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Thus the following Hill estimator is consistent:
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ozf(l:? =% Z;(In Xj.n — N Xk.n)
J:

How to choose a suitable k for a given sample size n?

If k too small, then the estimator has a high variance.

If k too large, than the estimator is based on central values of the sample
distribution, and is therefore biased.

Grafical inspection of the Hill plots: {(ka‘k’”) k=2,..., n}

Given an estimator &E(Hg of v we get tail and quantile estimators as
follows:
~(H
N k X T %on ~ _1/6‘2[-/"
Fix) =~ (Xk > and G, = F* (p) = (;(1 - P)) Xie,n
,n
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The POT method (Peaks over Threshold)

Definition: (The generalized Pareto distribution (GPD))
The standard GPD denoted by G,:

11 +x)YY fiiry#0
Gy () = { 1 —exp{—x} flry=0

where x € D()

_J 0<x < fury >0
D(V)_{ 0<x<-1/y firy< 0

Notice that Gy = lim,_o G,.
Let v € IR and 8 > 0. The GPD with parameters ~, v, (3 is given by the
following distribution function

X—v,_
Gy :1*(1+’YT) v

where x € D(~,v, ) and

_Jvr<x<o fury >0
D(%V’B)_{ v<x<v-—8/y firy<0
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Characteristions of MDA(H,))

Theorem: Let v € IR. The following statements are equiavlent:
(i) F e MDA(H,)

(ii) There exists a positive measurable function a(-), such that for
x € D(v)

. F(u+ xa(u)) =
LlllTr)T(l o) G, (x) holds.

Definition:(Excess distribution)
Let X be a r.v. with distribution function F and let xg be the right tail of
this distribution. For u < x¢ the function F, given as

Fu(x) =P(X —u<x|X>u),x>0

ic called excess distribution function over the threshold u.
Theorem: Let v € IR. The following statements are equivalent:

(i) F e MDA(H,)
(i) There exists a positive measurable function 3(-), such that

lim  sup  |Fu(x) = Gy 0,8(u)(x)| = 0 holds.
UTXE xe(0,xF —u) ’
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POT: estimators for the tail and the quantile of the
excess distribution

Let Xi,..., X, i.i.d. r.v. with distribution function F € MDA(H,) for
v € R.

> Choose a threshold v (high enough, by means of suitable statistical
approaches) and compute

=|{ie{1,2,....,n}: Xi > u}|

> Let Y1,Y2,..., Yy, be the exceedances. Determine B and 4, such
that the following holds:

Fu(y) ~ G@,o,ﬁﬁ)(y)v

where F,(y) = P(X — u > y|X > u).

» Use N, and F, ~ G, 5.0.50) to obtain estimators for the tail and the

quantile of F

—_— -1/% o) -4
I:'(u+y)—l\rl:(1+’yg> and c“]p—u—|—§<(,\7(1—p)> —1)
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POT contd.: How to choose a suitable threshold u?

» Is u too large, then there are only a few observed exceedances and
not enough data to estimate 5 und 4.

» |s u too small, then the approximation F,(y) ~ Gy 0,5 (y) is not
good.

Basic idea: inspect the plot of the empirical mean excess function and
choose a threshold wug, such that the empirical mean excess function is
approximately linear for u > up.

The justification :
> er(u fo tdFu(t) ~ [3° tdGy 0 ) (1) = E(Gy0,p) = 22, if
Fu(t ) Gy 0, B(U)(t)

If Fu(x) = G,05(x) then ¥v > u the approximation
V(%) & G0, p4~(v—u)(x) holds.

>

u=
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Definition: The empirical mean excess function:

Let x1,x2,...,X, be a sample of i.i.d r.v. Let
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POT (contd.): How to choose a suitable threshold u?

Definition: The empirical mean excess function:

Let x1,x2,...,X, be a sample of i.i.d r.v. Let

N, =|{i:1<i<n,x; > u}| be the number of the sample points which
exceed u. The empirical mean excess function e,(u) is defined as:

1 n
en(u) = m Z(x,- — u)l{x,->u}'

i=1

Consider the plot of the (interpolation of the) empirical mean excess
function: (xkn, en(xk.n)), Kk =1,2,...,n— 1. If this plot is approximately
linear around some X ,, then u := X, , might be a good choice for the
threshold value.
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POT (contd.): Estimation of the paramters v and 3

Let u be a given threshold and let Yi,Y>,..., Yy, be the observed data
from the sample which exceed u.

The likelihood function L(, 8, Yi,..., Yu,) is the conditional probability

that F,(y) ~ G,0.(y) under the condition that the observed
exceedances are Y1,Y2,...,.Yn,.

The following holds:

N,
|nL(7,ﬂ, Yla-“aYNu):*Nulnﬂ* (,]}-I+1)Zln <1+:8Y\/,>

i=1

where Y; >0 fory>0and 0 <Y; < -8/~ for vy < 0.
(see Daley, Veve-Jones (2003) and Coles (2001))
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The maximizers 4 and /3 of the log-likelihood function are used as
estimators for v and 8 (ML-estimators)

The method works well for v > —1/2.
The ML-estimators are in this case normally distributed:

There is an uncertainty related to the more or less arbitrary choice of the
threshold u. It can be reduced by

> investigating the dependency of the ML-estimator 4 on w.

> visualizing and inspecting the estimated tail distribution

~ N, -1/%
Fluty)==* <1+@é>



