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Definition: (The generalized extreme value distribution (gevd))
Let the distribution function H, be given as follows:

_ [ ep{-(1+yx)7}  wenny #0
Hh(x) = { exp{—exp{—x}} wenn v =0

where 1+ vx > 0, i.e. the definition area of H, is given as
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xeR wenn 7 =0

H, is called generalized extreme value distribution (gevd).



The generalized evd

Definition: (The generalized extreme value distribution (gevd))
Let the distribution function H, be given as follows:

_ [ ep{-(1+yx)7}  wenny #0
Hh(x) = { exp{—exp{—x}} wenn v =0

where 1+ vx > 0, i.e. the definition area of H, is given as

x> -1 wenny>0
x<—y"1 wennvy<0
xeR wenn 7 =0
H, is called generalized extreme value distribution (gevd).
Theorem: (Characterisation of MDA(H,))

> F € MDA(H,) with v >0 < F € MDA(®,) with a = 1/ > 0.
> F € MDA(Ho) <= F € MDA(N).

> F € MDA(H,) with v < 0 <= F € MDA(V,,) with o = —1/v > 0.
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Clearly every standard evd belongs to its own MDA!
Which distributions belong to MDA(®,,), MDA(W,) and MDA(A) other
than ¢., ¥, and A, respectively (for a > 0)?

Observation: lim,_,_ ®a() — 1, Va > 0. Thus for ¢, € MDA(®,,) we
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have ®, € RV_,. Does this generally hold for members of MDA(®,,)?

Theorem: (MDA(®,), Gnedenko 1943)
F e MDA(®,) (0> 0) <= F € RV_.. (a > 0).
If F € MDA(®,,), then lim, . a; M, = &, with a, = F~ (1 — n71).

Examples: The following distributions belong to MDA(®,,):

v

Pareto: F(x)=1—-x"% x>1, a>0.

» Cauchy: f(x) = (7(1+x?))7! x € R.
> Student: f(x) = (a/(;)(gilé%) 77, @« € N, x € R.
> Loggamma: f(x) = vf)(lnx)ﬂ Ix=e7l x>1,a,8>0.
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Characterisations of MDAs (contd.)

Observation: V,(—x"1) = ®,(x) holds for x > 0 and for every a > 0.
Are MDA(®,,) and MDA(V,,) “similar” somehow?

Theorem: (MDA(V,,), Gnedenko 1943)

FEMDA(\U ) (> 0) < xr:=sup{x € R: F(x) <1} < o0 and
F(xe —x71) € RV_4 (> 0).

If F e MDA(V,), then limp_so0 @y H(Mn — xg) = W, with

a, =xf — F(1—-n1).

Example: Let X ~ U(0,1). it holds X € MDA(V,) with a, = 1/n,
ncIN.
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generally hold for members of MDA(A)?

Theorem: (MDA(N))

Let F be a distribution function with right endpoint xF < oco.
F € MDA(N) holds iff there exists a z < xg such that F can be
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Characterisations of MDAs (contd.)

Observation: limy_, % =1, Va > 0.

Thus for A € MDA(A) we have A ~ e™*. Does this (or smth. similar)
generally hold for members of MDA(A)?

Theorem: (MDA(N))

Let F be a distribution function with right endpoint xF < oco.
F € MDA(N) holds iff there exists a z < xg such that F can be
represented as

F(x) = c(x)exp{ - /X i((gdt}NX,Z < x < X,

where the functions c¢(x) and g(x) fulfill limysx, c¢(x) = ¢ > 0 and
limes, g(t) = 1, and a(t) is a positive absolutely continuous function
with limgq, a'(t) = 0.

See the book by Embrechts et al. for the proofs of the above theorem
and of the following theorem concerning the characterisation of MDA(N).
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Theorem: (MDA(A), alternative characterisation)
A distribution function F belongs to MDA(A) iff there exists a a positive
function & such that

F(x + vi(x))

xTxF F(X)
A possible choice for 4 is 4(x) = a(x) with a(x) := [* %dt.

Definition: The function a(x) above is called mean excess function and
it can be alternatively represented as

a(x) == E(X — x|X > x),Vx < xg.

Examples: The following distributions belong to MDA(A):
» Normal: F(x) = (27) /2 exp{—x?/2}, x € R.
» Exponential: f(x) = A"texp{—Ax}, x >0, A > 0.
» Lognormal: f(x) = (27x?)~ Y2 exp{—(Inx)?/2}, x > 0.

> Gamma: f(x) = r/fz)xa’l exp{—px}, x>0, a, 5 > 0.
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Graphical methods for the investigation of the right tail
of the distribution

> Histogram

» Quantile-quantile plots
Let X1, X5,..., X, bei.id. rv. vyith unknown distribution F. We
assume that the right range of F can be approximated by a known
distribution F.

Question: How to check whether this assumption holds?

Let Xpn < Xp—1,n < ... < X1, be a sorted sample of X, X5,..., X,.
qaqg-plot: {(xk,n, F‘_("%ﬁl)): k=1,2,...,n}.

If the assumption is plausible then the qg-plot is similar to the
graph of a linear function. This property holds also if the reference
distribution and the real distribution do not coincide but are of the
same type.

Rule of thumb: the larger the quantile the heavier the tails of the
distribution!
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The Hill estimator

Let X1, Xz, ..., X, be i.i.d. r.v. with distribution function F, such that
F € RV_,, a>0,ie F(x)=x"“L(x) with L € RV,.

Goal: Estimate o!

Theorem: (Theorem of Karamata)
Let L be a slowly varying locally bounded function on [xp, +00) for some
Xo € IR. Then the following holds:

(a) For k> —1: f): t"L(t)dt ~ K(xo0) + %HX"”"HL(X) for x — oo,

where K(xp) is a constant depending on x.

(b) For k < —1: f:oo t*L(t)dt ~ ——=5x"T1L(x) for x — oo.

Proof in Bingham et al. 1987.
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For the empirical distribution F,(x) = 137 | I, «)(x) and a large
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Application of Karamata’s theorem
Assumption: F is locally bounded on [u, +00).
The theorem of Karamata implies: E (In(X) — In(u)|In(X) > In(v)) =

lim _(1u) /uoo(lnx —Inu)dF(x) = a1t (1)

u—oco [

For the empirical distribution F,(x) = 137 | I, «)(x) and a large
threshold x , depending on the sample x, , < Xp—1,, < ... < X1, We get:

E (In(X) = In(xk,n)| In(X) > In(xx.n)) =~

X

-1
1 e 1
m /Xk,n(h‘\X —1In Xk,n)an(X) = m : 1(|an,n —In Xk,n)-

If k = k(n) — oo and k/n — 0, then xi , — oo for n — oo, and (1)
implies:
=
lim —— Z(In Xjn — In Xk n) 441

n—oo k — 1 4
Jj=1



