
The generalized evd

Definition: (The generalized extreme value distribution (gevd))
Let the distribution function Hγ be given as follows:

Hγ(x) =

{
exp{−(1 + γx)−1/γ} wenn γ 6= 0
exp{− exp{−x}} wenn γ = 0

where 1 + γx > 0, i.e. the definition area of Hγ is given as

x > −γ−1 wenn γ > 0
x < −γ−1 wenn γ < 0
x ∈ IR wenn γ = 0

Hγ is called generalized extreme value distribution (gevd).

Theorem: (Characterisation of MDA(Hγ))

I F ∈ MDA(Hγ) with γ > 0 ⇐⇒ F ∈ MDA(Φα) with α = 1/γ > 0.

I F ∈ MDA(H0) ⇐⇒ F ∈ MDA(Λ).

I F ∈ MDA(Hγ) with γ < 0 ⇐⇒ F ∈ MDA(Ψα) with α = −1/γ > 0.
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MDAs: Examples and Characterisations

Clearly every standard evd belongs to its own MDA!
Which distributions belong to MDA(Φα), MDA(Ψα) and MDA(Λ) other
than φα, ψα and Λ, respectively (for α > 0)?

Observation: limx→+∞
Φ̄α(x)
x−α = 1, ∀α > 0. Thus for Φα ∈ MDA(Φα) we

have Φ̄α ∈ RV−α. Does this generally hold for members of MDA(Φα)?

Theorem: (MDA(Φα), Gnedenko 1943)
F ∈ MDA(Φα) (α > 0) ⇐⇒ F̄ ∈ RV−α (α > 0).
If F ∈ MDA(Φα), then limn→∞ a−1

n Mn = Φα with an = F←(1− n−1).

Examples: The following distributions belong to MDA(Φα):

I Pareto: F (x) = 1− x−α, x > 1, α > 0.

I Cauchy: f (x) = (π(1 + x2))−1, x ∈ IR.

I Student: f (x) = Γ((α+1)/2)√
απΓ(α/2)(1+x2/α)(α+1)/2 , α ∈ IN, x ∈ IR.

I Loggamma: f (x) = αβ

Γ(β) (ln x)β−1x−α−1, x > 1, α, β > 0.
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Characterisations of MDAs (contd.)

Observation: Ψα(−x−1) = Φα(x) holds for x > 0 and for every α > 0.
Are MDA(Φα) and MDA(Ψα) “similar” somehow?

Theorem: (MDA(Ψα), Gnedenko 1943)
F ∈ MDA(Ψα) (α > 0) ⇐⇒ xF := sup{x ∈ IR : F (x) < 1} <∞ and
F̄ (xF − x−1) ∈ RV−α (α > 0).

If F ∈ MDA(Ψα), then limn→∞ a−1
n (Mn − xF ) = Ψα with

an = xF − F←(1− n−1).

Example: Let X ∼ U(0, 1). it holds X ∈ MDA(Ψ1) with an = 1/n,
n ∈ IN.
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Characterisations of MDAs (contd.)

Observation: limx→+∞
Λ̄(x)
e−x = 1, ∀α > 0.

Thus for Λ ∈ MDA(Λ) we have Λ̄ ∼ e−x . Does this (or smth. similar)
generally hold for members of MDA(Λ)?

Theorem: (MDA(Λ))
Let F be a distribution function with right endpoint xF ≤ ∞.
F ∈ MDA(Λ) holds iff there exists a z < xF such that F can be
represented as

F̄ (x) = c(x)exp

{
−
∫ x

z

g(t)

a(t)
dt

}
,∀x , z < x ≤ xF ,

where the functions c(x) and g(x) fulfill limx↑xF c(x) = c > 0 and
limt↑xF g(t) = 1, and a(t) is a positive absolutely continuous function
with limt↑xF a

′(t) = 0.

See the book by Embrechts et al. for the proofs of the above theorem
and of the following theorem concerning the characterisation of MDA(Λ).
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Characterisations of MDAs (contd.)
Theorem: (MDA(Λ), alternative characterisation)
A distribution function F belongs to MDA(Λ) iff there exists a a positive
function ã such that

lim
x↑xF

F̄ (x + uã(x))

F̄ (x)
= e−u,∀u ∈ IR

A possible choice for ã is ã(x) = a(x) with a(x) :=
∫ xF
x

F̄ (t)

F̄ (x)
dt.

Definition: The function a(x) above is called mean excess function and
it can be alternatively represented as

a(x) := E (X − x |X > x),∀x ≤ xF .

Examples: The following distributions belong to MDA(Λ):

I Normal: F (x) = (2π)−1/2 exp{−x2/2}, x ∈ IR.

I Exponential: f (x) = λ−1 exp{−λx}, x > 0, λ > 0.

I Lognormal: f (x) = (2πx2)−1/2 exp{−(ln x)2/2}, x > 0.

I Gamma: f (x) = βα

Γ(α)x
α−1 exp{−βx}, x > 0, α, β > 0.
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Graphical methods for the investigation of the right tail
of the distribution

I Histogram

I Quantile-quantile plots

Let X1,X2, . . . ,Xn be i.i.d. r.v. with unknown distribution F̃ . We
assume that the right range of F̃ can be approximated by a known
distribution F .

Question: How to check whether this assumption holds?

Let xn,n ≤ xn−1,n ≤ . . . ≤ x1,n be a sorted sample of X1, X2,. . ., Xn.

qq-plot: {(xk,n,F←( n−k+1
n+1 )) : k = 1, 2, . . . , n}.

If the assumption is plausible then the qq-plot is similar to the
graph of a linear function. This property holds also if the reference
distribution and the real distribution do not coincide but are of the
same type.

Rule of thumb: the larger the quantile the heavier the tails of the
distribution!
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The Hill estimator

Let X1,X2, . . . ,Xn be i.i.d. r.v. with distribution function F , such that
F̄ ∈ RV−α, α > 0, i.e. F̄ (x) = x−αL(x) with L ∈ RV0.

Goal: Estimate α!

Theorem: (Theorem of Karamata)
Let L be a slowly varying locally bounded function on [x0,+∞) for some
x0 ∈ IR. Then the following holds:

(a) For κ > −1:
∫ x

xo
tκL(t)dt ∼ K (x0) + 1

κ+1x
κ+1L(x) for x →∞,

where K (x0) is a constant depending on x0.

(b) For κ < −1:
∫ +∞
x

tκL(t)dt ∼ − 1
κ+1x

κ+1L(x) for x →∞.

Proof in Bingham et al. 1987.
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Application of Karamata’s theorem

Assumption: F is locally bounded on [u,+∞).

The theorem of Karamata implies: E (ln(X )− ln(u)| ln(X ) > ln(u)) =

lim
u→∞

1

F̄ (u)

∫ ∞
u

(ln x − ln u)dF (x) = α−1. (1)

For the empirical distribution Fn(x) = 1
n

∑n
k=1 I[xk ,∞)(x) and a large

threshold xk,n depending on the sample xn,n ≤ xn−1,n ≤ . . . ≤ x1,n we get:

E (ln(X )− ln(xk,n)| ln(X ) > ln(xk,n)) ≈

1

F̄n(xk,n)

∫ ∞
Xk,n

(ln x − ln xk,n)dFn(x) =
1

k − 1

k−1∑
j=1

(ln xj,n − ln xk,n).

If k = k(n)→∞ and k/n→ 0, then xk,n →∞ for n→∞, and (1)
implies:

lim
n→∞

1

k − 1

k−1∑
j=1

(ln xj,n − ln xk,n)
d
= α−1
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