex.

A copula  ${\it C}$  generated as above is called an  ${\it Archimedian\ copula}$  with  ${\it generator\ }\phi.$ 

If 
$$\phi(0) = +\infty$$
, then  $\phi^{[-1]} = \phi^{-1}$  and  $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$ .

**Theorem:** Let  $\phi: [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C: [0,1]^2 \to [0,1]$ , with

 $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$  is a copula iff  $\phi$  is convex.

A copula C generated as above is called an *Archimedian copula* with generator  $\phi$ .

If  $\phi(0) = +\infty$ , then  $\phi^{[-1]} = \phi^{-1}$  and  $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$ .

See Nelsen 1999 for a proof

**Theorem:** Let  $\phi: [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C: [0,1]^2 \to [0,1]$ , with  $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$  is a copula iff  $\phi$  is convex.

A copula  ${\it C}$  generated as above is called an  ${\it Archimedian\ copula}$  with  ${\it generator\ }\phi.$ 

If  $\phi(0) = +\infty$ , then  $\phi^{[-1]} = \phi^{-1}$  and  $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$ .

See Nelsen 1999 for a proof

**Examples:** Gumbel Copulas:  $\phi(t) = (-\ln t)^{\theta}$ ,  $\theta \ge 1$ ,  $t \in [0,1]$ . Then  $C_{\theta}^{Gu}(u_1,u_2) = \phi^{[-1]}(\phi(u_1)+\phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta}+(-\ln u_2)^{\theta}]^{1/\theta}\right)$  is the Gumbel copula with parameter  $\theta$ .

**Theorem:** Let  $\phi \colon [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C \colon [0,1]^2 \to [0,1]$ , with

 $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$  is a copula iff  $\phi$  is convex.

A copula C generated as above is called an  $Archimedian\ copula\ with\ generator\ \phi.$ 

If  $\phi(0) = +\infty$ , then  $\phi^{[-1]} = \phi^{-1}$  and  $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$ .

See Nelsen 1999 for a proof

**Examples:** Gumbel Copulas:  $\phi(t) = (-\ln t)^{\theta}$ ,  $\theta \ge 1$ ,  $t \in [0,1]$ . Then  $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$  is the Gumbel copula with parameter  $\theta$ .

For  $\theta = 1$ :  $C_1^{Gu} = u_1 u_2$ .

**Theorem:** Let  $\phi \colon [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C \colon [0,1]^2 \to [0,1]$ , with

 $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$  is a copula iff  $\phi$  is convex.

A copula  ${\cal C}$  generated as above is called an Archimedian copula with generator  $\phi$ .

If  $\phi(0) = +\infty$ , then  $\phi^{[-1]} = \phi^{-1}$  and  $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$ .

See Nelsen 1999 for a proof

**Examples:** Gumbel Copulas:  $\phi(t) = (-\ln t)^{\theta}$ ,  $\theta \ge 1$ ,  $t \in [0,1]$ . Then  $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$  is the Gumbel copula with parameter  $\theta$ .

For  $\theta=1$ :  $C_1^{\mathit{Gu}}=u_1u_2.\mathrm{lim}_{\theta\to\infty}$   $C_{\theta}^{\mathit{Gu}}=\mathit{M}(u_1,u_2)=\min\{u_1,u_2\}.$ 

**Theorem:** Let  $\phi \colon [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C \colon [0,1]^2 \to [0,1]$ , with

 $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$  is a copula iff  $\phi$  is convex.

A copula C generated as above is called an  $Archimedian\ copula\ with\ generator\ \phi.$ 

If  $\phi(0) = +\infty$ , then  $\phi^{[-1]} = \phi^{-1}$  and  $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$ .

See Nelsen 1999 for a proof

**Examples:** Gumbel Copulas:  $\phi(t) = (-\ln t)^{\theta}$ ,  $\theta \ge 1$ ,  $t \in [0,1]$ . Then  $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$  is the Gumbel copula with parameter  $\theta$ .

For  $\theta = 1$ :  $C_1^{Gu} = u_1 u_2. \lim_{\theta \to \infty} C_{\theta}^{Gu} = M(u_1, u_2) = \min\{u_1, u_2\}.$ 

The Gumbel Copulas have an upper tail dependence.

**Theorem:** Let  $\phi \colon [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C \colon [0,1]^2 \to [0,1]$ , with

 $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$  is a copula iff  $\phi$  is convex.

A copula  ${\cal C}$  generated as above is called an Archimedian copula with generator  $\phi$ .

If 
$$\phi(0) = +\infty$$
, then  $\phi^{[-1]} = \phi^{-1}$  and  $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$ .

See Nelsen 1999 for a proof

**Examples:** Gumbel Copulas:  $\phi(t) = (-\ln t)^{\theta}$ ,  $\theta \ge 1$ ,  $t \in [0,1]$ . Then  $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$  is the Gumbel copula with parameter  $\theta$ .

For  $\theta=1$ :  $C_1^{\mathit{Gu}}=u_1u_2.\mathrm{lim}_{\theta\to\infty}$   $C_{\theta}^{\mathit{Gu}}=\mathit{M}(u_1,u_2)=\min\{u_1,u_2\}.$ 

The Gumbel Copulas have an upper tail dependence.

Clayton Copulas:  $\phi(t) = (t^{-\theta} - 1)/\theta$ ,  $\theta > 0$ . Then

 $C_{\theta}^{CI}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$  is the Clayton copula with parameter  $\theta$ .

**Theorem:** Let  $\phi \colon [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C \colon [0,1]^2 \to [0,1]$ , with

 $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$  is a copula iff  $\phi$  is convex.

A copula C generated as above is called an  $Archimedian\ copula\ with\ generator\ \phi.$ 

If 
$$\phi(0) = +\infty$$
, then  $\phi^{[-1]} = \phi^{-1}$  and  $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$ .

See Nelsen 1999 for a proof

**Examples:** Gumbel Copulas:  $\phi(t) = (-\ln t)^{\theta}$ ,  $\theta \ge 1$ ,  $t \in [0,1]$ . Then  $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$  is the Gumbel copula with parameter  $\theta$ .

For  $\theta = 1$ :  $C_1^{Gu} = u_1 u_2 . \lim_{\theta \to \infty} C_{\theta}^{Gu} = M(u_1, u_2) = \min\{u_1, u_2\}.$ 

The Gumbel Copulas have an upper tail dependence.

Clayton Copulas:  $\phi(t) = (t^{-\theta} - 1)/\theta$ ,  $\theta > 0$ . Then

$$C_{\theta}^{CI}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$$
 is the Clayton copula with parameter  $\theta$ .

 $\lim_{\theta \to 0} C_{\theta}^{Cl} = u_1 u_2$  and  $\lim_{\theta \to \infty} C_{\theta}^{Cl} = M = \min\{u_1, u_2\}.$ 

**Theorem:** Let  $\phi \colon [0,1] \to [0,+\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(1)=0$  and let  $\phi^{[-1]}$  be the pseudo-inverse function of  $\phi$ . The function  $C \colon [0,1]^2 \to [0,1]$ , with

 $C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2))$  is a copula iff  $\phi$  is convex.

A copula  ${\cal C}$  generated as above is called an Archimedian copula with generator  $\phi$ .

If 
$$\phi(0) = +\infty$$
, then  $\phi^{[-1]} = \phi^{-1}$  and  $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$ .

See Nelsen 1999 for a proof

**Examples:** Gumbel Copulas:  $\phi(t) = (-\ln t)^{\theta}$ ,  $\theta \ge 1$ ,  $t \in [0,1]$ . Then  $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$  is the Gumbel copula with parameter  $\theta$ .

For  $\theta=1$ :  $C_1^{\mathit{Gu}}=u_1u_2.\mathrm{lim}_{\theta\to\infty}$   $C_{\theta}^{\mathit{Gu}}=\mathit{M}(u_1,u_2)=\min\{u_1,u_2\}.$ 

The Gumbel Copulas have an upper tail dependence.

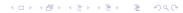
Clayton Copulas:  $\phi(t) = (t^{-\theta} - 1)/\theta$ ,  $\theta > 0$ . Then

$$C_0^{CI}(u_1,u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$$
 is the

Clayton copula with parameter  $\theta$ .

 $\lim_{\theta\to 0} C_{\theta}^{Cl} = u_1 u_2$  and  $\lim_{\theta\to \infty} C_{\theta}^{Cl} = M = \min\{u_1, u_2\}.$ 

The Clayton copulas have a lower tail dependence.



#### Example:

Let  $\phi(t) = 1 - t$ ,  $t \in [0,1]$ . Then  $\phi^{[-1]}(t) = \max\{1 - t, 0\}$  and  $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$ . Thus the Fréchet lower bound is an Archimedian copula.

#### **Example:**

Let 
$$\phi(t) = 1 - t$$
,  $t \in [0,1]$ . Then  $\phi^{[-1]}(t) = \max\{1 - t, 0\}$  and  $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$ . Thus the Fréchet lower bound is an Archimedian copula.

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and an Archimedian copula C generated by  $\phi$ . Then  $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$  holds.

#### **Example:**

Let 
$$\phi(t) = 1 - t$$
,  $t \in [0,1]$ . Then  $\phi^{[-1]}(t) = \max\{1 - t, 0\}$  and  $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$ . Thus the Fréchet lower bound is an Archimedian copula.

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and an Archimedian copula C generated by  $\phi$ . Then  $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$  holds.

See Nelsen 1999 for a proof.

#### Example:

Let 
$$\phi(t) = 1 - t$$
,  $t \in [0,1]$ . Then  $\phi^{[-1]}(t) = \max\{1 - t, 0\}$  and  $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$ . Thus the Fréchet lower bound is an Archimedian copula.

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and an Archimedian copula C generated by  $\phi$ . Then  $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$  holds.

See Nelsen 1999 for a proof.

**Example** Kendalls Tau for the Gumbel copula and the Clayton copula

#### Example:

Let  $\phi(t) = 1 - t$ ,  $t \in [0,1]$ . Then  $\phi^{[-1]}(t) = \max\{1 - t, 0\}$  and  $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$ . Thus the Fréchet lower bound is an Archimedian copula.

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and an Archimedian copula C generated by  $\phi$ . Then  $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$  holds.

See Nelsen 1999 for a proof.

**Example** Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel:  $\phi(t)=(\ln t)^{\theta},\ \theta\geq 1.$ 

#### Example:

Let  $\phi(t) = 1 - t$ ,  $t \in [0,1]$ . Then  $\phi^{[-1]}(t) = \max\{1 - t, 0\}$  and  $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$ . Thus the Fréchet lower bound is an Archimedian copula.

**Theorem:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions and an Archimedian copula C generated by  $\phi$ . Then  $\rho_{\tau}(X_1,X_2)=1+4\int_0^1 \frac{\phi(t)}{\phi'(t)}dt$  holds.

See Nelsen 1999 for a proof.

**Example** Kendalls Tau for the Gumbel copula and the Clayton copula

Gumbel: 
$$\phi(t) = (\ln t)^{\theta}, \ \theta \ge 1.$$
  
 $\rho_{\tau}(\theta) = 1 + 4 \int_{0}^{1} \frac{\phi(t)}{\phi'(t)} dt = 1 - \frac{1}{\theta}.$ 

#### Example:

Let 
$$\phi(t) = 1 - t$$
,  $t \in [0,1]$ . Then  $\phi^{[-1]}(t) = \max\{1 - t, 0\}$  and  $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$ . Thus the Fréchet lower bound is an Archimedian copula.

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and an Archimedian copula C generated by  $\phi$ . Then  $\rho_{\tau}(X_1, X_2) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$  holds.

See Nelsen 1999 for a proof.

**Example** Kendalls Tau for the Gumbel copula and the Clayton copula

Gumbel: 
$$\phi(t) = (\ln t)^{\theta}$$
,  $\theta \ge 1$ .

$$\rho_{ au}( heta) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt = 1 - \frac{1}{\theta}.$$

Clayton: 
$$\phi(t) = (t^{-\theta} - 1)/\theta$$
,  $\theta > 0$ .

# Archimedian copulas (contd.)

#### **Example:**

Let 
$$\phi(t) = 1 - t$$
,  $t \in [0,1]$ . Then  $\phi^{[-1]}(t) = \max\{1 - t, 0\}$  and  $C_{\phi}(u_1, u_2) := \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \max\{u_1 + u_2 - 1, 0\} = W(u_1, u_2)$ . Thus the Fréchet lower bound is an Archimedian copula.

**Theorem:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions and an Archimedian copula C generated by  $\phi$ . Then  $\rho_{\tau}(X_1,X_2)=1+4\int_0^1 \frac{\phi(t)}{\phi'(t)}dt$  holds.

See Nelsen 1999 for a proof.

**Example** Kendalls Tau for the Gumbel copula and the Clayton copula

Gumbel: 
$$\phi(t) = (\ln t)^{\theta}$$
,  $\theta \ge 1$ .  
 $\rho_{\tau}(\theta) = 1 + 4 \int_{0}^{1} \frac{\phi(t)}{\phi'(t)} dt = 1 - \frac{1}{\theta}$ .

Clayton: 
$$\phi(t) = (t^{-\theta} - 1)/\theta$$
,  $\theta > 0$ .

$$\rho_{\tau}(\theta) = 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt = \frac{\theta}{\theta + 2}.$$

**Definition:** A function  $g:[0,\infty)\to [0,\infty)$  is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for  $k\in\mathbb{N}_*$ :  $(-1)^k\left.\left(\frac{d^k}{ds^k}g(s)\right)\right|_{s=-t}\geq 0,\ \forall t\in(0,\infty).$ 

**Definition:** A function  $g:[0,\infty)\to [0,\infty)$  is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for  $k\in\mathbb{N}_*\colon (-1)^k\left(\frac{d^k}{ds^k}g(s)\right)\Big|_{s=t}\geq 0,\ \forall t\in(0,\infty).$ 

Theorem: (Kimberling 1974)

Let  $\phi\colon [0,1] \to [0,\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(0)=\infty$  and  $\phi(1)=0$ . The function  $C\colon [0,1]^d \to [0,1]$ ,  $C(u):=\phi^{-1}(\phi(u_1)+\phi(u_2)+\ldots+\phi(u_d))$  is a copula for  $d\geq 2$  iff  $\phi^{-1}$  is completely monotone on  $[0,\infty)$ .

**Definition:** A function  $g:[0,\infty)\to [0,\infty)$  is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for  $k\in\mathbb{N}_*\colon (-1)^k\left(\frac{d^k}{ds^k}g(s)\right)\Big|_{s=t}\geq 0,\ \forall t\in(0,\infty).$ 

**Theorem:** (Kimberling 1974)

Let  $\phi\colon [0,1] \to [0,\infty]$  be a continuous, strictly monotone decreasing function with  $\phi(0)=\infty$  and  $\phi(1)=0$ . The function  $C\colon [0,1]^d \to [0,1]$ ,  $C(u):=\phi^{-1}(\phi(u_1)+\phi(u_2)+\ldots+\phi(u_d))$  is a copula for  $d\geq 2$  iff  $\phi^{-1}$  is completely monotone on  $[0,\infty)$ .

**Lemma:** A function  $\psi \colon [0,\infty) \to [0,\infty)$  is completely monotone with  $\psi(0)=1$  iff  $\psi$  is the Laplace-Stieltjes transform of some distribution function G on  $[0,\infty)$ , i.e.  $\psi(s)=\int_0^\infty e^{-sx}dG(x)$ ,  $s\geq 0$ .

**Theorem:** Let G be a distribution function on  $[0,\infty)$  such that G(0)=0. Let  $\psi$  be the Laplace-Stieltjes transform of G, i.e.  $\psi(s)=\int_0^\infty e^{-sx}dG(x)$  for  $s\geq 0$ . Let X be a r.v. with distribution function G and let  $U_1,U_2,\ldots,U_d$  be conditionally independent r.v. for  $X=x, x\in \mathbb{R}^+$ , with conditional distribution function  $F_{U_t|X=x}(u)=\exp(-x\psi^{-1}(u))$  for  $u\in [0,1]$ .

**Theorem:** Let G be a distribution function on  $[0,\infty)$  such that G(0)=0. Let  $\psi$  be the Laplace-Stieltjes transform of G, i.e.  $\psi(s)=\int_0^\infty e^{-sx}dG(x)$  for  $s\geq 0$ . Let X be a r.v. with distribution function G and let  $U_1,U_2,\ldots,U_d$  be conditionally independent r.v. for  $X=x,\,x\in {\rm I\!R}^+$ , with conditional distribution function  $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$  for  $u\in [0,1]$ .

Then

$$Prob(U_1 \le u_1, U_2 \le u_2, \dots, U_d \le u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of  $U = (U_1, U_2, \dots, U_d)$  is an Archimedian copula with generator  $\psi^{-1}$ .

**Theorem:** Let G be a distribution function on  $[0,\infty)$  such that G(0)=0. Let  $\psi$  be the Laplace-Stieltjes transform of G, i.e.  $\psi(s)=\int_0^\infty e^{-sx}dG(x)$  for  $s\geq 0$ . Let X be a r.v. with distribution function G and let  $U_1,U_2,\ldots,U_d$  be conditionally independent r.v. for  $X=x,\,x\in {\rm I\!R}^+$ , with conditional distribution function  $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$  for  $u\in[0,1]$ .

Then

$$Prob(U_1 \le u_1, U_2 \le u_2, \dots, U_d \le u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of  $U = (U_1, U_2, \dots, U_d)$  is an Archimedian copula with generator  $\psi^{-1}$ .

#### Advantages and disadvantages of Archimedian copulas:

can model a broader class of dependencies

**Theorem:** Let G be a distribution function on  $[0,\infty)$  such that G(0)=0. Let  $\psi$  be the Laplace-Stieltjes transform of G, i.e.  $\psi(s)=\int_0^\infty e^{-sx}dG(x)$  for  $s\geq 0$ . Let X be a r.v. with distribution function G and let  $U_1,U_2,\ldots,U_d$  be conditionally independent r.v. for  $X=x,\,x\in {\rm I\!R}^+$ , with conditional distribution function  $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$  for  $u\in [0,1]$ .

Then

$$Prob(U_1 \le u_1, U_2 \le u_2, \dots, U_d \le u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of  $U = (U_1, U_2, \dots, U_d)$  is an Archimedian copula with generator  $\psi^{-1}$ .

#### Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation

**Theorem:** Let G be a distribution function on  $[0,\infty)$  such that G(0)=0. Let  $\psi$  be the Laplace-Stieltjes transform of G, i.e.  $\psi(s)=\int_0^\infty e^{-sx}dG(x)$  for  $s\geq 0$ . Let X be a r.v. with distribution function G and let  $U_1,U_2,\ldots,U_d$  be conditionally independent r.v. for  $X=x,\,x\in{\rm I\!R}^+$ , with conditional distribution function  $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$  for  $u\in[0,1]$ .

$$Prob(U_1 \leq u_1, U_2 \leq u_2, \dots, U_d \leq u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of  $U = (U_1, U_2, \dots, U_d)$  is an Archimedian copula with generator  $\psi^{-1}$ .

#### Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation
- depend on a small number of parameters in general

**Theorem:** Let G be a distribution function on  $[0,\infty)$  such that G(0)=0. Let  $\psi$  be the Laplace-Stieltjes transform of G, i.e.  $\psi(s)=\int_0^\infty e^{-sx}dG(x)$  for  $s\geq 0$ . Let X be a r.v. with distribution function G and let  $U_1,U_2,\ldots,U_d$  be conditionally independent r.v. for  $X=x,\,x\in {\rm I\!R}^+$ , with conditional distribution function  $F_{U_k|X=x}(u)=\exp(-x\psi^{-1}(u))$  for  $u\in[0,1]$ .

Then

$$Prob(U_1 \le u_1, U_2 \le u_2, \dots, U_d \le u_d) = \psi(\psi^{-1}(u_1) + \psi^{-1}(u_2) + \dots + \psi^{-1}(u_d))$$

and the distribution function of  $U = (U_1, U_2, \dots, U_d)$  is an Archimedian copula with generator  $\psi^{-1}$ .

#### Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation
- depend on a small number of parameters in general
- the generator function needs to fulfill quite restrictive technical assumptions

