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Simulate d independent standard normally distributed r.v.
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Observe: Consider a symmetric positive definite matrix R € IR?*9 and
its Cholesky factorization AAT = R with A € R?*?. If
Z1,25,...,2Z4 ~ N(0,1) are independent, then p+ AZ ~ Ng(p, R).
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Zy,2,,...,Zq4 ~ N(0,1)

> Set X := AZ

> Set Uy := ¢(X) for k =1,2,...,d, where ¢ is the standard normal
distribution function.

» Output U = (Ui, Ua, ..., Uyg); U has distribution function C&2.
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Algorithm: for the generation of a random vector U = (Us, Ua, ..., Uy)
whose distribution function is the copula CIE’R, R positive definite with all
ones on the main diagonal, v € IN.

» Compute the Cholesly factorization of R: R = AAT.

» Simulate d independent standard normally distributed r.v.
Z1,Z5,...,Z4 ~ N(0,1)

» Simulate a r.v. S ~ X2 independent from von Zy, ..., Z,.
> Set Y :=AZ
> Set X := L;Y

> Set Uy = t,(Xk) for k =1,2,...,d, where t, is the distribution
function of a standard t-distribution with v degrees of freedom.

> OUtpUt U= (Ul7 U2, ey Ud); U= (Ul, U2, ey Ud) has
distribution function C,iR.
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A generic algorithm to generate a random vector U = (Uy, Uy, ..., Uy)
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» Simulate a variable X with distribution function G, such that the
Laplace-Stieltjes transform v of G is the inverse function of the
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> Simulate d i.i.d. r.v. V4,Vs,. .., Vg uniformly distributed on [0, 1].

> Set U = (6(— In(V4)/X), (= In(Va)/X), ..., t(— In(Vas)/X)).
The distribution function of U is C.

Output: U

The generator (t) = (7% —1)/0, 6 > 0 yields the Clayton copula CS'.
Alternatively also 3(t) = t=% — 1 is a generator of the Clayton copula.
For X ~ Gamma(1/9, 1) with d.f. fx(x) = (x}/=1e™) /I (1/6) we have:

,sX f() e 1 Xl/Oflefde: (5+1)71/9 90 1( )
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A generic algorithm to generate a random vector U = (Uy, Us, ..., Uy)
with the Clayton CS' copula as distribution function.

Input: The dimension d € IN, the parameter 6 > 0.
> Simulate X ~ Gamma(1/0,1).
> Set ¢(s) == (s+1)"7 for s > 0.
> Simulate d i.i.d. r.v. Vi, Vs,. .., Vy uniformly distributed on [0, 1].

» The distribution function of
U= (¢(=In(V1)/X),¢(= In(V2)/X), ..., ¥(—In(V4)/X))
is the Clayton copula Cf'.

Output: U
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Let X be a positive stable r.v., X ~ St(1/6,1,~,0) with

v = (cos(r/(20)))? >0 (and = 3, =1, 6 =0)

The Laplace-Stieltjes transform of Fx is the generator o(t) = exp(—t'/?)
of the Gumbel copula C$*.

The simulation of Z ~ ST(a, 8,1,0) is not straightforward (see Nolan
2002).

For a #1 we get: X =6 ++vZ ~ St(a, 8,7, 9).
The case a = 1 is more complicated.

Alternative approach:

Let # > 1 and F(x) = 1 — F(x) = exp(—x'/?) for x > 0. Let

V ~ U(0,1) and let S be a r.v. independent from V with density
function h(s) = (1 —1/0 4 s/0) exp(—s) for s > 0.

Set (Zl,Zz)T = (\/597 (1 - \/)SQ)T

The distribution function of (F(Z1), F(Z))" is C£. Convince yourself!
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Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a
given multi-dimensional data set.

Input: A sample {X1,X5,..., Xy} of a c.d.f. F with continuous marginal
distributions Fy, F»,..., Fq4.

Output: A copula Cy and an estimator 0 for the parameter vector 6 of
the copula Cy such which F(x) ~ C;(Fi(x1),- .., Fa(xg)) holds.
Question 1: Which family of (known) copulas to use?

Answer: Selection of a suitable family of copulas based on (a) the visual
comparison of the graphical representations of the data set on one side
and of known copulas on the other, and (b) the empirical tail dependence
coefficients.

Question 2: What are the parameters of the prespecified family of
copulas used for the modelling?
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CR? = oo~ (), ..., 0" (uag)) Rij = sin(7(p7);j/2)
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Ci(u) = exp (—[(=Inun)’ + ...+ (= Inug]/?)  0=1/(1— (o))
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Parameter estimation for C5?, Cf,, C' and Cfv

CR? = 0k (m), .., ¢~ (ua)) Rij = sin(7(p-);/2)
Cor = top(t; (), .. ;7 (ug)) Rjj = sin(m(p-);/2)

Ci(u) = exp (—[(=Inun)’ + ...+ (= Inug]/?)  0=1/(1— (o))

CGCI(U) = (ul_g +... 4+ u;g —d+ 1)71/0 0 =2(p:)ii/(1—(pr)ij)
where
(pr)i = pr(Xiir Xk j)

= P((Xk,i — X1,))(Xi,j — X1j) > 0) — P((Xk,i — X1,i)(Xkj — Xi,j) <0)
= E(sign((Xk,i — X1,:))(Xkj — Xi,j)))-

Standard empirical estimator of Kendalls Tau:
— m —1 .
prij=(5) Xicker<nsi8N((Xii = X1.1)(Xiej = Xi1.5)).
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Calibration of the correlation matrix for Gaussian and
t-copulas
It may happen that R = (R;), Rj = sin(mp-;;/2), is not positive definite.
Replace R by a correlation matrix R*, selected such the “distance”
between R* and R is “small”.
Eigenvalue approach (Rousseeuw and Molenberghs 1993)

» Compute the spectral decomposition R =TATT of R, where A is a

diagonal matrix, containing the eigenvalues of R on the diagonal,

and [ is an orthogonal matrix with the eigenvectors of R in its
columns.

> Replace the negative eigenvalues in A by some small number 6 > 0
to obtain A.

» Compute R = TAT'T. R is symmetric and positive definite but not
necessarily a correlation matrix; the diagonal elements R;; might be
unequal 1.

> Set R* := DRD where D is a diagonal matrix with
Dix = 1/v/Rek-
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Estimation of the number of the degrees of freedom v
for t-copulas
1. Let /:_1, I:_d be the estimated marginal distributions.

2. Generate a pseudo-sample of the copula
Uk = (Ok,l, Uk,z, ey Uk,d) = (ﬁl(XkJ), ey 'Ed(Xk,d)),
for k =1,2,...,n (see Genest und Rivest 1993).

Fy can be generated by :

> a parametric estimation method;
Fy is assumed to be a certain parametric distribution and the
parameter is estimated by a maximum likelihood (ML) approach

> a non-parametric estimation method;
Fi is the empirical distribution function Fi(x) = =15 S0 1 Iix, ,<x,
1<i<d.
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Maximum likelihood estimator of v: v = arg max In L(¢; O, O, ..., Un)
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Estimation of the number of the degrees of freedom v
for t-copulas (contd.)

Maximum likelihood estimator of v: v = argmaxg In L(¢; O, O, ..., Un)
where

L(gv 017 027 ey On) = HZZICE,R(Ok)
and ¢ g is the density of the t-copula C{ r.

This implies X
In L(f Ul,UQ,.. ,Un) =
n n d
Z'”g&R(t{l(Um)w Uk d)) — Zlngg t5 de ),
k=1 k=1 j=1

where g¢ g is the cumulative density function of a d-dimensional standard
t-distribution with £ degrees of freedom and correlation matrix R, and g¢
is the density function of a univariate standard t-distribution with &
degrees of freedom.



