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Theorem: (Embrechts et al., 2002)

Let X = (X1, Xz, ..., Xy) = .+ AY be elliptically distributed with
pelRY AeRY*F and a spherically distributed vector Y ~ Si(1)).
Assume that 0 < E(X?) < oo holds Vk. If the risk measure p has the
properties (C1) and (C3) and p(Y1) > 0 for the first component Y; of Y,
then

argmin{p(Z(w)): w € Py,} = argmin{var(Z(w)): w € Pp}
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Equivalently, a copula C is a function C: [0,1]¢ — [0, 1], with the
following properties:

1. C(uy, u,...,uy) is mon. increasing in each variable u;, 1 < i <d.

2. C(1,1,...,  ug,1,...,1) = uy forany k € {1,...,d} and
VukG[O,l].

3. The rectangle inequality holds ¥(ay, a2, . . ., aq4) € [0,1]9,
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Remark: The k-dimensional marginal distributions of a d-dimensional
copula are k-dimensional copulas, for all 2 < k < d.
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1. h* is eine monotone increasing left continuous function.
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3. his strictly monotone increasing <= h is continuous.
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5 h(h™(y))zy

6. h is strictly monotone increasing = h* (h(x)) = x.

7

. h'is continuous = h(h* (y)) = y.

Lemma: Let X be a r.v. with continuous distribution function F. Then
P(FE(F(x)) =x)=1,ie FC(F(X)) 2 X
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Vice-versa, if C is a copula and F,...,Fy are d.f., then the function F
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C as above is called the copula of F. For a random vector X € IRY with
c.d.f. F we say that C is the copula of X.



