
The KMV model (contd.)

Computation of the “distance to default”
VA, i(t), µA,i and σA,i are needed.
Difficulty: VA,i (t) can not be observed directly.

However VE ,i (t) can be observed by looking at the market stock prices.

KMVs viewpoint: the equity holders have the right, but not the
obligation, to pay off the holders of the other liabilities and take over the
remaining assets of the firm.

This can be seen as a call option on the firms assets with a strike price
equal to the book value of the firms liabilities.

Thus VE ,i (T ) = max{VA,i (T )− Ki , 0}.

The Black-Scholes formula implies (option price theory):

VE ,i (t) = C (VA,i (t), r , σA,i ) = VA,i (t)φ(e1)− Kie
−r(T−t)φ(e2), where

e1 =
ln(VA,i (t)−ln Ki+(r+σ2

A,i/2)(T−t)

σA,i (T−t) , e2 = e1 − σA,i (T − t),

φ is the the standard normal distribution function and r is the risk free
interest rate.
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Computation of the “distance to default” (contd.)

The KMV model also postulates
σE ,i = g(VA,i (t), σA,i , r), where g is some suitably selected proprietary
function.

VE ,i (t) and σE ,i are estimated based on historical data and the system of
equalities below is solved w.r.t. VA,i (t) and σA,i :

VE ,i (t) = C (VA,i (t), r , σA,i )
σE ,i = g(VA,i (t), σA,i , r)

The values obtained for VA,i (t) and σA,i are used to compute DDi :

DDi =
ln VA,i (t)−ln Ki+(µA,i−

σ2
A,i
2 )(T−t)

σA,i

√
T−t .

Then P(VA,i (T ) < Ki ) = P(Yi < −DDi ) and in the general setup of the
latent variable model with m = 1 we have di1 = −DDi .
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The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting
pi := P(Yi < −DDi ).

Alternative: historical data are used to identify companies which at some
stage in their history had the same distance to default DDi .

Then the observed default frequency is used as an estimator for the
default probability pi . This estimator is called expected default frequency,
(EDF).

Summary of the univariate KMV model to compute the default
probability of a company:

I Estimate the asset value VA,i and the volatilty σA,i by using
observations of the market value and the volatility of equity VE ,i ,
σE ,i , the book of liabilities Ki , and by solving the system of
equations above.

I Compute the distance-to-default DDi by means of the
corresponding formula.

I Estimate the default probability pi in terms of the empirical
distribution which relates the distance to default with the expected
default frequency.
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The multivariate KMV model: computation of
multivariate default probabilities

Let Wj(t) be independent standard Brownian motions for 0 ≤ t ≤ T ,
j = 1, 2, . . . ,m.

Basic model:VA,i (T ) =

VA,i (t) exp

{(
µA,i −

σ2
A,i

2

)
(T − t) +

∑m
j=1 σA,i,j

(
Wj(T )−Wj(t)

)}
,

where

µA,i is the drift, σ2
A,i =

∑m
j=1 σ

2
A,i,j is the volatility, and σA,i,j quantifies

the impact of the jth Brownian motion on the asset value of firm i .

Set Yi :=
∑m

j=1 σA,i,j (Wj (T )−Wj (t))

σA,i

√
T−t . Then Y = (Y1,Y2, . . . ,Yn) ∼ N(0,Σ),

where Σij =
∑m

k=1 σA,i,kσA,j,k

σA,iσA,j
.

We get VA,i (T ) < Ki ⇐⇒ Yi < −DDi with

DDi =

ln VA,i (t)−ln Ki+

(
−σ2

A,i
2 +µA,i

)
(T−t)

σA,i

√
T−t .
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multivariate default probabilities
Let Wj(t) be independent standard Brownian motions for 0 ≤ t ≤ T ,
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The multivariate KMV model (contd.)

The probability that the k first firms default:

P(X1 = 1,X2 = 1, . . . ,Xk = 1) = P(Y1 < −DD1, . . . ,Yk < −DDk)
= CGa

Σ (φ(−DD1), . . . , φ(−DDk), 1, . . . , 1),

where CGa
Σ is the copula of a multivariate normal distribution with

covariance matrix Σ.

Joint default frequency:

JDF1,2,...,k = CGa
Σ (EDF1,EDF2, . . . ,EDFk , 1, . . . , 1),

where EDFi is the default frequency for firm i , i = 1, 2, . . . , k .
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Estimation of covariances/correlations σA,i ,j

Difficulties:

I n is typically quite large

I relatively few historical data available

I if n is large, then the pairwise estimated correlations coefficients do
not build a positive correlation matrix, in general.

Possible approach:
Factor model for the latent variables in which the asset value of a
company depends on certain common factors (macro-economical, global,
regional, sector-based or country-based factors) and a company specific
factor.

Y = (Y1,Y2, . . . ,Yn)T = AZ + BU where

Z = (Z1, . . . ,Zk)T ∼ Nk(0,Λ) are the k common factors,
U = (U1, . . . ,Un)T ∼ Nn(0, I ) are the company specific factors such that
Z and U are independent, and the constant matrices A = (aij) ∈ Rn×k ,
B = diag(b1, . . . , bn) ∈ Rn×n are model parameters.

Then we have cov(Y ) = AΛAT +D where D = diag(b2
1, . . . , b

2
n) ∈ Rn×n.
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Migration based models: Credit Metrics

It was developed by J.P.Morgan, see also MSCI
(https://www.msci.com/)

It is primarily used fo the evaluation of bond portfolios (Siehe Crouhy et
al. (2000)) and is based on a rating system (eg. Moody’s or Standard
and Poor’s).

It considers the changes of the portfolio value due to changes on the
corresponding rating categories of the assets.

Let P be a portfolio consisting of n credits with a fixed holding duration
(eg. 1 year). Let Si be the status variable for debtor i , where the states
are 0, 1, . . . ,m and Si = 0 corresponds to default.

Example: Rating system of Standard and Poor’s
m = 7; Si = 0 means default; Si = 1 or CCC ; Si = 2 or B; Si = 3 or BB;
Si = 4 or BBB; Si = 5 or A; Si = 6 or AA; Si = 7 or AAA.
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Migration based models: Credit Metrics (contd.)

For each debtor the dynamics of the status variable is modelled by means
of a Markov chain with status set {0, 1, . . . ,m} and transition matrix P.

The transition probabilities are computed based on historical data: e.g.

Original state category at the end of the year
state category AAA AA A BBB BB B CCC default

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0
AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0
A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18
BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06
B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20

CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79

Recovery rates
In case of default the recovery rate depends on the status category of the
defaulting debtor (prior to default). The mean and the standard
deviation of the recovery rate are computed based on the historical data
observed over time within each state category.
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Evaluation of bonds if the status category changes

Example: Consider a BBB bond with maturity 5 years, a nominal value
of 100 units and a coupon of 6% each year.
The forward forward yield curves for each status category are given as
follows (in %):

Status Year 1 Year 2 Year 3 Year 4
AAA 3.60 4.17 4.73 5.12
AA 3.65 4.22 4.78 5.17
A 3.73 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63
BB 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03 13.52

The bond pays 6 units at the end of the 4 years 1, 2, 3, 4 and 106 unit at
the end of year 5.

Assumption: At the end of the first year the bond is rated as an A bond.
The value at the end of the first year:

V = 6+
6

1 + 3, 73%
+

6

(1 + 4, 32%)2
+

6

(1 + 4, 93%)3
+

106

(1 + 5, 32%)4
= 108.64
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Evaluation of bonds if the status category changes
(contd.)

Example (contd.)
Analogous evaluation of the bond for other status category changes.

Assumption: recovery rate in case of default is 51.13%.

Status category at the end of the first year value
AAA 109.35
AA 109.17
A 108.64

BBB 107.53
BB 102.01
B 98.09

CCC 83.63
Default 51.13

Use the transition probabilities of the Markov chain (estimated in terms
of historical data) to compute the expected value of the bond at the end
of the first year.
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Value and risk of a bond portfolio in Credit Metrics

The return of bond i is modelled by a normal distribution Yi .

Let dDef , dCCC , . . ., dAAA = +∞ be thresholds which define the
transitions probabilities of debtor i at the end of the current period as
follows:

P(Si = 0) = φ(dDef ), P(Si = CCC ) = φ(dCCC )− φ(dDef ), . . .,
P(Si = AAA) = 1− φ(AA).

The return of a vector of bonds is modelled as a multivariate normal
distribution with correlation matrix R estimated by means of factor
models.

Joint probabilities of status category changes, e.g.

P(S1 = 0, . . . ,Sn = 3) = P(Y1 ≤ dDef , . . . , dB < Yn ≤ dBB)

can be then computed by using the Gaussian copula CGa
n,R of

(Y1,Y2, . . . ,Yn).

Use simulation to compute the risk measures (VaR, CVaR) of the bond
portfolio, e.g. by generating a large number of scenarios and then
computing the empirical estimators of VaR, CVaR.
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Approaches based on mixture models

Assumptions:

(1) The default of each debtor depends on a number of
(macro-economical) factors which are modelled stochastically.

(2) For a given realisation of these factors the defaults of different
debtors are independent on each other.

Definition: The Bernoulli mixture distribution
The 0-1 random vector X = (X1, . . . ,Xn)T has a Bernoulli mixture
distribution (BMD) iff there exists a random vector
Z = (Z1,Z2, . . . ,Zm)T , m < n, and the functions fi : Rm → [0, 1],
i = 1, 2, . . . , n, such that X conditioned on Z has independent
components with Xi |Z ∼ Bernoulli(fi (Z )).

Then P(X = x |Z ) =
∏n

i=1 fi (Z )xi (1− fi (Z ))1−xi ,
∀x = (x1, . . . , xn)T ∈ {0, 1}n

The unconditional distribution:

P(X = x) = E (P(X = x |Z )) = E

(∏n
i=1 fi (Z )xi (1− fi (Z ))1−xi

)
If all function fi coincide, i.e. fi = f , ∀i , we get N|Z ∼ Bin(n, f (Z )) for
the number N =

∑n
i=1 Xi of defaults.
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The Poisson mixture distribution

Definition: The discrete random vector X = (X1, . . . ,Xn)T has a
Poisson mixture distribution (PMD) iff there exists a random vector
Z = (Z1,Z2, . . . ,Zm)T , m < n, and the functions λi : Rm → (0,∞),
i = 1, 2, . . . , n, such that X conditioned on Z has independent
components with Xi |Z ∼ Poi(λi (Z )).

Then P(X = x |Z ) =
∏n

i=1
λi (Z)xi

xi !
e−λi (Z)

∀x = (x1, . . . , xn)T ∈ (N ∪ {0})n.

The unconditional distribution:

P(X = x) = E (P(X = x |Z )) = E

(∏n
i=1

λi (Z)xi

xi !
e−λi (Z)

)
Let X̄i = I[1,∞)(Xi ).

Then X̄ = (X̄1, . . . , X̄n) is BMD with fi (Z ) = 1− e−λi (Z)

If λi (Z ) << 1 we get for the number Ñ =
∑n

i=1 X̄i ≈
∑n

i=1 Xi of
defaults:

Ñ|Z ∼ Poisson(λ̄(Z )), where λ̄ =
∑n

i=1 λi (Z ).
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Examples of Bernoulli mixture distributions

Assumptions :

I Z is univariate (i.e. there is only one risk factor)

I fi = f , for all i ∈ {1, 2, . . . , n}

We have P(Xi = 1|Z ) = f (Z ), ∀i ; N|Z =
∑n

i=1 Xi ∼ Bin(n, f (Z )).

The unconditional probability of default of the first k debtors is
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =
E (P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0|Z )) =
E (f (Z )k(1− f (Z ))n−k)

Let G be the distribution function of Z . Then
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =∫∞
−∞ f (z)k(1− f (z))n−kd(G (z))

The distribution of the number N of defaults:

P(N = k) =

(
n

k

)∫ ∞
−∞

f (z)k(1− f (z))n−kd(G (z))



Examples of Bernoulli mixture distributions
Assumptions :

I Z is univariate (i.e. there is only one risk factor)

I fi = f , for all i ∈ {1, 2, . . . , n}

We have P(Xi = 1|Z ) = f (Z ), ∀i ; N|Z =
∑n

i=1 Xi ∼ Bin(n, f (Z )).

The unconditional probability of default of the first k debtors is
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =
E (P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0|Z )) =
E (f (Z )k(1− f (Z ))n−k)

Let G be the distribution function of Z . Then
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =∫∞
−∞ f (z)k(1− f (z))n−kd(G (z))

The distribution of the number N of defaults:

P(N = k) =

(
n

k

)∫ ∞
−∞

f (z)k(1− f (z))n−kd(G (z))



Examples of Bernoulli mixture distributions
Assumptions :

I Z is univariate (i.e. there is only one risk factor)

I fi = f , for all i ∈ {1, 2, . . . , n}

We have P(Xi = 1|Z ) = f (Z ), ∀i ; N|Z =
∑n

i=1 Xi ∼ Bin(n, f (Z )).

The unconditional probability of default of the first k debtors is
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =
E (P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0|Z )) =
E (f (Z )k(1− f (Z ))n−k)

Let G be the distribution function of Z . Then
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =∫∞
−∞ f (z)k(1− f (z))n−kd(G (z))

The distribution of the number N of defaults:

P(N = k) =

(
n

k

)∫ ∞
−∞

f (z)k(1− f (z))n−kd(G (z))



Examples of Bernoulli mixture distributions
Assumptions :

I Z is univariate (i.e. there is only one risk factor)

I fi = f , for all i ∈ {1, 2, . . . , n}

We have P(Xi = 1|Z ) = f (Z ), ∀i ; N|Z =
∑n

i=1 Xi ∼ Bin(n, f (Z )).

The unconditional probability of default of the first k debtors is
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =
E (P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0|Z )) =
E (f (Z )k(1− f (Z ))n−k)

Let G be the distribution function of Z . Then
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =∫∞
−∞ f (z)k(1− f (z))n−kd(G (z))

The distribution of the number N of defaults:

P(N = k) =

(
n

k

)∫ ∞
−∞

f (z)k(1− f (z))n−kd(G (z))



Examples of Bernoulli mixture distributions
Assumptions :

I Z is univariate (i.e. there is only one risk factor)

I fi = f , for all i ∈ {1, 2, . . . , n}

We have P(Xi = 1|Z ) = f (Z ), ∀i ; N|Z =
∑n

i=1 Xi ∼ Bin(n, f (Z )).

The unconditional probability of default of the first k debtors is
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =
E (P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0|Z )) =
E (f (Z )k(1− f (Z ))n−k)

Let G be the distribution function of Z . Then
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =∫∞
−∞ f (z)k(1− f (z))n−kd(G (z))

The distribution of the number N of defaults:

P(N = k) =

(
n

k

)∫ ∞
−∞

f (z)k(1− f (z))n−kd(G (z))



Examples of Bernoulli mixture distributions
Assumptions :

I Z is univariate (i.e. there is only one risk factor)

I fi = f , for all i ∈ {1, 2, . . . , n}

We have P(Xi = 1|Z ) = f (Z ), ∀i ; N|Z =
∑n

i=1 Xi ∼ Bin(n, f (Z )).

The unconditional probability of default of the first k debtors is
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =
E (P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0|Z )) =
E (f (Z )k(1− f (Z ))n−k)

Let G be the distribution function of Z . Then
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =∫∞
−∞ f (z)k(1− f (z))n−kd(G (z))

The distribution of the number N of defaults:

P(N = k) =

(
n

k

)∫ ∞
−∞

f (z)k(1− f (z))n−kd(G (z))



The beta-mixture distribution

Let Z ∼ Beta(a, b) and f (z) = z .

The d.f. g of Z is given as g(z) = 1
β(a,b)z

a−1(1− z)b−1, for a, b > 0,

z ∈ (0, 1), where β(a, b) =
∫ 1

0
za−1(1− z)b−1dz is the Euler beta

function.

The distribution of the number of defaults:

P(N = k) =

(
n

k

)∫ 1

0

zk(1−z)n−kg(z)dz =

(
n

k

)
1

β(a, b)

∫ 1

0

za+k−1(1−z)n−k+b−1dz

=

(
n

k

)
β(a + k, b + n − k)

β(a, b)
is the beta-binomial distribution

The probit-normal mixture
is obtained with Z ∼ N(0, 1), f (z) = φ(µ+ σz), µ ∈ R, σ > 0, where φ
is the standard normal distribution.

The logit-normal mixture
is with Z ∼ N(0, 1), f (z) = (1 + exp{µ+ σz})−1, µ ∈ R, σ > 0.
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CreditRisk+ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit suisse.com/investment banking/research/en/credit risk.jsp

Consider m independent risik factors Z1,Z2, . . . ,Zm, Zj ∼ Γ(αj , βj),
j = 1, 2, . . . ,m, with parameter αj , βj generally choosen such that such
that E (Zj) = 1.

Let λi (Z ) = λ̄i
∑m

j=1 aijZj ,
∑m

j=1 aij = 1 for i = 1, 2, . . . , n for some

parameters λ̄i > 0. Then E (λi (Z )) = λ̄i > 0) holds.

The density function of Zj is given as fj(z) =
zαj−1 exp{−z/βj}

β
αj
j Γ(αj )

The loss given default for debtor i is LGDi = (1− λi )Li , 1 ≤ i ≤ n,
where λi is the expected deterministic recovery rate and Li is the amount
of credit i .

The goal: approximate the loss disribution by a discrete distribution and
derive the generator function for the latter.
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The probability generating function and its properties

Let Y be a discrete r.v. taking values on {y1, . . . , ym} (a continuous r.v.
with density function f (y) in R). The probability generating function
(pgf) gY of Y is a mapping of [0, 1] to the reals defined as

gY (t) := E (tY ) =
∑m

i=1 t
yiP(Y = yi ) (gY (t) :=

∫∞
−∞ ty f (y)dy).

Some properties of probability generating functions:

(i) If Y ∼ Bernoulli(p), then gY (t) = 1 + p(t − 1).

(ii) If Y ∼ Poisson(λ), then gY (t) = exp{λ(t − 1)}.

(iii) If the r.v. X1, . . . ,Xn are independent, then
gX1+...+Xn(t) =

∏n
i=1 gXi (t).

(iv) Let Y be a r.v. with density function f and let gX |Y=y (t) be the pgf

of X |Y = y . Then gX (t) =
∫∞
−∞ gX |Y=y (t)f (y)dy .

(v) Let gX (t) be the pgf of X . Then P(X = k) = 1
k!g

(k)
X (0), where

g
(k)
X (t) = dkgX (t)

dtk
.
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The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss
unit L0 (e.g. Lo = 106 Euro):

LGDi = (1− λi )Li ≈
[

(1−λi )Li

L0

]
L0 = viL0 with vi :=

[
(1−λi )Li

L0

]
,

where [x ] = arg mint{|t − x | : t ∈ Z, t − x ∈ (−1/2, 1/2]}.

The loss function is then given by L =
∑n

i=1 X̄iviL0 ≈
∑n

i=1 XiviL0,
where X̄i is the loss indicator and (X1, . . . ,Xn) has a PMD with factor
vector (Z1,Z2, . . . ,Zm) as described above.

Step 1 Determine the pgf of (the approximative) number of losses
N = X1 + . . .+ Xn

Xi |Z ∼ Poi(λi (Z )), ∀i =⇒ gXi |Z (t) = exp{λi (Z )(t − 1)}, ∀i =⇒
gN|Z (t) =

∏n
i=1 gXi |Z (t) =

∏n
i=1 exp{λi (Z )(t−1)} = exp{µ(t−1)},

with µ :=
∑n

i=1 λi (Z ) =
∑n

i=1

(
λ̄i
∑m

j=1 aijZj

)
.
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The pgf of the loss distribution (contd.)

Then
gN(t) =

∫∞
0
. . .
∫∞

0
gN|Z=(z1,z2,...,zm)f1(z1) . . . fm(zm)dz1 . . . dzm =∫ ∞

0

. . .

∫ ∞
0

exp

{
n∑

i=1

(
λ̄i

m∑
j=1

aijzj

)
(t − 1)

}
f1(z1) . . . fm(zm)dz1 . . . dzm =

∫ ∞
0

. . .

∫ ∞
0

exp

{
(t−1)

m∑
j=1

(
n∑

i=1

λ̄iaij︸ ︷︷ ︸
µj

)
zj)

}
f1(z1) . . . fm(zm)dz1 . . . dzm =

∫ ∞
0

. . .

∫ ∞
0

exp{(t− 1)µ1z1}f1(z1)dz1 . . . exp{(t− 1)µmzm}fm(zm)dzm =

m∏
j=1

∫ ∞
0

exp{zjµj(t − 1)} 1

β
αj

j Γ(αj)
z
αj−1
j exp{−zj/βj}dzj

The computation of each integral in the product obove yields∫∞
0

1

Γ(αj )β
αj
j

exp{zjµj(t − 1)}zαj−1
j exp{−zj/βj}dzj =

(
1−δj
1−δj t

)αj

with

δj = βjµj/(1 + βjµj).
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1
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j
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(
1−δj
1−δj t

)αj
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δj = βjµj/(1 + βjµj).



The pgf of the loss distribution (contd.)

Thus we have gN(t) =
m∏
j=1

(
1− δj
1− δj t

)αj

.

Step 2 Determine the pgf of the (approximated) loss distribution
L =

∑n
i=1 XiviL0.

The conditional loss due to default of debtor i is Li |Z = vi (Xi |Z )

Li |Z are independent for i = 1, 2, . . . , n =⇒
gLi |Z (t) = E (tLi |Z ) = E (tviXi |Z ) = gXi |Z (tvi ) = exp{λi (Z )(tvi−1)}.
The pgf od the conditional overall loss is

gL|Z (t) = gL1+L2+...+Ln|Z (t) =
∏n

i=1 gLi |Z (t) =∏n
i=1 gXi |Z (tvi ) =exp

{∑m
j=1 Zj

(∑n
i=1 λ̄iaij(t

vi − 1)
)}

.
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The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m = 1 or m = 5.
Assume that λ̄i = λ̄ = 0.15, for i = 1, 2, . . . , n, αj = α = 1, βj = β = 1,
ai,j = 1/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The probability that k creditors will default is given as follows for any
k ∈ N ∪ {0}:
P(N = k) = 1

k!g
(k)
N (0) = 1

k!
dkgN
dtk

.

For the computation of P(N = k), k = 0, 1, . . . , 100, we can use the
following recursive formula

g
(k)
N (0) =

∑k−1
l=0

(
k−1
l

)
g

(k−1−l)
N (0)

∑m
j=1 l!αjδ

l+1
j , where k > 1.
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