
Mean-risk portfolio optimization in the case of
elliptically distributed asset returns

Theorem: (Embrechts et al., 2002)
Let M be the set of returns of the portfolii in
P := {w = (wi ) ∈ IRd ,

∑d
i=1 |wi | = 1}. Let the asset returns

X = (X1,X2, . . . ,Xd) be elliptically distributed,
X = (X1,X2, . . . ,Xd) ∼ Ed(µ,Σ, ψ) for some µ ∈ IRd , Σ ∈ IRd×d and
ψ : IR→ IR. Then VaRα ist coherent in M, for any α ∈ (0.5, 1).

Theorem: (Embrechts et al., 2002)
Let X = (X1,X2, . . . ,Xd) = µ+ AY be elliptically distributed with
µ ∈ IRd , A ∈ IRd×k and a spherically distributed vector Y ∼ Sk(ψ).
Assume that 0 < E (X 2

k ) <∞ holds ∀k. If the risk measure ρ has the
properties (C1) and (C3) and ρ(Y1) > 0 for the first component Y1 of Y ,
then

arg min{ρ(Z (w)) : w ∈ Pm} = arg min{var(Z (w)) : w ∈ Pm}
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Copulas: Definition and basic properties

Definition: A d-dimensional copula is a distribution function on [0, 1]d

with uniform marginal distributions on [0, 1].

Equivalently, a copula C is a function C : [0, 1]d → [0, 1], with the
following properties:

1. C (u1, u2, . . . , ud) is mon. increasing in each variable ui , 1 ≤ i ≤ d .

2. C (1, 1, . . . , 1, uk , 1, . . . , 1) = uk for any k ∈ {1, . . . , d} and
∀uk ∈ [0, 1].

3. The rectangle inequality holds ∀(a1, a2, . . . , ad) ∈ [0, 1]d ,
∀(b1, b2, . . . , bd) ∈ [0, 1]d with ak ≤ bk , ∀k ∈ {1, 2, . . . , d}:

2∑
k1=1

. . .
2∑

kd=1

(−1)k1+k2+...+kdC (u1k1 , u2k2 , . . . , udkd ) ≥ 0 ,

where uj1 = aj and uj2 = bj .

Remark: The k-dimensional marginal distributions of a d-dimensional
copula are k-dimensional copulas, for all 2 ≤ k ≤ d .
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Lemma: Let h : IR→ IR be a monotone increasing function with
h(IR) = IR and h← : IR→ IR be the generalized inverse function of h.
Then the following statements hold:

1. h← is eine monotone increasing left continuous function.

2. h is continuous ⇐⇒ h← is strictly monotone increasing.

3. h is strictly monotone increasing ⇐⇒ h← is continuous.

4. h←(h(x)) ≤ x

5. h(h←(y)) ≥ y

6. h is strictly monotone increasing =⇒ h←(h(x)) = x .

7. h is continuous =⇒ h(h←(y)) = y .

Lemma: Let X be a r.v. with continuous distribution function F . Then
P (F←(F (x)) = x) = 1, i.e. F←(F (X ))

a.s.
= X
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Copulas: existence and uniqueness

Theorem: Let G be a d.f. in IR. The following statements holds

1. Quantile transformation:
If U ∼ U(0, 1), then P(G←(U) ≤ x) = G (x).

2. Probability transformation: Let Y be a r.v. with continuous d.f. G .
Then G (Y ) ∼ U(0, 1).

Theorem: (Sklar, 1959)
Let F : IRd → [0, 1] a c.d.f. with marginal d.f. F1,. . .,Fd . There exists a
copula C , such that for all x1, x2, . . . , xd ∈ ĪR = [−∞,∞] the equality

F (x1, x2, . . . , xd) = C (F1(x1),F2(x2), . . . ,Fd(xd)) holds.

If F1,. . .,Fd are continuous, then C is unique.
Vice-versa, if C is a copula and F1,. . .,Fd are d.f., then the function F
defined by the equality above is a c.d.f. with marginal d.f. F1,. . .,Fd .

C as above is called the copula of F . For a random vector X ∈ IRd with
c.d.f. F we say that C is the copula of X .
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F (x1, x2, . . . , xd) = C (F1(x1),F2(x2), . . . ,Fd(xd)) holds.

If F1,. . .,Fd are continuous, then C is unique.
Vice-versa, if C is a copula and F1,. . .,Fd are d.f., then the function F
defined by the equality above is a c.d.f. with marginal d.f. F1,. . .,Fd .

C as above is called the copula of F . For a random vector X ∈ IRd with
c.d.f. F we say that C is the copula of X .



Copulas: existence and uniqueness
Theorem: Let G be a d.f. in IR. The following statements holds

1. Quantile transformation:
If U ∼ U(0, 1), then P(G←(U) ≤ x) = G (x).

2. Probability transformation: Let Y be a r.v. with continuous d.f. G .
Then G (Y ) ∼ U(0, 1).

Theorem: (Sklar, 1959)
Let F : IRd → [0, 1] a c.d.f. with marginal d.f. F1,. . .,Fd . There exists a
copula C , such that for all x1, x2, . . . , xd ∈ ĪR = [−∞,∞] the equality
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